Altered Erythro-Myeloid Progenitor Cells Are Highly Expanded in Intensively Regenerating Hematopoiesis

. 2020 ; 8 () : 98. [epub] 20200225

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32258026

Regeneration of severely damaged adult tissues is currently only partially understood. Hematopoietic tissue provides a unique opportunity to study tissue regeneration due to its well established steady-state structure and function, easy accessibility, well established research methods, and the well-defined embryonic, fetal, and adult stages of development. Embryonic/fetal liver hematopoiesis and adult hematopoiesis recovering from damage share the need to expand populations of progenitors and stem cells in parallel with increasing production of mature blood cells. In the present study, we analyzed adult hematopoiesis in mice subjected to a submyeloablative dose (6 Gy) of gamma radiation and targeted the period of regeneration characterized by massive production of mature blood cells along with ongoing expansion of immature hematopoietic cells. We uncovered significantly expanded populations of developmentally advanced erythroid and myeloid progenitors with significantly altered immunophenotype. Their population expansion does not require erythropoietin stimulation but requires the SCF/c-Kit receptor signaling. Regenerating hematopoiesis significantly differs from the expanding hematopoiesis in the fetal liver but we find some similarities between the regenerating hematopoiesis and the early embryonic definitive hematopoiesis. These are in (1) the concomitant population expansion of myeloid progenitors and increasing production of myeloid blood cells (2) performing these tasks despite the severely reduced transplantation capacity of the hematopoietic tissues, and (3) the expression of CD16/32 in most progenitors. Our data thus provide a novel insight into tissue regeneration by suggesting that cells other than stem cells and multipotent progenitors can be of fundamental importance for the rapid recovery of tissue function.

Zobrazit více v PubMed

Adolfsson J., Borge O. J., Bryder D., Theilgaard-Mönch K., Åstrand-Grundström I., Sitnicka E., et al. (2001). Upregulation of Flt3 expression within the bone marrow Lin-Sca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15 659–669. 10.1016/S1074-7613(01)00220-5 PubMed DOI

Adolfsson J., Månsson R., Buza-Vidas N., Hultquist A., Liuba K., Jensen C. T., et al. (2005). Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121 295–306. 10.1016/j.cell.2005.02.013 PubMed DOI

Akashi K., Traver D., Miyamoto T., Weissman I. L. (2000). A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404 193–197. 10.1038/35004599 PubMed DOI

Akinduro O., Weber T. S., Ang H., Haltalli M. L. R., Ruivo N., Duarte D., et al. (2018). Proliferation dynamics of acute myeloid leukaemia and haematopoietic progenitors competing for bone marrow space. Nat. Commun. 9:519. 10.1038/s41467-017-02376-5 PubMed DOI PMC

Baldridge M. T., King K. Y., Boles N. C., Weksberg D. C., Goodell M. A. (2010). Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. Nature 465 793–797. 10.1038/nature09135 PubMed DOI PMC

Bowie M. B., Kent D. G., Copley M. R., Eaves C. J. (2007). Steel factor responsiveness regulates the high self-renewal phenotype of fetal hematopoietic stem cells. Blood 109 5043–5048. 10.1182/blood-2006-08-037770 PubMed DOI

Bowie M. B., Mcknight K. D., Kent D. G., Mccaffrey L., Hoodless P. A., Eaves C. J. (2006). Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J. Clin. Invest. 116 2808–2816. 10.1172/JCI28310 PubMed DOI PMC

Busch K., Klapproth K., Barile M., Flossdorf M., Holland-Letz T., Schlenner S. M., et al. (2015). Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518 542–546. 10.1038/nature14242 PubMed DOI

Buza-Vidas N., Woll P., Hultquist A., Duarte S., Lutteropp M., Bouriez-Jones T., et al. (2011). FLT3 expression initiates in fully multipotent mouse hematopoietic progenitor cells. Blood 118 1544–1548. 10.1182/blood-2010-10-316232 PubMed DOI

Carrelha J., Meng Y., Kettyle L. M., Luis T. C., Norfo R., Alcolea V., et al. (2018). Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 554 106–111. 10.1038/nature25455 PubMed DOI

Chen C.-L., Faltusova K., Molik M., Savvulidi F., Chang K.-T., Necas E. (2016). Low c-Kit expression level induced by stem cell factor does not compromise transplantation of hematopoietic stem cells. Biol. Blood Marrow Transplant. 22 1167–1172. 10.1016/j.bbmt.2016.03.017 PubMed DOI

Copley M. R., Babovic S., Benz C., Knapp D. J. H. F., Beer P. A., Kent D. G., et al. (2013). The Lin28b–let-7–Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells. Nat. Cell Biol. 15 916–925. 10.1038/ncb2783 PubMed DOI

Doi H., Inaba M., Yamamoto Y., Taketani S., Mori S.-I., Sugihara A., et al. (1997). Pluripotent hemopoietic stem cells are c-kit. Proc. Natl. Acad. Sci. U.S.A. 94 2513–2517. 10.1073/PNAS.94.6.2513 PubMed DOI PMC

Dzierzak E., Bigas A. (2018). Blood development: hematopoietic stem cell dependence and independence. Cell Stem Cell 22 639–651. 10.1016/j.stem.2018.04.015 PubMed DOI

England S. J., McGrath K. E., Frame J. M., Palis J. (2011). Immature erythroblasts with extensive ex vivo self-renewal capacity emerge from the early mammalian fetus. Blood 117 2708–2717. 10.1182/blood-2010-07-299743 PubMed DOI PMC

Forgacova K., Savvulidi F., Sefc L., Linhartova J., Necas E. (2013). All hematopoietic stem cells engraft in submyeloablatively irradiated mice. Biol. Blood Marrow Transplant. 19 713–719. 10.1016/j.bbmt.2013.02.012 PubMed DOI

Frame J. M., McGrath K. E., Palis J. (2013). Erythro-myeloid progenitors: “Definitive” hematopoiesis in the conceptus prior to the emergence of hematopoietic stem cells. Blood Cells Mol. Dis. 51 220–225. 10.1016/j.bcmd.2013.09.006 PubMed DOI PMC

Grinenko T., Arndt K., Portz M., Mende N., Günther M., Cosgun K. N., et al. (2014). Clonal expansion capacity defines two consecutive developmental stages of long-term hematopoietic stem cells. J. Exp. Med. 211 209–215. 10.1084/jem.20131115 PubMed DOI PMC

Harrison D. E., Astle C. M. (1982). Loss of stem cell repopulating ability upon transplantation. Effects of donor age, cell number, and transplantation procedure. J. Exp. Med. 156 1767–1779. 10.1084/jem.156.6.1767 PubMed DOI PMC

Kiel M. J., Yilmaz O. H., Iwashita T., Yilmaz O. H., Terhorst C., Morrison S. J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121 1109–1121. 10.1016/j.cell.2005.05.026 PubMed DOI

Kim A. R., Olsen J. L., England S. J., Huang Y.-S., Fegan K. H., Delgadillo L. F., et al. (2015). Bmi-1 regulates extensive erythroid self-renewal. Stem Cell Reports 4 995–1003. 10.1016/j.stemcr.2015.05.003 PubMed DOI PMC

Kucia M., Reca R., Campbell F. R., Zuba-Surma E., Majka M., Ratajczak J., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4+SSEA-1+Oct-4+ stem cells identified in adult bone marrow. Leukemia 20 857–869. 10.1038/sj.leu.2404171 PubMed DOI

Lian Z., Feng B., Sugiura K., Inaba M., Yu C., Jin T., et al. (1999). c-kit pluripotent hemopoietic stem cells form CFU-S on day 16. Stem Cells 17 39–44. 10.1002/stem.170039 PubMed DOI

McCarthy K. F. (1997). Population size and radiosensitivity of murine hematopoietic endogenous long-term repopulating cells. Blood 89 834–841. 10.1182/blood.v89.3.834 PubMed DOI

McGrath K. E., Frame J. M., Fegan K. H., Bowen J. R., Conway S. J., Catherman S. C., et al. (2015). Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep. 11 1892–1904. 10.1016/j.celrep.2015.05.036 PubMed DOI PMC

McRae H. M., Voss A. K., Thomas T. (2019). Are transplantable stem cells required for adult hematopoiesis? Exp. Hematol. 75 1–10. 10.1016/j.exphem.2019.05.007 PubMed DOI

Monette F. C., Holden S. A. (1982). Hemin enhances the in vitro growth of primitive erythroid progenitor cells. Blood 60 527–530. PubMed

Morita Y., Ema H., Nakauchi H. (2010). Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J. Exp. Med. 207 1173–1182. 10.1084/jem.20091318 PubMed DOI PMC

Na Nakorn T., Traver D., Weissman I. L., Akashi K. (2002). Myeloerythroid-restricted progenitors are sufficient to confer radioprotection and provide the majority of day 8 CFU-S. J. Clin. Invest. 109 1579–1585. 10.1172/JCI15272 PubMed DOI PMC

Nečas E., Znojil V. (1989). A comparison of stem cell assays using early or late spleen colonies. Cell Prolif. 22 111–121. 10.1111/j.1365-2184.1989.tb00204.x PubMed DOI

Oguro H., Ding L., Morrison S. J. (2013). SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13 102–116. 10.1016/j.stem.2013.05.014 PubMed DOI PMC

Okada S., Nakauchi H., Nagayoshi K., Nishikawa S., Nishikawa S., Miura Y., et al. (1991). Enrichment and characterization of murine hematopoietic stem cells that express c-kit molecule. Blood 78 1706–1712. 10.1182/blood.v78.7.1706.bloodjournal7871706 PubMed DOI

Osawa M., Nakamura K., Nishi N., Takahasi N., Tokuomoto Y., Inoue H., et al. (1996). In vivo self-renewal of c-Kit+ Sca-1+ Lin(low/-) hemopoietic stem cells. J. Immunol. 156 3207–3214. PubMed

Palis J. (2014). Primitive and definitive erythropoiesis in mammals. Front. Physiol. 5:3. 10.3389/fphys.2014.00003 PubMed DOI PMC

Palis J. (2016). Hematopoietic stem cell-independent hematopoiesis: emergence of erythroid, megakaryocyte, and myeloid potential in the mammalian embryo. FEBS Lett. 590 3965–3974. 10.1002/1873-3468.12459 PubMed DOI

Peslak S. A., Wenger J., Bemis J. C., Kingsley P. D., Koniski A. D., McGrath K. E., et al. (2012). EPO-mediated expansion of late-stage erythroid progenitors in the bone marrow initiates recovery from sublethal radiation stress. Blood 120 2501–2511. 10.1182/blood-2011-11-394304 PubMed DOI PMC

Pronk C. J. H., Rossi D. J., Månsson R., Attema J. L., Norddahl G. L., Chan C. K. F., et al. (2007). Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell 1 428–442. 10.1016/j.stem.2007.07.005 PubMed DOI

Randall T. D., Weissman I. L. (1998). Characterization of a population of cells in the bone marrow that phenotypically mimics hematopoietic stem cells: resting stem cells or mystery population? Stem Cells 16 38–48. 10.1002/stem.160038 PubMed DOI

Ratajczak M. Z., Ratajczak J., Kucia M. (2019). Very small embryonic-like stem cells (VSELs). Circ. Res. 124 208–210. 10.1161/CIRCRESAHA.118.314287 PubMed DOI PMC

Rebel V. I., Miller C. L., Eaves C. J., Lansdorp P. M. (1996). The repopulation potential of fetal liver hematopoietic stem cells in mice exceeds that of their liver adult bone marrow counterparts. Blood 87 3500–3507. 10.1182/blood.v87.8.3500.bloodjournal8783500 PubMed DOI

Rodriguez-Fraticelli A. E., Wolock S. L., Weinreb C. S., Panero R., Patel S. H., Jankovic M., et al. (2018). Clonal analysis of lineage fate in native haematopoiesis. Nature 553 212–216. 10.1038/nature25168 PubMed DOI PMC

Rybtsov S., Batsivari A., Bilotkach K., Paruzina D., Senserrich J., Nerushev O., et al. (2014). Tracing the origin of the HSC hierarchy reveals an SCF-dependent, IL-3-independent CD43- embryonic precursor. Stem Cell Reports 3 489–501. 10.1016/J.STEMCR.2014.07.009 PubMed DOI PMC

Rybtsov S., Ivanovs A., Zhao S., Medvinsky A. (2016). Concealed expansion of immature precursors underpins acute burst of adult HSC activity in foetal liver. Development 143 1284–1289. 10.1242/dev.131193 PubMed DOI PMC

Sawai C. M., Babovic S., Upadhaya S., Knapp D. J. H. F., Lavin Y., Lau C. M., et al. (2016). Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity 45 597–609. 10.1016/j.immuni.2016.08.007 PubMed DOI PMC

Schoedel K. B., Morcos M. N. F., Zerjatke T., Roeder I., Grinenko T., Voehringer D., et al. (2016). The bulk of the hematopoietic stem cell population is dispensable for murine steady-state and stress hematopoiesis. Blood 128 2285–2296. 10.1182/blood-2016-03-706010 PubMed DOI

Simonnet A. J., Nehmé J., Vaigot P., Barroca V., Leboulch P., Tronik-Le Roux D. (2009). Phenotypic and functional changes induced in hematopoietic stem/progenitor cells after gamma-ray radiation exposure. Stem Cells 27 1400–1409. 10.1002/stem.66 PubMed DOI

Singh R. P., Grinenko T., Ramasz B., Franke K., Lesche M., Dahl A., et al. (2018). Hematopoietic stem cells but not multipotent progenitors drive erythropoiesis during chronic erythroid stress in EPO transgenic mice. Stem Cell Reports 10 1908–1919. 10.1016/j.stemcr.2018.04.012 PubMed DOI PMC

Sun J., Ramos A., Chapman B., Johnnidis J. B., Le L., Ho Y.-J., et al. (2014). Clonal dynamics of native haematopoiesis. Nature 514 322–327. 10.1038/nature13824 PubMed DOI PMC

Thorén L. A., Liuba K., Bryder D., Nygren J. M., Jensen C. T., Qian H., et al. (2008). Kit regulates maintenance of quiescent hematopoietic stem cells. J. Immunol. 180 2045–2053. 10.4049/jimmunol.180.4.2045 PubMed DOI

Trumpp A., Essers M., Wilson A. (2010). Awakening dormant haematopoietic stem cells. Nat. Rev. Immunol. 10 201–209. 10.1038/nri2726 PubMed DOI

Weissman I. L. (2000). Stem cells: units of development, review units of regeneration, and units in evolution. Cell 100 157–168. PubMed

Wilson A., Oser G. M., Jaworski M., Blanco-Bose W. E., Laurenti E., Adolphe C., et al. (2007). Dormant and self-renewing hematopoietic stem cells and their niches. Ann. N. Y. Acad. Sci. 1106 64–75. 10.1196/annals.1392.021 PubMed DOI

Yamamoto R., Morita Y., Ooehara J., Hamanaka S., Onodera M., Rudolph K. L., et al. (2013). Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154 1112–1126. 10.1016/j.cell.2013.08.007 PubMed DOI

Yang G., Hisha H., Cui Y., Fan T., Jin T., Li Q., et al. (2002). A new assay method for late CFU-S formation and long-term reconstituting activity using a small number of pluripotent hemopoietic stem cells. Stem Cells 20 241–248. 10.1634/stemcells.20-3-241 PubMed DOI

Yang L., Bryder D., Adolfsson J., Nygren J., Månsson R., Sigvardsson M., et al. (2005). Identification of Lin-Sca1+kit+CD34 +Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105 2717–2723. 10.1182/blood-2004-06-2159 PubMed DOI

Zavidij O., Ball C. R., Herbst F., Oppel F., Fessler S., Schmidt M., et al. (2012). Stable long-term blood formation by stem cells in murine steady-state hematopoiesis. Stem Cells 30 1961–1970. 10.1002/stem.1151 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...