Binuclear Lanthanide(III) Complexes with Chiral Ligands: Dynamic Equilibria in Solution and Binding with Nucleotides Studied by Spectroscopic Methods
Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32253836
DOI
10.1002/cplu.202000182
Knihovny.cz E-zdroje
- Klíčová slova
- Raman optical activity, chiral ligands, circularly polarized luminescence, lanthanides, nucleotides,
- MeSH
- adenosin analogy a deriváty chemie MeSH
- difrakce rentgenového záření MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- komplexní sloučeniny chemie MeSH
- lanthanoidy chemie MeSH
- ligandy MeSH
- luminiscenční měření MeSH
- Ramanova spektroskopie MeSH
- roztoky MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosin MeSH
- komplexní sloučeniny MeSH
- lanthanoidy MeSH
- ligandy MeSH
- roztoky MeSH
Binuclear lanthanide complexes of Eu(III) and Sm(III) were obtained in the presence of chiral ligand 1,2-(R,R+S,S)-N,N'-bis(2-pyridylmethylene),2-diamine. An unusual structure of the Eu(III) compound with two lanthanide atoms connected through two chlorines was determined by X-ray crystallography. In solution, the dimer coexists with a monomeric complex, and the stability of the binuclear form depends on the solvent and concentration. The dimer-monomer equilibrium was monitored by circularly polarized luminescence (CPL) measured on a Raman optical activity (ROA) spectrometer, where both forms provided large CPL anisotropic ratios of up to 5.6×10-2 . Monomer formation was favored in water, whereas the dimer was stabilized in methanol. When mixed with adenosine phosphates, AMP gave much smaller CPL than ADP and ATP, indicating a high affinity of the Eu (III) complex for the phosphate group, which in connection with the ROA/CPL technique can be developed into a bioanalytical probe.
Zobrazit více v PubMed
M. C. Heffern, L. M. Matosziuk, T. J. Meade, Chem. Rev. 2014, 114, 4496-4539;
J. C. G. Bunzli, Chem. Rev. 2010, 110, 2729-2755.
G. Muller, Dalton Trans. 2009, 38, 9692-9707;
R. Carr, N. H. Evans, D. Parker, Chem. Soc. Rev. 2012, 41, 7673-7686;
F. Zinna, L. Di Bari, Chirality 2015, 27, 1-13;
G. Longhi, E. Castiglioni, J. Koshoubu, G. Mazzeo, S. Abbate, Chirality 2016, 28, 696-707;
K. Staszak, K. Wieszczycka, V. Marturano, B. Tylkowski, Coord. Chem. Rev. 2019, 397, 76-90.
A. T. Frawley, R. Pal, D. Parker, Chem. Commun. 2016, 52, 13349-13352.
M. T. Kaczmarek, M. Zabiszak, M. Nowak, R. Jastrzab, Coord. Chem. Rev. 2018, 370, 42-54.
T. Wu, J. Kapitán, V. Mašek, P. Bouř, Angew. Chem. Int. Ed. 2015, 54, 14933-14936;
Angew. Chem., 2015, 127, 15146-15149;
T. Wu, P. Bouř, Chem. Commun. 2018, 54, 1790-1792;
T. Wu, J. Kapitán, V. Andrushchenko, P. Bouř, Anal. Chem. 2017, 89, 5043-5049.
T. Wu, J. Kessler, P. Bouř, Phys. Chem. Chem. Phys. 2016, 18, 23803-23811.
E. Brichtová, J. Hudecová, N. Vršková, J. Šebestík, P. Bouř, T. Wu, Chem. Eur. J. 2018, 24, 8664-8669.
T. Wu, J. Kessler, J. Kaminský, P. Bouř, Chem. Asian J. 2018, 13, 3865-3870;
T. Wu, J. Průša, J. Kessler, D. Dračínský, J. Valenta, P. Bouř, Anal. Chem. 2016, 88, 8878-8885.
T. Wu, P. Bouř, V. Andrushchenko, Sci. Rep. 2019, 9, 1068.
B. Liu, M.-J. Zhang, J. Cui, J. Zhu, Acta Crystallogr. 2006, E62, o5359-o5360;
Y. Zhang, L. Xiang, Q. Wang, X.-F. Duan, G. Zi, Inorg. Chim. Acta 2008, 361, 1246-1254.
S. Kano, H. Nakano, M. Kojima, N. Baba, K. Nakajima, Inorg. Chim. Acta 2003, 349, 6-16.
L. Farrugia, J. Appl. Crystallogr. 2012, 45, 849-854.
M. Leonzio, M. Bettinelli, L. Arrico, M. Monari, L. Di Bari, F. Piccinelli, Inorg. Chem. 2018, 57, 10257-10264.
S. Ostovarpour, E. W. Blanch, Appl. Spectrosc. 2012, 66, 289-293.
F. Piccinelli, A. Melchior, A. Speghini, M. Monari, M. Tolazzi, M. Bettinelli, Polyhedron 2013, 57, 30-38;
F. Piccinelli, A. Speghini, M. Monari, M. Bettinelli, Inorg. Chim. Acta 2012, 385, 65-72.
CrysAlisPro, Oxford Diffraction, 2002.
A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Crystallogr. 1994, 27, 435.
P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Crystallogr. 2003, 36, 1487.
A. Spek, Acta Crystallogr. 2015, C71, 9-18.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Wallingford, CT, 2016.
A. Klamt, J. Phys. Chem. 1995, 99, 2224-2235.
Molecular Vibrations in Chiral Europium Complexes Revealed by Near-Infrared Raman Optical Activity