Sensory Characteristics of Male Impala (Aepyceros melampus) Meat, Produced under Varying Production Systems and Nutrition
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
UID number: 84633
National Research Foundation (NRF) of South Africa
THRIP/64/19/04/2017
Department of Trade and Industry's THRIP program
PubMed
33803991
PubMed Central
PMC8001185
DOI
10.3390/foods10030619
PII: foods10030619
Knihovny.cz E-zdroje
- Klíčová slova
- fatty acids, flavor, game meat, longissimus thoracis et lumborum, tenderness,
- Publikační typ
- časopisecké články MeSH
The objective of this study was to determine the influence of three production systems (intensive, semi-extensive and extensive) with differing nutrition on the descriptive sensory and fatty acid profiles of sub-adult (±15-18 months old) male impala longissimus thoracis et lumborum (LTL) muscles. The discriminant analysis plot showed that extensively produced impala had a sensory profile distinct from the intensive and semi-extensive system impala. Extensively produced impala had the highest sensory ratings for overall intensity, gamey, beef-like, herbaceous, and sweet-associated aroma and flavor of their meat. The intensive and semi-extensive system impala did not differ for most of the sensory attributes, except for higher ratings for gamey flavor, liver-like flavor, tenderness and mealiness, and lower ratings for residue found in semi-extensive system impala. The overall aroma and flavor intensities of impala meat in general had strong positive correlations with gamey, beef-like, herbaceous, and sweet-associated aromas and flavors; however, marketing should be adjusted depending on the nutrition received by the impala, to allow consumers to select their preferential sensory profile. Impala meat from all three production systems had low fat contents (<2%), and desirable fatty acid profiles.
Zobrazit více v PubMed
Taylor A., Lindsey P., Davies-Mostert H. An Assessment of the Economic, Social and Conservation Value of the Wildlife Ranching Industry and Its Potential to Support the Green Economy in South Africa. The Endangered Wildlife Trust; Johannesburg, South Africa: 2016. [(accessed on 30 December 2020)]. Available online: http://www.sagreenfund.org.za/wordpress/wpcontent/uploads/2016/04/EWT-RESEARCH-REPORT.pdf.
Child B. Private conservation in southern Africa: Practice and emerging principles. In: Suich H., Child B., editors. Evolution and Innovation in Wildlife Conservation. Routledge, Taylor & Francis Group; Abingdon, UK: 2009.
Bothma J., du P., Suich H., Spenceley A. Extensive wildlife production on private land in South Africa. In: Suich H., Child B., editors. Evolution and Innovation in Wildlife Conservation. Routledge, Taylor & Francis Group; Abingdon, UK: 2009.
Snijders D. Wild property and its boundaries—On wildlife policy and rural consequences in South Africa. J. Peasant Stud. 2012;39:503–520. doi: 10.1080/03066150.2012.667406. DOI
Taylor W.A., Lindsey P.A., Nicholson S.K., Relton C., Davies-Mostert H.T. Jobs, game meat and profits: The benefits of wildlife ranching on marginal lands in South Africa. Biol. Conserv. 2020;245:108561. doi: 10.1016/j.biocon.2020.108561. DOI
Lindsey P.A., Barnes J.I., Nyirenda V.R., Pumfrett B., Tambling C.J., Taylor W.A., Rolfes M.T.S. The Zambian wildlife ranching industry: Scale, associated benefits, and limitations affecting its development. PLoS ONE. 2013;8:e81761. doi: 10.1371/journal.pone.0081761. PubMed DOI PMC
National Agricultural Marketing Council (NAMC) Report on the Investigation to Identify Problems for Sustainable Growth and Development in South African Wildlife Ranching. [(accessed on 8 February 2021)];2006 Available online: https://www.namc.co.za/wp-content/uploads/2017/09/Report-on-Wildlife-ranching.pdf.
Department of Environmental Affairs South Africa Protected Areas Database. Vector Digital Data. [(accessed on 8 February 2021)];2019 Available online: http://egis.environment.gov.za.
Macdonald D.W., Jacobsen K., Burnham D., Johnson P.J., Loveridge A.J. Cecil: A moment or a movement? Analysis of media coverage of the death of a lion, Panthera leo. Animals. 2016;6:26. doi: 10.3390/ani6050026. PubMed DOI PMC
Van der Merwe M. Ph.D. Thesis. Department of Environmental Health, Tshwane University of Technology; Pretoria, South Africa: 2012. [(accessed on 30 December 2020)]. Investigating the Concept of a Game Meat Scheme to Promote Safe Game Meat on the South African Market. Available online: http://tutvital.tut.ac.za:8080/vital/access/manager/Repository/tut:1540.
Hoffman L.C., Muller M., Schutte D.W., Crafford K. The retail of South African game meat: Current trade and marketing trends. S. Afr. J. Wildl. Res. 2004;34:123.
Bothma J.P., Sartorius Von Bach H.J., Cloete P.C. Economics of the wildlife industry in South Africa. In: Bothma J.P., Toit J.G., editors. Game Ranch Management. Van Schaik Publishers; Pretoria, South Africa: 2016.
Shepstone C. Nutrition in Game Animals. In: Oberem P., editor. The New Game Rancher. Briza Publications; Pretoria, South Africa: 2016. pp. 77–90.
Furstenburg D. Impala (Aepyceros melampus) In: Oberem P., editor. The New Game Rancher. Briza Publications; Pretoria, South Africa: 2016. pp. 217–225.
McCrindle C.M.E., Siegmund-Schultze M., Heeb A.W., Zárate A.V., Ramrajh S. Improving food security and safety through use of edible by-products from wild game. J. Arid Land Stud. 2013;15:1245–1257. doi: 10.1007/s10668-013-9436-2. DOI
Fairall N. Production parameters of the impala, Aepyceros melampus. [(accessed on 28 December 2020)];S. Afr. J. Anim. Sci. 1983 13:176–179. Available online: https://www.sasas.co.za/journals/production-parameters-of-the-impalaaepyceros-melampus/
Needham T., Engels R.A., Bureš D., Kotrba R., Van Rensburg B.J., Hoffman L.C. Carcass Yields and Physiochemical Meat Quality of Semi-extensive and Intensively Farmed Impala (Aepyceros melampus) Foods. 2020;9:418. doi: 10.3390/foods9040418. PubMed DOI PMC
Needham T., Engels R.A., Hoffman L.C. Physical Changes during Post-Mortem Ageing of High-Value Impala (Aepyceros Melampus) Steaks. Appl. Sci. 2020;10:4485. doi: 10.3390/app10134485. DOI
Listrat A., Lebret B., Louveau I., Astruc T., Bonnet M., Lefaucheur L., Picard B., Bugeon J. How muscle structure and composition influence meat and flesh quality. Sci. World J. 2016;2016:1–14. doi: 10.1155/2016/3182746. PubMed DOI PMC
Williamson C.S., Foster R.K., Stanner S.A., Buttriss J.L. Red meat in the diet. Nutr. Bull. 2005;30:323–355. doi: 10.1111/j.1467-3010.2005.00525.x. DOI
Wood J.D., Enser M., Richardson R.I., Whittington F.M. Fatty acids in meat and meat products. In: Chow C.K., editor. Fatty Acids in Foods and Their Health Implications. CRC Press; New York, NY, USA: 2008.
World Health Organisation . Diet, Nutrition and the Prevention of Chronic Diseases. WHO; Geneva, Switzerland: 2003. Report of a Joint WHO/FAO Expert Consultation; WHO Technical Report Series 916. PubMed
Hoffman L.C., Wiklund E. Game and venison—Meat for the modern consumer. Meat Sci. 2006;74:197–208. doi: 10.1016/j.meatsci.2006.04.005. PubMed DOI
Calkins C.R., Hodgen J.M. A fresh look at meat flavor. Meat Sci. 2007;77:63–80. doi: 10.1016/j.meatsci.2007.04.016. PubMed DOI
Neethling J., Hoffman L.C., Muller M. Factors influencing the flavour of game meat: A review. Meat Sci. 2016;113:139–153. doi: 10.1016/j.meatsci.2015.11.022. PubMed DOI
Hoffman L.C., Kritzinger B., Ferreira A.V. The effects of region and gender on the fatty acid, amino acid, mineral, myoglobin and collagen contents of impala (Aepyceros melampus) meat. Meat Sci. 2005;69:551–558. doi: 10.1016/j.meatsci.2004.10.006. PubMed DOI
Duckett S.K., Kuber P.S. Genetic and nutritional effects on lamb flavor. J. Anim. Sci. 2001;79:E249–E254. doi: 10.2527/jas2001.79E-SupplE249x. DOI
Nuernberg K., Dannenberger D., Nuernberg G., Ender K., Voigt J., Scollan N.D., Wood J.D., Nute G.R., Richardson R.I. Effect of a grass-based and a concentrate feeding system on meat quality characteristics and fatty acid composition of longissimus muscle in different cattle breeds. Livest. Prod. Sci. 2005;94:137–147. doi: 10.1016/j.livprodsci.2004.11.036. DOI
Mucina L., Rutherford M.C. The Vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute; Pretoria, South Africa: 2006.
Dahlan I., Norfarizan Hanoon N.A. Chemical composition, palatability and physical characteristics of venison from farmed deer. Anim. Sci. J. 2008;79:498–503. doi: 10.1111/j.1740-0929.2008.00555.x. DOI
Association of Official Analytical Chemist International . Official Method of Analysis. 17th ed. Association of Official Analytical Chemists Inc.; Arlington, TX, USA: 2002.
Lee C.M., Trevino B., Chaiyawat M. A simple and rapid solvent extraction method for determining total lipids in fish tissue. J. AOAC Int. 1996;79:487–492. doi: 10.1093/jaoac/79.2.487. PubMed DOI
American Meat Science Association . Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat. National Livestock and Meat Board; Chicago, IL, USA: 2015.
Leygonie C., Britz T.J., Hoffman L.C. Impact of freezing and thawing on the quality of meat: Review. Meat Sci. 2012;91:93–98. doi: 10.1016/j.meatsci.2012.01.013. PubMed DOI
Shange N., Gouws P., Homan L.C. Changes in pH, color and the microbiology of black wildebeest (Connochaetes gnou) longissimus thoracis et lumborum (LTL) muscle with normal and high (DFD) muscle pH. Meat Sci. 2019;147:13–19. doi: 10.1016/j.meatsci.2018.08.021. PubMed DOI
Troy D.J., Kerry J.P. Consumer perception and the role of science in the meat industry. Meat Sci. 2010;86:214–226. doi: 10.1016/j.meatsci.2010.05.009. PubMed DOI
Wood J.D., Richardson R.I., Nute G.R., Fisher A.V., Campo M.M., Kasapidou E., Sheard P.R., Enser M. Effects of fatty acids on meat quality: A review. Meat Sci. 2003;66:21–32. doi: 10.1016/S0309-1740(03)00022-6. PubMed DOI
Wiklund E., Johansson L., Malmfors G. Sensory meat quality, ultimate pH values, blood parameters and carcass characteristics in reindeer (Rangifer tarandus tarandus L.) grazed on natural pastures or fed a commercial feed mixture. Food Qual. Prefer. 2003;14:573–581. doi: 10.1016/S0950-3293(02)00151-9. DOI
Oltra O.R., Farmer L.J., Gordon A.W., Moss B.W., Birnie J., Devlin D.J., Tolland E.L.C., Tollerton I.J., Beattie A.M., Kennedy J.T., et al. Identification of sensory attributes, instrumental and chemical measurements important for consumer acceptability of grilled lamb Longissimus lumborum. Meat Sci. 2015;100:97–109. doi: 10.1016/j.meatsci.2014.09.007. PubMed DOI
Gkarane V., Brunton N.P., Allen P., Gravador R.S., Claffey N.A., Diskin M.G., Fahey A.G., Farmer L.J., Moloney A.P., Alcalde M.J., et al. Effect of finishing diet and duration on the sensory quality and volatile profile of lamb meat. Food Res. Int. 2019;115:54–64. PubMed
Furnols M.F., Realini C.E., Guerrero L., Oliver M.A., Sanudo C., Campo M.M., Nute G.R., Cañeque V., Alvarez I., San Julián R., et al. Acceptability of lamb fed on pasture, concentrate or combinations of both systems by European consumers. Meat Sci. 2009;81:196–202. doi: 10.1016/j.meatsci.2008.07.019. PubMed DOI
Howes N.L., Bekhit A.E., Burritt D.J., Campbell A.W. Opportunities and implications of pasture-based lamb fattening to enhance the long-chain fatty acid composition in meat. Compr. Rev. Food Sci. F. 2015;14:22–36. doi: 10.1111/1541-4337.12118. PubMed DOI
Wiklund E., Stevenson-Barry J., Cummings T. Sensory meat quality in red deer (Cervus elaphus) grazed on pasture or fed a commercial feed mixture; Proceedings of the 46th ICoMST; Buenos Aires, Argentina. August 2000.
Volpelli L.A., Valusso R., Morgante M., Pittia P., Piasentier E. Meat quality in male fallow deer (Dama dama): Effects of age and supplementary feeding. Meat Sci. 2003;65:555–562. doi: 10.1016/S0309-1740(02)00248-6. PubMed DOI
Ponnampalam E., Sinclair A.J., Egan A.R., Ferrier G.R., Leury B.J. Dietary manipulation of muscle long-chain omega-3 and omega-6 fatty acids and sensory properties of lamb meat. Meat Sci. 2002;60:125–132. doi: 10.1016/S0309-1740(01)00113-9. PubMed DOI
Erasmus S.W., Muller M., Alewijn M., Koot A.H., Van Ruth S.M., Hoffman L.C. Proton-transfer reaction mass spectrometry (PTR-MS) for the authentication of regionally unique South African lamb. Food Chem. 2017;233:331–342. PubMed