Hematopoiesis Remains Permissive to Bone Marrow Transplantation After Expansion of Progenitors and Resumption of Blood Cell Production
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34414177
PubMed Central
PMC8369928
DOI
10.3389/fcell.2021.660617
Knihovny.cz E-zdroje
- Klíčová slova
- Sca-1 antigen, bone marrow transplantation, progenitor cell, regeneration, stem cell, transferrin receptor,
- Publikační typ
- časopisecké články MeSH
The immense regenerative power of hematopoietic tissue stems from the activation of the immature stem cells and the progenitor cells. After partial damage, hematopoiesis is reconstituted through a period of intense regeneration when blood cell production originates from erythro-myeloid progenitors in the virtual absence of stem cells. Since the damaged hematopoiesis can also be reconstituted from transplanted hematopoietic cells, we asked whether this also leads to the transient state when activated progenitors initially execute blood cell production. We first showed that the early reconstitution of hematopoiesis from transplanted cells gives rise to extended populations of developmentally advanced but altered progenitor cells, similar to those previously identified in the bone marrow regenerating from endogenous cells. We then identified the cells that give rise to these progenitors after transplantation as LSK CD48- cells. In the submyeloablative irradiated host mice, the transplanted LSK CD48- cells preferably colonized the spleen. Unlike the endogenous hematopoiesis reconstituting cells, the transplanted whole bone marrow cells and sorted LSK CD48- cells had greater potential to differentiate to B-lymphopoiesis. Separate transplantation of the CD150- and CD150+ subsets of LSK CD48- cells suggested that CD150- cells had a greater preference to B-lymphopoiesis than CD150+ cells. In the intensively regenerating hematopoiesis, the CD71/Sca-1 plot of immature murine hematopoietic cells revealed that the expanded populations of altered myeloid progenitors were highly variable in the different places of hematopoietic tissues. This high variability is likely caused by the heterogeneity of the hematopoiesis supporting stroma. Lastly, we demonstrate that during the period when active hematopoiesis resumes from transplanted cells, the hematopoietic tissues still remain highly permissive for further engraftment of transplanted cells, particularly the stem cells. Thus, these results provide a rationale for the transplantation of the hematopoietic stem cells in successive doses that could be used to boost the transplantation outcome.
1st Faculty of Medicine Center for Advanced Preclinical Imaging Charles University Prague Czechia
1st Faculty of Medicine Institute of Pathological Physiology Charles University Prague Czechia
Zobrazit více v PubMed
Abramson S., Miller R. G., Phillips R. A. (1977). The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J. Exp. Med. 145 1567–1579. 10.1084/jem.145.6.1567 PubMed DOI PMC
Akashi K., Traver D., Miyamoto T., Weissman I. L. (2000). A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404 193–197. 10.1038/35004599 PubMed DOI
Andrade J., Ge S., Symbatyan G., Rosol M. S., Olch A. J., Crooks G. M. (2011). Effects of sublethal irradiation on patterns of engraftment after murine bone marrow transplantation. Biol. Blood Marrow Transplant. 17 608–619. 10.1016/j.bbmt.2010.12.697 PubMed DOI PMC
Brecher G., Bookstein N., Redfearn W., Necas E., Pallavicini M. G., Cronkite E. P. (1993). Self-renewal of the long-term repopulating stem cell. Proc. Natl. Acad. Sci. U.S.A. 90 6028–6031. 10.1073/pnas.90.13.6028 PubMed DOI PMC
Christophorou M. A., Ringshausen I., Finch A. J., Swigart L. B., Evan G. I. (2006). The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443 214–217. 10.1038/nature05077 PubMed DOI
Dominici M., Rasini V., Bussolari R., Chen X., Hofmann T. J., Spano C., et al. (2009). Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood 114 2333–2343. 10.1182/blood-2008-10-183459 PubMed DOI PMC
Essers M. A. G., Offner S., Blanco-Bose W. E., Waibler Z., Kalinke U., Duchosal M. A., et al. (2009). IFNalpha activates dormant haematopoietic stem cells in vivo. Nature 458 904–908. 10.1038/nature07815 PubMed DOI
Faltusová K., Báječný M., Heizer T., Páral P., Nečas E. (2020a). T-lymphopoiesis is severely compromised in ubiquitin-green fluorescent protein transgenic mice. Folia Biol. (Praha). 66 47–59. PubMed
Faltusová K., Chen C.-L., Heizer T., Báječný M., Szikszai K., Páral P., et al. (2020b). Altered erythro-myeloid progenitor cells are highly expanded in intensively regenerating hematopoiesis. Front. Cell Dev. Biol. 8:98. 10.3389/FCELL.2020.00098 PubMed DOI PMC
Faltusová K., Szikszai K., Molík M., Linhartová J., Páral P., Šefc L., et al. (2018). Stem cell defect in ubiquitin-green fluorescent protein mice facilitates engraftment of lymphoid-primed hematopoietic stem cells. Stem Cells 36 1237–1248. 10.1002/stem.2828 PubMed DOI
Ford C. E., Hamerton J. L., Barnes D. W., Loutit J. F. (1956). Cytological identification of radiation-chimaeras. Nature 177 452–454. 10.1038/177452a0 PubMed DOI
Forgacova K., Savvulidi F., Sefc L., Linhartova J., Necas E. (2013). All hematopoietic stem cells engraft in submyeloablatively irradiated mice. Biol. Blood Marrow Transplant. 19 713–719. 10.1016/j.bbmt.2013.02.012 PubMed DOI
Green D. E., Adler B. J., Chan M. E., Rubin C. T. (2012). Devastation of adult stem cell pools by irradiation precedes collapse of trabecular bone quality and quantity. J. Bone Miner. Res. 27 749–759. 10.1002/jbmr.1505 PubMed DOI
Harandi O. F., Hedge S., Wu D. C., Mckeone D., Paulson R. F. (2010). Murine erythroid short-term radioprotection requires a BMP4-dependent, self-renewing population of stress erythroid progenitors. J. Clin. Invest. 120, 4507–4519. 10.1172/JCI41291 PubMed DOI PMC
Hooper A. T., Butler J. M., Nolan D. J., Kranz A., Iida K., Kobayashi M., et al. (2009). Engraftment and reconstitution of hematopoiesis is dependent on vegfr2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4 263–274. 10.1016/j.stem.2009.01.006 PubMed DOI PMC
Jafri S., Moore S. D., Morrell N. W., Ormiston M. L. (2017). A sex-specific reconstitution bias in the competitive CD45.1/CD45.2 congenic bone marrow transplant model. Sci. Rep. 7:3495. 10.1038/s41598-017-03784-9 PubMed DOI PMC
Kiel M. J., Yilmaz O. H., Iwashita T., Yilmaz O. H., Terhorst C., Morrison S. J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121. 10.1016/j.cell.2005.05.026 PubMed DOI
Li X. M., Hu Z., Jorgenson M. L., Wingard J. R., Slayton W. B. (2008). Bone marrow sinusoidal endothelial cells undergo nonapoptotic cell death and are replaced by proliferating sinusoidal cells in situ to maintain the vascular niche following lethal irradiation. Exp. Hematol. 36 1143–1156.e3. 10.1016/j.exphem.2008.06.009 PubMed DOI
Liu S., Lockhart J. R., Fontenard S., Berlett M., Ryan T. M. (2020). Mapping the chromosomal insertion site of the GFP transgene of UBC-GFP mice to the MHC locus. J. Immunol. 204 1982–1987. 10.4049/jimmunol.1901338 PubMed DOI
Mantel C. R., O’Leary H. A., Chitteti B. R., Huang X., Cooper S., Hangoc G., et al. (2015). Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 161 1553–1565. 10.1016/j.cell.2015.04.054 PubMed DOI PMC
McCarthy K. F. (1997). Population size and radiosensitivity of murine hematopoietic endogenous long-term repopulating cells. Blood 89 834–841. 10.1182/blood.v89.3.834 PubMed DOI
McGrath K. E., Frame J. M., Fegan K. H., Bowen J. R., Conway S. J., Catherman S. C., et al. (2015). Distinct sources of hematopoietic progenitors emerge before hscs and provide functional blood cells in the Mammalian Embryo. Cell Rep. 11 1892–1904. 10.1016/j.celrep.2015.05.036 PubMed DOI PMC
Mercier F. E., Sykes D. B., Scadden D. T. (2016). Single targeted exon mutation creates a true congenic mouse for competitive hematopoietic stem cell transplantation: The C57BL/6-CD45.1STEM mouse. Stem Cell Rep. 6 985–992. 10.1016/j.stemcr.2016.04.010 PubMed DOI PMC
Palis J. (2016). Hematopoietic stem cell-independent hematopoiesis: emergence of erythroid, megakaryocyte, and myeloid potential in the mammalian embryo. FEBS Lett. 590 3965–3974. 10.1002/1873-3468.12459 PubMed DOI
Paulson R. F., Hariharan S., Little J. A. (2020). Stress erythropoiesis: definitions and models for its study. Exp. Hematol. 89, 43–54.e2. 10.1016/J.EXPHEM.2020.07.011 PubMed DOI PMC
Peslak S. A., Wenger J., Bemis J. C., Kingsley P. D., Koniski A. D., McGrath K. E., et al. (2012). EPO-mediated expansion of late-stage erythroid progenitors in the bone marrow initiates recovery from sublethal radiation stress. Blood 120 2501–2511. 10.1182/blood-2011-11-394304 PubMed DOI PMC
Power C., Rasko J. E. J. (2008). Whither Prometheus’ liver? Greek myth and the science of regeneration. Ann. Intern. Med. 149 421–426. 10.7326/0003-4819-149-6-200809160-00009 PubMed DOI
Shao L., Luo Y., Zhou D. (2014). Hematopoietic stem cell injury induced by ionizing radiation. Antiox. Redox Signal. 20 1447–1462. 10.1089/ars.2013.5635 PubMed DOI PMC
Simonnet A. J., Nehmé J., Vaigot P., Barroca V., Leboulch P., Tronik-Le Roux D. (2009). Phenotypic and functional changes induced in hematopoietic stem/progenitor cells after gamma-ray radiation exposure. Stem Cells 27 1400–1409. 10.1002/stem.66 PubMed DOI
Simpson E., Dazzi F. (2019). Bone marrow transplantation 1957-2019. Front. Immunol. 10:1246. 10.3389/fimmu.2019.01246 PubMed DOI PMC
Singbrant S., Mattebo A., Sigvardsson M., Strid T., Flygare J. (2020). Prospective isolation of radiation induced erythroid stress progenitors reveals unique transcriptomic and epigenetic signatures enabling increased erythroid output. Haematologica 105 2561–2571. 10.3324/haematol.2019.234542 PubMed DOI PMC
Till J. E., McCulloch E. A. (1961). A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14 213–222. 10.2307/3570892 PubMed DOI
Vainieri M. L., Blagborough A. M., MacLean A. L., Haltalli M. L. R., Ruivo N., Fletcher H. A., et al. (2016). Systematic tracking of altered haematopoiesis during sporozoite-mediated malaria development reveals multiple response points. Open Biol. 6:160038. 10.1098/rsob.160038 PubMed DOI PMC
van Os R., Sheridan T. M., Robinson S., Drukteinis D., Ferrara J. L. M., Mauch P. M. (2001). Immunogenicity of Ly5 (CD45)-antigens hampers long-term engraftment following minimal conditioning in a murine bone marrow transplantation model. Stem Cells 19 80–87. 10.1634/stemcells.19-1-80 PubMed DOI
Walasek M. A., Bystrykh L. V., Olthof S., de Haan G., van Os R. (2013). Sca-1 is an early-response target of histone deacetylase inhibitors and marks hematopoietic cells with enhanced function. Exp. Hematol. 41 113–123.e2. 10.1016/j.exphem.2012.09.004 PubMed DOI
Wang S., He X., Wu Q., Jiang L., Chen L., Yu Y., et al. (2020). Transferrin receptor 1-mediated iron uptake plays an essential role in hematopoiesis. Haematologica 105 2071–2082. 10.3324/haematol.2019.224899 PubMed DOI PMC
Weksberg D. C., Chambers S. M., Boles N. C., Goodell M. A. (2008). CD150- side population cells represent a functionally distinct population of long-term hematopoietic stem cells. Blood 111 2444–2451. 10.1182/blood-2007-09-115006 PubMed DOI PMC