Binuclear Lanthanide(III) Complexes with Chiral Ligands: Dynamic Equilibria in Solution and Binding with Nucleotides Studied by Spectroscopic Methods
Language English Country Germany Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- Raman optical activity, chiral ligands, circularly polarized luminescence, lanthanides, nucleotides,
- MeSH
- Adenosine analogs & derivatives chemistry MeSH
- X-Ray Diffraction MeSH
- Spectrometry, Mass, Electrospray Ionization MeSH
- Coordination Complexes chemistry MeSH
- Lanthanoid Series Elements chemistry MeSH
- Ligands MeSH
- Luminescent Measurements MeSH
- Spectrum Analysis, Raman MeSH
- Solutions MeSH
- Binding Sites MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenosine MeSH
- Coordination Complexes MeSH
- Lanthanoid Series Elements MeSH
- Ligands MeSH
- Solutions MeSH
Binuclear lanthanide complexes of Eu(III) and Sm(III) were obtained in the presence of chiral ligand 1,2-(R,R+S,S)-N,N'-bis(2-pyridylmethylene),2-diamine. An unusual structure of the Eu(III) compound with two lanthanide atoms connected through two chlorines was determined by X-ray crystallography. In solution, the dimer coexists with a monomeric complex, and the stability of the binuclear form depends on the solvent and concentration. The dimer-monomer equilibrium was monitored by circularly polarized luminescence (CPL) measured on a Raman optical activity (ROA) spectrometer, where both forms provided large CPL anisotropic ratios of up to 5.6×10-2 . Monomer formation was favored in water, whereas the dimer was stabilized in methanol. When mixed with adenosine phosphates, AMP gave much smaller CPL than ADP and ATP, indicating a high affinity of the Eu (III) complex for the phosphate group, which in connection with the ROA/CPL technique can be developed into a bioanalytical probe.
See more in PubMed
M. C. Heffern, L. M. Matosziuk, T. J. Meade, Chem. Rev. 2014, 114, 4496-4539;
J. C. G. Bunzli, Chem. Rev. 2010, 110, 2729-2755.
G. Muller, Dalton Trans. 2009, 38, 9692-9707;
R. Carr, N. H. Evans, D. Parker, Chem. Soc. Rev. 2012, 41, 7673-7686;
F. Zinna, L. Di Bari, Chirality 2015, 27, 1-13;
G. Longhi, E. Castiglioni, J. Koshoubu, G. Mazzeo, S. Abbate, Chirality 2016, 28, 696-707;
K. Staszak, K. Wieszczycka, V. Marturano, B. Tylkowski, Coord. Chem. Rev. 2019, 397, 76-90.
A. T. Frawley, R. Pal, D. Parker, Chem. Commun. 2016, 52, 13349-13352.
M. T. Kaczmarek, M. Zabiszak, M. Nowak, R. Jastrzab, Coord. Chem. Rev. 2018, 370, 42-54.
T. Wu, J. Kapitán, V. Mašek, P. Bouř, Angew. Chem. Int. Ed. 2015, 54, 14933-14936;
Angew. Chem., 2015, 127, 15146-15149;
T. Wu, P. Bouř, Chem. Commun. 2018, 54, 1790-1792;
T. Wu, J. Kapitán, V. Andrushchenko, P. Bouř, Anal. Chem. 2017, 89, 5043-5049.
T. Wu, J. Kessler, P. Bouř, Phys. Chem. Chem. Phys. 2016, 18, 23803-23811.
E. Brichtová, J. Hudecová, N. Vršková, J. Šebestík, P. Bouř, T. Wu, Chem. Eur. J. 2018, 24, 8664-8669.
T. Wu, J. Kessler, J. Kaminský, P. Bouř, Chem. Asian J. 2018, 13, 3865-3870;
T. Wu, J. Průša, J. Kessler, D. Dračínský, J. Valenta, P. Bouř, Anal. Chem. 2016, 88, 8878-8885.
T. Wu, P. Bouř, V. Andrushchenko, Sci. Rep. 2019, 9, 1068.
B. Liu, M.-J. Zhang, J. Cui, J. Zhu, Acta Crystallogr. 2006, E62, o5359-o5360;
Y. Zhang, L. Xiang, Q. Wang, X.-F. Duan, G. Zi, Inorg. Chim. Acta 2008, 361, 1246-1254.
S. Kano, H. Nakano, M. Kojima, N. Baba, K. Nakajima, Inorg. Chim. Acta 2003, 349, 6-16.
L. Farrugia, J. Appl. Crystallogr. 2012, 45, 849-854.
M. Leonzio, M. Bettinelli, L. Arrico, M. Monari, L. Di Bari, F. Piccinelli, Inorg. Chem. 2018, 57, 10257-10264.
S. Ostovarpour, E. W. Blanch, Appl. Spectrosc. 2012, 66, 289-293.
F. Piccinelli, A. Melchior, A. Speghini, M. Monari, M. Tolazzi, M. Bettinelli, Polyhedron 2013, 57, 30-38;
F. Piccinelli, A. Speghini, M. Monari, M. Bettinelli, Inorg. Chim. Acta 2012, 385, 65-72.
CrysAlisPro, Oxford Diffraction, 2002.
A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Crystallogr. 1994, 27, 435.
P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Crystallogr. 2003, 36, 1487.
A. Spek, Acta Crystallogr. 2015, C71, 9-18.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Wallingford, CT, 2016.
A. Klamt, J. Phys. Chem. 1995, 99, 2224-2235.
Molecular Vibrations in Chiral Europium Complexes Revealed by Near-Infrared Raman Optical Activity