Altered Erythro-Myeloid Progenitor Cells Are Highly Expanded in Intensively Regenerating Hematopoiesis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32258026
PubMed Central
PMC7051989
DOI
10.3389/fcell.2020.00098
Knihovny.cz E-zdroje
- Klíčová slova
- adult hematopoiesis, bone marrow, embryonic hematopoiesis, ionizing radiation, progenitor cell, regeneration, stem cell,
- Publikační typ
- časopisecké články MeSH
Regeneration of severely damaged adult tissues is currently only partially understood. Hematopoietic tissue provides a unique opportunity to study tissue regeneration due to its well established steady-state structure and function, easy accessibility, well established research methods, and the well-defined embryonic, fetal, and adult stages of development. Embryonic/fetal liver hematopoiesis and adult hematopoiesis recovering from damage share the need to expand populations of progenitors and stem cells in parallel with increasing production of mature blood cells. In the present study, we analyzed adult hematopoiesis in mice subjected to a submyeloablative dose (6 Gy) of gamma radiation and targeted the period of regeneration characterized by massive production of mature blood cells along with ongoing expansion of immature hematopoietic cells. We uncovered significantly expanded populations of developmentally advanced erythroid and myeloid progenitors with significantly altered immunophenotype. Their population expansion does not require erythropoietin stimulation but requires the SCF/c-Kit receptor signaling. Regenerating hematopoiesis significantly differs from the expanding hematopoiesis in the fetal liver but we find some similarities between the regenerating hematopoiesis and the early embryonic definitive hematopoiesis. These are in (1) the concomitant population expansion of myeloid progenitors and increasing production of myeloid blood cells (2) performing these tasks despite the severely reduced transplantation capacity of the hematopoietic tissues, and (3) the expression of CD16/32 in most progenitors. Our data thus provide a novel insight into tissue regeneration by suggesting that cells other than stem cells and multipotent progenitors can be of fundamental importance for the rapid recovery of tissue function.
BIOCEV 1st Faculty of Medicine Charles University Vestec Czechia
Institute of Pathological Physiology 1st Faculty of Medicine Charles University Prague Czechia
Zobrazit více v PubMed
Adolfsson J., Borge O. J., Bryder D., Theilgaard-Mönch K., Åstrand-Grundström I., Sitnicka E., et al. (2001). Upregulation of Flt3 expression within the bone marrow Lin-Sca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15 659–669. 10.1016/S1074-7613(01)00220-5 PubMed DOI
Adolfsson J., Månsson R., Buza-Vidas N., Hultquist A., Liuba K., Jensen C. T., et al. (2005). Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121 295–306. 10.1016/j.cell.2005.02.013 PubMed DOI
Akashi K., Traver D., Miyamoto T., Weissman I. L. (2000). A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404 193–197. 10.1038/35004599 PubMed DOI
Akinduro O., Weber T. S., Ang H., Haltalli M. L. R., Ruivo N., Duarte D., et al. (2018). Proliferation dynamics of acute myeloid leukaemia and haematopoietic progenitors competing for bone marrow space. Nat. Commun. 9:519. 10.1038/s41467-017-02376-5 PubMed DOI PMC
Baldridge M. T., King K. Y., Boles N. C., Weksberg D. C., Goodell M. A. (2010). Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. Nature 465 793–797. 10.1038/nature09135 PubMed DOI PMC
Bowie M. B., Kent D. G., Copley M. R., Eaves C. J. (2007). Steel factor responsiveness regulates the high self-renewal phenotype of fetal hematopoietic stem cells. Blood 109 5043–5048. 10.1182/blood-2006-08-037770 PubMed DOI
Bowie M. B., Mcknight K. D., Kent D. G., Mccaffrey L., Hoodless P. A., Eaves C. J. (2006). Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J. Clin. Invest. 116 2808–2816. 10.1172/JCI28310 PubMed DOI PMC
Busch K., Klapproth K., Barile M., Flossdorf M., Holland-Letz T., Schlenner S. M., et al. (2015). Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518 542–546. 10.1038/nature14242 PubMed DOI
Buza-Vidas N., Woll P., Hultquist A., Duarte S., Lutteropp M., Bouriez-Jones T., et al. (2011). FLT3 expression initiates in fully multipotent mouse hematopoietic progenitor cells. Blood 118 1544–1548. 10.1182/blood-2010-10-316232 PubMed DOI
Carrelha J., Meng Y., Kettyle L. M., Luis T. C., Norfo R., Alcolea V., et al. (2018). Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 554 106–111. 10.1038/nature25455 PubMed DOI
Chen C.-L., Faltusova K., Molik M., Savvulidi F., Chang K.-T., Necas E. (2016). Low c-Kit expression level induced by stem cell factor does not compromise transplantation of hematopoietic stem cells. Biol. Blood Marrow Transplant. 22 1167–1172. 10.1016/j.bbmt.2016.03.017 PubMed DOI
Copley M. R., Babovic S., Benz C., Knapp D. J. H. F., Beer P. A., Kent D. G., et al. (2013). The Lin28b–let-7–Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells. Nat. Cell Biol. 15 916–925. 10.1038/ncb2783 PubMed DOI
Doi H., Inaba M., Yamamoto Y., Taketani S., Mori S.-I., Sugihara A., et al. (1997). Pluripotent hemopoietic stem cells are c-kit. Proc. Natl. Acad. Sci. U.S.A. 94 2513–2517. 10.1073/PNAS.94.6.2513 PubMed DOI PMC
Dzierzak E., Bigas A. (2018). Blood development: hematopoietic stem cell dependence and independence. Cell Stem Cell 22 639–651. 10.1016/j.stem.2018.04.015 PubMed DOI
England S. J., McGrath K. E., Frame J. M., Palis J. (2011). Immature erythroblasts with extensive ex vivo self-renewal capacity emerge from the early mammalian fetus. Blood 117 2708–2717. 10.1182/blood-2010-07-299743 PubMed DOI PMC
Forgacova K., Savvulidi F., Sefc L., Linhartova J., Necas E. (2013). All hematopoietic stem cells engraft in submyeloablatively irradiated mice. Biol. Blood Marrow Transplant. 19 713–719. 10.1016/j.bbmt.2013.02.012 PubMed DOI
Frame J. M., McGrath K. E., Palis J. (2013). Erythro-myeloid progenitors: “Definitive” hematopoiesis in the conceptus prior to the emergence of hematopoietic stem cells. Blood Cells Mol. Dis. 51 220–225. 10.1016/j.bcmd.2013.09.006 PubMed DOI PMC
Grinenko T., Arndt K., Portz M., Mende N., Günther M., Cosgun K. N., et al. (2014). Clonal expansion capacity defines two consecutive developmental stages of long-term hematopoietic stem cells. J. Exp. Med. 211 209–215. 10.1084/jem.20131115 PubMed DOI PMC
Harrison D. E., Astle C. M. (1982). Loss of stem cell repopulating ability upon transplantation. Effects of donor age, cell number, and transplantation procedure. J. Exp. Med. 156 1767–1779. 10.1084/jem.156.6.1767 PubMed DOI PMC
Kiel M. J., Yilmaz O. H., Iwashita T., Yilmaz O. H., Terhorst C., Morrison S. J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121 1109–1121. 10.1016/j.cell.2005.05.026 PubMed DOI
Kim A. R., Olsen J. L., England S. J., Huang Y.-S., Fegan K. H., Delgadillo L. F., et al. (2015). Bmi-1 regulates extensive erythroid self-renewal. Stem Cell Reports 4 995–1003. 10.1016/j.stemcr.2015.05.003 PubMed DOI PMC
Kucia M., Reca R., Campbell F. R., Zuba-Surma E., Majka M., Ratajczak J., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4+SSEA-1+Oct-4+ stem cells identified in adult bone marrow. Leukemia 20 857–869. 10.1038/sj.leu.2404171 PubMed DOI
Lian Z., Feng B., Sugiura K., Inaba M., Yu C., Jin T., et al. (1999). c-kit pluripotent hemopoietic stem cells form CFU-S on day 16. Stem Cells 17 39–44. 10.1002/stem.170039 PubMed DOI
McCarthy K. F. (1997). Population size and radiosensitivity of murine hematopoietic endogenous long-term repopulating cells. Blood 89 834–841. 10.1182/blood.v89.3.834 PubMed DOI
McGrath K. E., Frame J. M., Fegan K. H., Bowen J. R., Conway S. J., Catherman S. C., et al. (2015). Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep. 11 1892–1904. 10.1016/j.celrep.2015.05.036 PubMed DOI PMC
McRae H. M., Voss A. K., Thomas T. (2019). Are transplantable stem cells required for adult hematopoiesis? Exp. Hematol. 75 1–10. 10.1016/j.exphem.2019.05.007 PubMed DOI
Monette F. C., Holden S. A. (1982). Hemin enhances the in vitro growth of primitive erythroid progenitor cells. Blood 60 527–530. PubMed
Morita Y., Ema H., Nakauchi H. (2010). Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J. Exp. Med. 207 1173–1182. 10.1084/jem.20091318 PubMed DOI PMC
Na Nakorn T., Traver D., Weissman I. L., Akashi K. (2002). Myeloerythroid-restricted progenitors are sufficient to confer radioprotection and provide the majority of day 8 CFU-S. J. Clin. Invest. 109 1579–1585. 10.1172/JCI15272 PubMed DOI PMC
Nečas E., Znojil V. (1989). A comparison of stem cell assays using early or late spleen colonies. Cell Prolif. 22 111–121. 10.1111/j.1365-2184.1989.tb00204.x PubMed DOI
Oguro H., Ding L., Morrison S. J. (2013). SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13 102–116. 10.1016/j.stem.2013.05.014 PubMed DOI PMC
Okada S., Nakauchi H., Nagayoshi K., Nishikawa S., Nishikawa S., Miura Y., et al. (1991). Enrichment and characterization of murine hematopoietic stem cells that express c-kit molecule. Blood 78 1706–1712. 10.1182/blood.v78.7.1706.bloodjournal7871706 PubMed DOI
Osawa M., Nakamura K., Nishi N., Takahasi N., Tokuomoto Y., Inoue H., et al. (1996). In vivo self-renewal of c-Kit+ Sca-1+ Lin(low/-) hemopoietic stem cells. J. Immunol. 156 3207–3214. PubMed
Palis J. (2014). Primitive and definitive erythropoiesis in mammals. Front. Physiol. 5:3. 10.3389/fphys.2014.00003 PubMed DOI PMC
Palis J. (2016). Hematopoietic stem cell-independent hematopoiesis: emergence of erythroid, megakaryocyte, and myeloid potential in the mammalian embryo. FEBS Lett. 590 3965–3974. 10.1002/1873-3468.12459 PubMed DOI
Peslak S. A., Wenger J., Bemis J. C., Kingsley P. D., Koniski A. D., McGrath K. E., et al. (2012). EPO-mediated expansion of late-stage erythroid progenitors in the bone marrow initiates recovery from sublethal radiation stress. Blood 120 2501–2511. 10.1182/blood-2011-11-394304 PubMed DOI PMC
Pronk C. J. H., Rossi D. J., Månsson R., Attema J. L., Norddahl G. L., Chan C. K. F., et al. (2007). Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell 1 428–442. 10.1016/j.stem.2007.07.005 PubMed DOI
Randall T. D., Weissman I. L. (1998). Characterization of a population of cells in the bone marrow that phenotypically mimics hematopoietic stem cells: resting stem cells or mystery population? Stem Cells 16 38–48. 10.1002/stem.160038 PubMed DOI
Ratajczak M. Z., Ratajczak J., Kucia M. (2019). Very small embryonic-like stem cells (VSELs). Circ. Res. 124 208–210. 10.1161/CIRCRESAHA.118.314287 PubMed DOI PMC
Rebel V. I., Miller C. L., Eaves C. J., Lansdorp P. M. (1996). The repopulation potential of fetal liver hematopoietic stem cells in mice exceeds that of their liver adult bone marrow counterparts. Blood 87 3500–3507. 10.1182/blood.v87.8.3500.bloodjournal8783500 PubMed DOI
Rodriguez-Fraticelli A. E., Wolock S. L., Weinreb C. S., Panero R., Patel S. H., Jankovic M., et al. (2018). Clonal analysis of lineage fate in native haematopoiesis. Nature 553 212–216. 10.1038/nature25168 PubMed DOI PMC
Rybtsov S., Batsivari A., Bilotkach K., Paruzina D., Senserrich J., Nerushev O., et al. (2014). Tracing the origin of the HSC hierarchy reveals an SCF-dependent, IL-3-independent CD43- embryonic precursor. Stem Cell Reports 3 489–501. 10.1016/J.STEMCR.2014.07.009 PubMed DOI PMC
Rybtsov S., Ivanovs A., Zhao S., Medvinsky A. (2016). Concealed expansion of immature precursors underpins acute burst of adult HSC activity in foetal liver. Development 143 1284–1289. 10.1242/dev.131193 PubMed DOI PMC
Sawai C. M., Babovic S., Upadhaya S., Knapp D. J. H. F., Lavin Y., Lau C. M., et al. (2016). Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity 45 597–609. 10.1016/j.immuni.2016.08.007 PubMed DOI PMC
Schoedel K. B., Morcos M. N. F., Zerjatke T., Roeder I., Grinenko T., Voehringer D., et al. (2016). The bulk of the hematopoietic stem cell population is dispensable for murine steady-state and stress hematopoiesis. Blood 128 2285–2296. 10.1182/blood-2016-03-706010 PubMed DOI
Simonnet A. J., Nehmé J., Vaigot P., Barroca V., Leboulch P., Tronik-Le Roux D. (2009). Phenotypic and functional changes induced in hematopoietic stem/progenitor cells after gamma-ray radiation exposure. Stem Cells 27 1400–1409. 10.1002/stem.66 PubMed DOI
Singh R. P., Grinenko T., Ramasz B., Franke K., Lesche M., Dahl A., et al. (2018). Hematopoietic stem cells but not multipotent progenitors drive erythropoiesis during chronic erythroid stress in EPO transgenic mice. Stem Cell Reports 10 1908–1919. 10.1016/j.stemcr.2018.04.012 PubMed DOI PMC
Sun J., Ramos A., Chapman B., Johnnidis J. B., Le L., Ho Y.-J., et al. (2014). Clonal dynamics of native haematopoiesis. Nature 514 322–327. 10.1038/nature13824 PubMed DOI PMC
Thorén L. A., Liuba K., Bryder D., Nygren J. M., Jensen C. T., Qian H., et al. (2008). Kit regulates maintenance of quiescent hematopoietic stem cells. J. Immunol. 180 2045–2053. 10.4049/jimmunol.180.4.2045 PubMed DOI
Trumpp A., Essers M., Wilson A. (2010). Awakening dormant haematopoietic stem cells. Nat. Rev. Immunol. 10 201–209. 10.1038/nri2726 PubMed DOI
Weissman I. L. (2000). Stem cells: units of development, review units of regeneration, and units in evolution. Cell 100 157–168. PubMed
Wilson A., Oser G. M., Jaworski M., Blanco-Bose W. E., Laurenti E., Adolphe C., et al. (2007). Dormant and self-renewing hematopoietic stem cells and their niches. Ann. N. Y. Acad. Sci. 1106 64–75. 10.1196/annals.1392.021 PubMed DOI
Yamamoto R., Morita Y., Ooehara J., Hamanaka S., Onodera M., Rudolph K. L., et al. (2013). Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154 1112–1126. 10.1016/j.cell.2013.08.007 PubMed DOI
Yang G., Hisha H., Cui Y., Fan T., Jin T., Li Q., et al. (2002). A new assay method for late CFU-S formation and long-term reconstituting activity using a small number of pluripotent hemopoietic stem cells. Stem Cells 20 241–248. 10.1634/stemcells.20-3-241 PubMed DOI
Yang L., Bryder D., Adolfsson J., Nygren J., Månsson R., Sigvardsson M., et al. (2005). Identification of Lin-Sca1+kit+CD34 +Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105 2717–2723. 10.1182/blood-2004-06-2159 PubMed DOI
Zavidij O., Ball C. R., Herbst F., Oppel F., Fessler S., Schmidt M., et al. (2012). Stable long-term blood formation by stem cells in murine steady-state hematopoiesis. Stem Cells 30 1961–1970. 10.1002/stem.1151 PubMed DOI