Carcass Yields and Physiochemical Meat Quality of Semi-extensive and Intensively Farmed Impala (Aepyceros melampus)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
84633
National Research Foundation
THRIP/64/19/04/2017
Department of Trade and Industry- South Africa
PubMed
32260057
PubMed Central
PMC7230698
DOI
10.3390/foods9040418
PII: foods9040418
Knihovny.cz E-zdroje
- Klíčová slova
- carcass yields, impala, offal yields, production system, sex,
- Publikační typ
- časopisecké články MeSH
The effects of sex and production systems on carcass yield, meat quality and proximate composition of sub-adult impala were evaluated by culling 35 impala from intensive (12 males) and semi-extensive (12 males and 11 females) production systems within the same game farm. While no sexual dimorphism was found for carcass weights, male impala had a higher dressing percentage than females, indicating a higher meat production potential. Few differences were observed for yields between the male impala from the different production systems, but physical meat quality parameters indicated possible stress for those kept intensively. Minor differences existed in physiochemical parameters between various impala muscles for the two sexes and production systems, providing little motivation for these factors to be considered when processing sub-adult impala carcasses. Impala meat from both sexes, all muscles and all production systems produced meat with shear force values below 43 N, and thus may be considered as tender. Furthermore, the proximate composition of all impala meat in this study ranged from 74.7 to 77.0 g/100g moisture, 20.7 to 23.5 g/100g protein, 1.2 to 2.2 g/100g fat and 1.1 to 1.3 g/100g ash content. These values compare favorably to other game species, indicating that impala meat may serve as a lean protein source.
Zobrazit více v PubMed
Taylor A., Lindsey P., Davies-Mostert H. An Assessment of the Economic, Social and Conservation Value of the Wildlife Ranching Industry and Its Potential to Support the Green Economy in South Africa. The Endangered Wildlife Trust; Johannesburg, South Africa: 2016. [(accessed on 25 February 2020)]. Available online: http://www.sagreenfund.org.za/wordpress/wp-content/uploads/2016/04/EWT-RESEARCH-REPORT.pdf.
Child B.A., Musengezi J., Parent G.D., Child G.F.T. The economics and institutional economics of wildlife on private land in Africa. Pastoralism. 2012;2:1–32. doi: 10.1186/2041-7136-2-18. DOI
Oberem P., Oberem P. The New Game Rancher. Briza Publications; Pretoria, South Africa: 2016.
Snijders D. Wild property and its boundaries—On wildlife policy and rural consequences in South Africa. J. Peasant Stud. 2012;39:503–520. doi: 10.1080/03066150.2012.667406. DOI
Berry M.P.S. A comparison of different wildlife production enterprises in the Northern Cape Province, South Africa. [(accessed on 25 February 2020)];S. Afr. J. Wildl. Res. 1986 16:124–128. Available online: https://journals.co.za/content/wild/16/4/AJA03794369_3579.
Hoffman L.C. The yield and carcass chemical composition of impala (Aepyceros melampus), a southern African antelope species. J. Sci. 2000;80:752–756. doi: 10.1002/(SICI)1097-0010(20000501)80:6<752::AID-JSFA608>3.0.CO;2-L. PubMed DOI
Van Zyl L., Ferreira A.V. Physical and chemical carcass composition of springbok (Antidorcas marsupialis), blesbok (Damaliscus dorcas phillipsi) and impala (Aepyceros melampus) Small Rumin. Res. 2004;53:103–109. doi: 10.1016/j.smallrumres.2003.08.017. DOI
Von La Chevallerie M., Van Zyl J.H.M. Some effects of shooting on losses of meat and meat quality in springbok and impala. [(accessed on 25 February 2020)];S. Afr. J. Anim. Sci. 1971 1:113–116. Available online: https://www.sasas.co.za/journals/some-effects-of-shooting-on-losses-of-meat-and-meat-quality-in-springbok-and-impala/
Cooper S.M., Van der Merwe M. Game ranching for meat production in marginal African agricultural lands. [(accessed on 25 February 2020)];J. Arid Land Stud. 2014 24:249–252. Available online: http://nodaiweb.university.jp/desert/pdf11/249-252%20Cooper_r.pdf.
Huntley B.J. Carcass composition of mature male blesbok and kudu. [(accessed on 25 February 2020)];S. Afr. J. Anim. Sci. 1971 1:125–128. Available online: https://www.ajol.info/index.php/sajas/article/viewFile/140499/130244.
McCrindle C.M.E., Siegmund-Schultze M., Heeb A.W., Zárate A.V., Ramrajh S. Improving food security and safety through use of edible by-products from wild game. J. Arid Land Stud. 2013;15:1245–1257. doi: 10.1007/s10668-013-9436-2. DOI
Fairall N. Production parameters of the impala, Aepyceros melampus. [(accessed on 25 February 2020)];S. Afr. J. Anim. Sci. 1983 13:176–179. Available online: https://www.sasas.co.za/journals/production-parameters-of-the-impala-aepyceros-melampus/
Hoffman L.C., Kritzinger B., Ferreira A.V. The effects of region and gender on the fatty acid, amino acid, mineral, myoglobin and collagen contents of impala (Aepyceros melampus) meat. Meat Sci. 2005;69:551–558. doi: 10.1016/j.meatsci.2004.10.006. PubMed DOI
Selier S.A.J., Hoffman L.C., Castley G. A conservation assessment of Aepyceros melampus melampus. In: Child M.F., Roxburgh L., Do Linh San E., Raimondo D., Davies-Mostert H.T., editors. The Red List of Mammals of South Africa, Swaziland and Lesotho. South African National Biodiversity Institute and Endangered Wildlife Trust; Midrand, South Africa: 2016.
Skinner J.D., Monro R.H., Zimmermann I. Comparative food intake and growth of cattle and impala on mixed tree savanna. [(accessed on 25 February 2020)];S. Afr. J. Wildl. Res. 1984 14:1–9. Available online: https://hdl.handle.net/10520/AJA03794369_1699.
Du Plessis I., Van Der Waal C.C., Van Wyk R.R., Webb E.C., Kritzinger B., Van den Berg J. Regional differences in growth parameters between two impala populations. [(accessed on 25 February 2020)];S. Afr. J. Anim. Sci. 2006 36:90–94. Available online: https://www.sasas.co.za/journals/regional-differences-in-growth-parameters-between-two-impala-populations/
Kohn T.A., Kritzinger B., Hoffman L.C., Myburgh K.H. Characteristics of impala (Aepyceros melampus) skeletal muscles. Meat Sci. 2005;69:277–282. doi: 10.1016/j.meatsci.2004.07.007. PubMed DOI
Hoffman L.C., Mostert A.C., Kidd M., Laubscher L.L. Meat quality of kudu (Tragelaphus strepsiceros) and impala (Aepyceros melampus): Carcass yield, physical quality and chemical composition of kudu and impala Longissimus dorsi muscle as affected by gender and age. Meat Sci. 2009;83:788–795. doi: 10.1016/j.meatsci.2009.08.022. PubMed DOI
Hoffman L.C., Mostert A.C., Laubscher L.L. Meat quality of kudu (Tragelaphus strepsiceros) and impala (Aepyceros melampus): The effect of gender and age on the fatty acid profile, cholesterol content and sensory characteristics of kudu and impala meat. Meat Sci. 2009;83:737–743. doi: 10.1016/j.meatsci.2009.08.026. PubMed DOI
Mucina L., Rutherford M.C. The Vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute; Pretoria, South Africa: 2006.
Association of Official Analytical Chemist International . Official Method of Analysis. 17th ed. Association of Official Analytical Chemists Inc.; Arlington, TX, USA: 2002.
Furstenburg D. Impala (Aepyceros melampus) In: Oberem P., Oberem P., editors. The New Game Rancher. Briza Publications; Pretoria, South Africa: 2016. pp. 217–225.
Van Schalkwyk D.L., Hoffman L.C. Guidelines for the Harvesting and Processing of Wild Game in Namibia 2016. Ministry of Environment & Tourism; Windhoek, Namibia: 2016.
Commission Internationale de l’Eclairage . Recommendations on Uniform Color Spaces-Color Difference Equations, Psychometric Color Terms. CIE; Paris, France: 1976.
Honikel K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998;49:447–457. doi: 10.1016/S0309-1740(98)00034-5. PubMed DOI
Needham T., Bureš D., Kotrba R., Hoffman L.C. Influence of sex on the muscle yield and physiochemical characteristics of fresh meat harvested from common eland (Taurotragus oryx) Meat Sci. 2019;152:41–48. doi: 10.1016/j.meatsci.2019.02.008. PubMed DOI
Lee C.M., Trevino B., Chaiyawat M. A simple and rapid solvent extraction method for determining total lipids in fish tissue. J. AOAC Int. 1996;79:487–492. doi: 10.1093/jaoac/79.2.487. PubMed DOI
Fairall N., Braack H.H. Growth and development of the impala Aepyceros melampus. Koedoe. 1979;19:83–88. doi: 10.4102/koedoe.v19i1.1185. DOI
Furstenburg D. The impala. In: Bothma J., Du P., Van Rooyen N., editors. Intensive Wildlife Production in Southern Africa. Van Schaik Publishers; Pretoria, South Africa: 2005. pp. 187–202.
Anderson I.G. Mass and body measurements of impala, Aepyceros melampus, from a game ranch. [(accessed on 25 February 2020)];S. Afr. J. Wildl. Res. 1982 12:76–78. Available online: https://hdl.handle.net/10520/AJA03794369_3603.
Hoffman L.C., Kritzinger B., Ferreira A.V. The effects of sex and region on the carcass yield and m longissimus lumborum proximate composition of impala. J. Sci. Food Agric. 2005;85:391–398. doi: 10.1002/jsfa.1936. DOI
Muchenje V., Dzama K., Chimonyo M., Raats J.G., Strydom P.E. Tick susceptibility and its effects on growth performance and carcass characteristics of Nguni, Bonsmara and Angus steers raised on natural pasture. Animal. 2008;2:298–304. doi: 10.1017/S1751731107001036. PubMed DOI
Cloete J.J.E., Hoffman L.C., Cloete S.W.P., Fourie J.E. A comparison between the body composition, carcass characteristics and retail cuts of South African Mutton Merino and Dormer sheep. S. Afr. J. Anim. Sci. 2004;34:44–51. doi: 10.4314/sajas.v34i1.4040. DOI
Hoffman L.C. Meat quality attributes of night-cropped impala (Aepyceros melampus) S. Afr. J. Anim. Sci. 2000;30:133–137. doi: 10.4314/sajas.v30i2.3862. DOI
Lewis A.R., Pinchin A.M., Kestin S.C. Welfare implications of the night shooting of wild impala (Aepyceros melampus) Anim. Welf. 1997;6:123–131.
Honikel K.O. Encyclopedia of Meat Sciences. Academic Press; Oxford, UK: 2004. Conversion of muscle to meat; pp. 314–318.
Immonen K., Ruusunen M., Puolanne E. Some effects of residual glycogen concentration on the physical and sensory quality of normal pH beef. Meat Sci. 2000;55:33–38. doi: 10.1016/S0309-1740(99)00122-9. PubMed DOI
Viljoen H.F., De Kock H.L., Webb E.C. Consumer acceptability of dark, firm and dry (DFD) and normal pH beef steaks. Meat Sci. 2002;61:181–185. doi: 10.1016/S0309-1740(01)00183-8. PubMed DOI
Troy D.J., Kerry J.P. Consumer perception and the role of science in the meat industry. Meat Sci. 2010;86:214–226. doi: 10.1016/j.meatsci.2010.05.009. PubMed DOI
Kritzinger B., Hoffman L.C., Ferreira A.V. A comparison between the effects of two cropping methods on the meat quality of impala (Aepyceros melampus) S. Afr. J. Anim. Sci. 2003;33:233–241. doi: 10.4314/sajas.v33i4.3779. DOI
Macdougall D.B., Shaw B.G., Nute G.R., Rhodes D.N. Effect of pre-slaughter handling on the quality and microbiology of venison from farmed young red deer. J. Sci. Food Agric. 1979;30:1160–1167. doi: 10.1002/jsfa.2740301208. DOI
Neethling N.E., Sigge G.O., Hoffman L.C., Suman S.P. Color stability of fallow deer (Dama dama) Infraspinatus, Longissimus thoracis et lumborum, and Biceps femoris muscles during refrigerated storage. Meat Muscle Biol. 2018;2:147–161. doi: 10.22175/mmb2017.09.0043. DOI
Shange N., Gouws P., Hoffman L.C. Changes in pH, color and the microbiology of black wildebeest (Connochaetes gnou) longissimus thoracis et lumborum (LTL) muscle with normal and high (DFD) muscle pH. Meat Sci. 2019;147:13–19. doi: 10.1016/j.meatsci.2018.08.021. PubMed DOI
Sebsibe A. Sheep and goat meat characteristics and quality. In: Yami A., Markel R.C., editors. Meat Production and Quality, Sheep and Goat Production Handbook for Ethiopia. Brana Publishing House; Addis Ababa, Ethiopia: 2008. pp. 325–329.
Hoffman L.C., Van Schalkwyk S., Muller N.M. Physical and chemical properties of male and female mountain reedbuck (Redunca fulvorufula) meat. S. Afr. J. Wildl. Res. 2008;38:11–16. doi: 10.3957/0379-4369-38.1.11. DOI
Hoffman L.C., Kroucamp M., Manley M. Meat quality characteristics of springbok (Antidorcas marsupialis). 2: Chemical composition of springbok meat as influenced by age, gender and production region. Meat Sci. 2007;76:762–767. doi: 10.1016/j.meatsci.2007.02.018. PubMed DOI
Destefanis G., Brugiapaglia A., Barge M.T., Dal Molin E. Relationship between beef consumer tenderness perception and Warner–Bratzler shear force. Meat Sci. 2008;78:153–156. doi: 10.1016/j.meatsci.2007.05.031. PubMed DOI
Huff-Lonergan E., Lonergan S.M. Mechanisms of water-holding capacity of meat: The role of post-mortem biochemical and structural changes. Meat Sci. 2005;71:194–204. doi: 10.1016/j.meatsci.2005.04.022. PubMed DOI
Listrat A., Lebret B., Louveau I., Astruc T., Bonnet M., Lefaucheur L., Picard B., Bugeon J. How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016:1–14. doi: 10.1155/2016/3182746. PubMed DOI PMC
North M.K., Hoffman L.C. Changes in springbok (Antidorcas marsupialis) Longissimus thoracis et lumborum muscle during conditioning as assessed by a trained sensory panel. Meat Sci. 2015;108:1–8. doi: 10.1016/j.meatsci.2015.05.004. PubMed DOI
Neethling J., Hoffman L.C., Britz T.J. Impact of season on the chemical composition of male and female blesbok (Damaliscus pygargus phillipsi) muscles. J. Sci. Food Agric. 2014;94:424–431. doi: 10.1002/jsfa.6281. PubMed DOI
Schack W., Bergh T., Du Toit J.G. Meat production. In: Bothma J., Du P., Du Toit J.G., editors. Game Ranch Management. 6th ed. Van Schaik Publishers; Pretoria, South Africa: 2016. pp. 759–788.
Geldenhuys G., Hoffman L.C., Muller M. Sensory profiling of Egyptian goose (Alopochen aegyptiaca) meat. Food Res. Int. 2014;64:25–33. doi: 10.1016/j.foodres.2014.06.005. PubMed DOI
Purslow P.P. Intramuscular connective tissue and its role in meat quality. Meat Sci. 2005;70:435–447. doi: 10.1016/j.meatsci.2004.06.028. PubMed DOI
Tshabalala P.A., Strydom P.E., Webb E.C., De Kock H.L. Meat quality of designated South African indigenous goat and sheep breeds. Meat Sci. 2003;65:563–570. doi: 10.1016/S0309-1740(02)00249-8. PubMed DOI