Strengthening of AA5754 Aluminum Alloy by DRECE Process Followed by Annealing Response Investigation

. 2020 Jan 10 ; 13 (2) : . [epub] 20200110

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32284493

In this study, a dual rolls equal channel extrusion (DRECE) process has been applied for improving the mechanical properties of the 5754 alloy. Supplementary experiments involving metallography, electron backscattered diffraction (EBSD), and XRD tests were carried out to evaluate the effect of the DRECE process. XRD analysis showed that the maximum dislocation density was achieved after six DRECE passes, which were accompanied by the formation that is typical for low-strain structures. The increasing dislocation density, as well as grain refinement throughout DRECE deformation, resulted in an increase in the mechanical properties. Annealing of the as-deformed sample resulted in grain growth and strength reduction.

Zobrazit více v PubMed

Tański T., Snopiński P., Borek W. Strength and structure of AlMg3 alloy after ECAP and post-ECAP processing. Mater. Manuf. Process. 2017;32:59–70. doi: 10.1080/10426914.2016.1257131. DOI

Azushima A., Kopp R., Korhonen A., Yang D.Y., Micari F., Lahoti G.D., Groche P., Yanagimoto J., Tsuji N., Rosochowski A., et al. Severe plastic deformation (SPD) processes for metals. CIRP Ann. 2008;57:16–735. doi: 10.1016/j.cirp.2008.09.005. DOI

Segal V. Review: Modes and processes of severe plastic deformation (SPD) Materials. 2018;11:1175. doi: 10.3390/ma11071175. PubMed DOI PMC

Snopiński P., Tański T., Matus K., Rusz S. Microstructure, grain refinement and hardness of Al–3%Mg aluminium alloy processed by ECAP with helical die. Arch. Civ. Mech. Eng. 2019;19:287–296. doi: 10.1016/j.acme.2018.11.003. DOI

Takayama Y., Miura T., Kato H., Watanabe H. Microstructural and Textural Evolution by Continuous Cyclic Bending and Annealing in a High Purity Titanium. Mater. Trans. 2004;45:2826–2831. doi: 10.2320/matertrans.45.2826. DOI

Huang J., Zhu Y.T., Alexander D.J., Liao X., Lowe T.C., Asaro R.J. Development of repetitive corrugation and straightening. Mater. Sci. Eng. A. 2004;371:35–39. doi: 10.1016/S0921-5093(03)00114-X. DOI

Saito Y., Utsunomiya H., Tsuji N., Sakai T. Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater. 1999;47:579–583. doi: 10.1016/S1359-6454(98)00365-6. DOI

Derakhshan J.F., Parsa M.H., Jafarian H.R. Microstructure and mechanical properties variations of pure aluminum subjected to one pass of ECAP-Conform process. Mater. Sci. Eng. A. 2019;747:120–129. doi: 10.1016/j.msea.2019.01.058. DOI

Rusz S., Cizek L., Michenka V., Dutkiewicz J., Salajka M., Hilser O., Tylsar S., Kedron J., Klos M. New Type of Device for Achievement of Grain Refinement in Metal Strip. Adv. Mater. Res. 2015;1127:91–97. doi: 10.4028/www.scientific.net/AMR.1127.91. DOI

Rusz S., Klyszewski A., Salajka M., Hilser O., Cizek L., Klos M. Possibilities of Application Methods Drece in Forming of Non-Ferrous Metals. Arch. Metall. Mater. 2015;60:3011–3015. doi: 10.1515/amm-2015-0481. DOI

Totten G.E., Mackenzie D.S. Handbook of Aluminum: Physical Metallurgy and Processes 1. Volume 1 CRC Press; Boca Raton, FL, USA: 2003.

Mckenzie P.W.J., Lapovok R. ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 1: Microstructure. Acta Mater. 2010;58:3198–3211. doi: 10.1016/j.actamat.2010.01.038. DOI

Tański T., Snopiński P., Pakieła W., Borek W., Prusik K., Rusz S. Structure and properties of AlMg alloy after combination of ECAP and post-ECAP ageing. Arch. Civ. Mech. Eng. 2016;16:325–334. doi: 10.1016/j.acme.2015.12.004. DOI

Pandey V., Singh J.K., Chattopadhyay K., Santhi Srinivas N.C., Singh V. Influence of ultrasonic shot peening on corrosion behavior of 7075 aluminum alloy. J. Alloys Compd. 2017;723:826–840. doi: 10.1016/j.jallcom.2017.06.310. DOI

Williamson G.K., Hall W.H. X-ray line broadening from filed aluminium and wolfram. Acta Mater. 1953;1:22–31. doi: 10.1016/0001-6160(53)90006-6. DOI

Cabibbo M., Paoletti C., Ghat M., Forcellese A., Simoncini M. Post-FSW Cold-Rolling Simulation of ECAP Shear Deformation and Its Microstructure Role Combined to Annealing in a FSWed AA5754 Plate Joint. Materials. 2019;12:1526. doi: 10.3390/ma12091526. PubMed DOI PMC

Ungar T., Mughrabi H., Rönnpagel D., Wilkens M. X-ray line-broadening study of the dislocation cell structure in deformed [001]-orientated copper single crystals. Acta Mater. 1984;32:333–342. doi: 10.1016/0001-6160(84)90106-8. DOI

Howeyze M., Arabi H., Eivani A.R., Jafarian H.R. Strengthening of AA5052 aluminum alloy by equal channel angular pressing followed by softening at room temperature. Mater. Sci. Eng. A. 2018;720:160–168. doi: 10.1016/j.msea.2018.02.054. DOI

Dinkerl M., Pyczak F., May J., Hoppel H.W., Goken M. Xrd profile analysis characterization of ultrafine grained Al-Mg alloys. J. Mater. Sci. 2009;43:7481–7487. doi: 10.1007/s10853-008-2859-8. DOI

Liu M., Roven H.J., Liu X., Murashkin M., Valiev R.Z., Ungar T., Balogh L. Grain refinement in nanostructured Al–Mg alloys subjected to high pressure torsion. J. Mater. Sci. 2010;45:4659–4664. doi: 10.1007/s10853-010-4604-3. DOI

Zhang C., Wang C., Guo R., Zhao G., Chen L., Sun W., Wang X. Investigation of dynamic recrystallization and modeling of microstructure evolution of an Al-Mg-Si aluminum alloy during high-temperature deformation. J. Alloys Compd. 2019;773:59–70. doi: 10.1016/j.jallcom.2018.09.263. DOI

Tański T., Snopiński P., Prusik K., Sroka M. The effects of room temperature ECAP and subsequent aging on the structure and properties of the Al-3%Mg aluminium alloy. Mater. Charact. 2017;133:185–195. doi: 10.1016/j.matchar.2017.09.039. DOI

Izairi N., Ajredini F., Vevecka-Priftaj A., Ristova M. Enhancement of mechanical properties of the AA5754 aluminium alloy with a severe plastic deformation. Mater. Technol. 2014;48:385–388.

León J., Salcedo D., Murillo Ó., Luis C.J., Fuertes J.P., Puertas I., Luri R. Mechanical Properties Analysis of an Al-Mg Alloy Connecting Rod with Submicrometric Structure. Metals. 2015;5:1397–1413. doi: 10.3390/met5031397. DOI

Tang L., Peng X., Huang J., Ma A., Deng Y., Xu G. Microstructure and mechanical properties of severely deformed Al-Mg-Sc-Zr alloy and their evolution during annealing. Mater. Sci. Eng. A. 2019;754:295–308. doi: 10.1016/j.msea.2018.12.063. DOI

Khelfa T., Rekik M.A., Munoz-Bolanos J.A., Cabrera-Marrero J.M., Khitouni M. Microstructure and strengthening mechanisms in an Al-Mg-Si alloy processed by equal channel angular pressing (ECAP) Int. J. Adv. Manuf. Technol. 2018;95:1165–1177. doi: 10.1007/s00170-017-1310-1. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...