Microstructure and magnetism of austenitic steels in relation to chemical composition, severe plastic deformation, and solution annealing
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.10.03.01/00/22_003/0000045
Ministerstvo Životního Prostředí
SP2024/62
Ministerstvo Školství, Mládeže a Tělovýchovy
TH04010416
Technologická Agentura České Republiky
PubMed
39814902
PubMed Central
PMC11735605
DOI
10.1038/s41598-025-86028-5
PII: 10.1038/s41598-025-86028-5
Knihovny.cz E-zdroje
- Klíčová slova
- Magnetic properties, Phase transformation, Stainless steels, microstructure,
- Publikační typ
- časopisecké články MeSH
Three types of commercial austenitic stainless steels, 1.4307 (AISI 304 L), 1.4404 (AISI 316 L) 1.4845 (AISI 310 S) with different chemical compositions, are subjected to severe plastic deformation at room temperature by a unique Dual Rolling Equal Channel Extrusion (DRECE) method. Its impact is evaluated from the viewpoint of microstructure analyses, X-ray diffraction, and macroscopic magnetic properties completed by microscopic Mössbauer characteristics. The study also includes the solution annealing at 950 °C for 0.5 h to follow the recovering austenitic structure and paramagnetic state of steels with the aim to offer more information with respect to new technical applications. The results show the importance of the steel's chemical composition and microstructure, mainly grain size, on the stability of the austenitic structure closely associated with the paramagnetic behaviour.
Zobrazit více v PubMed
McGuire, M. F. Stainless steels for design engineers. (Asm International, 2008). https://books.google.cz/books?id=QzJDRxLLxNIC
Fu, J. W., Yang, Y. S., Guo, J. J., Ma, J. C. & Tong, W. H. Microstructure evolution in AISI 304 stainless steel during near rapid directional solidification. Mat. Sci. Tech.25 (8), 1013–1016. 10.1179/174328408X317093 (2009).
Wang, J. et al. Effect of δ-ferrite on the stress corrosion cracking behavior of 321 stainless steel. Corros. Sci.158, 108079. 10.1016/j.corsci.2019.07.005 (2019).
Lee, S. I., Lee, S. W., Kim, S. G. & Hwang, B. Correlation of δ-Ferrite with Tensile and Charpy Impact Properties of Austenitic Fe-23Mn-Al-C steels. Metall. Mater. Trans. A. 52, 4170–4180. 10.1007/s11661-021-06377-4 (2021).
Sohrabi, M. J., Naghizadeh, M. & Mirzadeh, H. Deformation-induced martensite in austenitic stainless steels: a review. Archives Civil Mech. Eng.20, 1–24. 10.1007/s43452-020-00130-1 (2020).
Tabin, J. et al. Plastic flow instability in 304 austenitic stainless steels at room temperature. Metall. Mater. Trans. A. 54 (12), 4606–4611. 10.1007/s11661-023-07223-5 (2023).
Li, R. et al. Grain-orientation-dependent phase transformation kinetics in austenitic stainless steel under low-temperature uniaxial loading. Materialia15, 101030. 10.1016/j.mtla.2021.101030 (2021).
Quitzke, C. et al. Influence of C and N on strain-induced martensite formation in Fe-15Cr-7Mn-4Ni-0.5 Si austenitic steel. Materials. 14(21), 113857. 10.3390/ma14216502 (2021). PubMed PMC
Fukuda, T., Kakeshita, T., Kindo, K. Effect of high magnetic field and uniaxial stress at cryogenic temperatures on phase stability of some austenitic stainless steels. Mater. Sci. Eng. A438–440, 212–217. 10.1016/j.msea.2006.01.124 (2006).
Zhang,Y., Li, M., Bi, H., Chen, D., Gu, J. & Chang, E. Mechanical properties of cold-rolled metastable Cr–Mn–Ni–N austenitic stainless steel at low ambient temperature. Mater. Sci. Eng. A759, 224–233. 10.1016/j.msea.2019.05.045 (2019).
Castanheira, B. C., Aota, L. S., Zilnyk, K. D., Sandim, M. J. R. & Sandim, H. R. .Z. strain-induced martensite formation in cryorolled AISI 317 L stainless steel. Mater. Character.211, 113857. 10.1016/j.matchar.2024.113857 (2024).
Hao, X. et al. Effect on N on hot deformation behaviour of high-Mn austenitic steel. J. Mater. Res. Tech.27, 4345–4355. 10.1016/j.jmrt.2023.10.271 (2023).
Chen, P. et al. Precipitation behavior of k-carbides and its relationship with mechanical properties of Fe-Mn-Al-C lightweight austenitic steel. J. Mater. Res. Tech.25, 3780–3788. 10.1016/j.jmrt.2023.06.212 (2023).
Wang, Y.-M. et al. Study on the role of cryogenic treatment on corrosion and wear behaviors of high manganese austenitic steel. J. Mater. Res. Tech.24, 5271–5285. 10.1016/j.jmrt.2023.04.100 (2023).
Rusz, S. et al. Influence of SPD process on low-carbon steel mechanical properties. Modern Machinery (MM). Sci. J.12, 2910–2914. 10.17973/MMSJ.2019_06_201890 (2019).
Feldstein, J. & Lake, F. A new constitution diagram for predicting ferrite content of stainless steel Weld metals. Mater. Des.14, 345–348. 10.1016/0261-3069(93)90110-H (1993).
Snopiński, P. et al. Strengthening of AA5754 aluminum alloy by DRECE process followed by annealing response investigation. Materials13 (2), 301. 10.3390/ma13020301 (2020). PubMed PMC
Jabłońska, M. B. et al. Dual rolls equal channel extrusion as unconventional SPD process of the ultralowcarbon steel: fnite element simulation, experimental investigations and microstructural analysis. Archives Civil Mech. Eng.21, 25. 10.1007/s43452-020-00166-3 (2021).
Young, R. A. (ed) In: The Rietveld Method (Oxford University Press, International Union of Crystallography, 1993).
Gonser, U. Mössbauer spectroscopy. In Microscopic Methods in Metals 409–448 (Springer Berlin Heidelberg, 1986).
Zak, T. & Jiraskova, Y. C. O. N. F. I. T. Mössbauer spectra fitting program: Surf. Interface Anal.38, 710–714. 10.1002/sia.2285 (2006).
Błachowski, A. et al. Mössbauer study of deformation induced martensitic phase transformation in duplex steel. Nukleonika48, 9–12 (2003).
Bilmes, P. D., Solari, M. & Llorente, C. L. Characteristics and effects of austenite resulting from tempering of 13Cr–NiMo martensitic steel Weld metals. Mater. Charact.46 (4), 285–296. 10.1016/S1044-5803(00)00099-1 (2001).
Bilmes, P. D., Solari, M. & Llorente, C. L. Correlation between processing parameters and strain-induced martensitic transformation in cold worked AISI 301 stainless steel. Mater. Charact.59 (11), 1650–1654. 10.1016/j.matchar.2008.03.004 (2008).