Characterization of Platinum-Based Thin Films Deposited by Thermionic Vacuum Arc (TVA) Method
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
4717-4-18/20
JINR Dubna Russia
PubMed
32290226
PubMed Central
PMC7179031
DOI
10.3390/ma13071796
PII: ma13071796
Knihovny.cz E-zdroje
- Klíčová slova
- Pt, PtTi thin films, TVA, morphological properties,
- Publikační typ
- časopisecké články MeSH
The current work aimed to characterize the morphology, chemical, and mechanical properties of Pt and PtTi thin films deposited via thermionic vacuum arc (TVA) method on glass and silicon substrates. The deposited thin films were characterized by means of a scanning electron microscope technique (SEM). The quantitative elemental microanalysis was done using energy-dispersive X-ray spectroscopy (EDS). The tribological properties were studied by a ball-on-disc tribometer, and the mechanical properties were measured using nanoindentation tests. The roughness, as well as the micro and nanoscale features, were characterized using atomic force microscopy (AFM) and transmission electron microscopy (TEM). The wettability of the deposited Pt and PtTi thin films was investigated by the surface free energy evaluation (SFE) method. The purpose of our study was to prove the potential applications of Pt-based thin films in fields, such as nanoelectronics, fuel cells, medicine, and materials science.
Zobrazit více v PubMed
Liu B.-H., Huanga H.J., Huang S.-H., Hsiao C.-N. Platinum thin films with good thermal and chemical stability fabricated by inductively coupled plasma-enhanced atomic layer deposition at low temperatures. Thin Solid Films. 2014;566:93–98. doi: 10.1016/j.tsf.2014.07.031. DOI
Beck G., Bachmann C., Bretzler R., Kmeth R. Thermal stability of platinum, palladium and silver films on yttrium-stabilised zirconia. Thin Solid Films. 2014;573:164–175. doi: 10.1016/j.tsf.2014.11.035. DOI
Mizuhashi S., Cordonier C.E.J., Matsui H., Honma H., Takai O. Comparative study on physical and electrochemical characteristics of thin films deposited from electroless platinum plating baths. Thin Solid Films. 2016;619:328–335. doi: 10.1016/j.tsf.2016.10.040. DOI
Mamun M.A., Gu D., Baumgart H., Elmustafa A.A. Nanomechanical properties of platinum thin films synthesized by atomic layer deposition. Surf. Coat. Technol. 2015;265:185–190. doi: 10.1016/j.surfcoat.2015.01.037. DOI
Jung W., Kim J.J., Tuller H.L. Investigation of nanoporous platinum thin films fabricated by reactive sputtering: Application as micro-SOFC electrode. J. Power Sources. 2015;275:860–865. doi: 10.1016/j.jpowsour.2014.11.084. DOI
Schmid P., Zarfl C., Triendl F., Maier F.J., Schwarz S., Schneider M., Schmid U. Impact of adhesion promoters and sputter parameters on the electro-mechanical properties of Pt thin films at high temperatures. Sens. Actuators A Phys. 2019;285:149–157. doi: 10.1016/j.sna.2018.11.010. DOI
Schmid P., Triendl F., Zarfl C., Schwarz S., Artner W., Schneider M., Schmid U. Electro-mechanical properties of multilayered aluminum nitride and platinum thin films at high temperatures. Sens. Actuators A Phys. 2019;293:128–135. doi: 10.1016/j.sna.2019.04.036. DOI
Polosan S., Secu M. X-ray excited luminescence and photoluminescence of Bi4 (GeO4) 3 glass-ceramics. Radiat. Meas. 2010;45:409–411. doi: 10.1016/j.radmeas.2010.01.040. DOI
Fu Y., Du H., Huang W., Zhang S., Hu M. TiNi-based thin films in MEMS applications: A review. Sens. Actuators A Phys. 2004;112:395–408. doi: 10.1016/j.sna.2004.02.019. DOI
Secu C.E., Bartha C., Polosan S., Secu M. Thermally activated conversion of a silicate gel to an oxyfluoride glass ceramic: Optical study using Eu3+ probe ion. J. Lumin. 2014;146:539–543. doi: 10.1016/j.jlumin.2013.10.013. DOI
Sakaliūnienė J., Abakevičienė B., Šlapikas K., Tamulevičius S. Influence of magnetron sputtering deposition conditions and thermal treatment on properties of platinum thin films for positive electrode–electrolyte–negative electrode structure. Thin Solid Films. 2015;594:101–108. doi: 10.1016/j.tsf.2015.10.016. DOI
Rodríguez A., Morant-Minana M.C., Dias-Ponte A., Martínez-Calderón M., Gómez-Aranzadi M., Olaizola S.M. Femtosecond laser induced periodic surface nanostructuring of sputtered platinum thin films. Appl. Surf. Sci. 2015;351:135–139. doi: 10.1016/j.apsusc.2015.05.117. DOI
Beck G., Bachmann C., Bretzler R., Kmeth R. Epitaxial and non-epitaxial platinum, palladium and silver films on yttrium-stabilised zirconia. Mater. Chem. Phys. 2015;158:107–114. doi: 10.1016/j.matchemphys.2015.03.045. DOI
Petrăşescu L., Ciupină V., Tutun Ş.G., Vlădoiu R., Prodan G., Poroşnicu C., Vasile E., Prioteasa I., Manu R. Carbon—Platinum nanostructured catalysts for hydrogen fuel cells. J. Optoelectron. Adv. Matter. 2015;17:1464–1470.
Avril L., Bourgeois S., Simon P., Domenichini B., Zanfoni N., Herbst F., Imhoff L. Nanostructured Pt-TiO2 composite thin films obtained by direct liquid injection metal organic chemical vapor deposition: Control of chemical state by X-ray photoelectron spectroscopy. Thin Solid Films. 2015;591:237–244. doi: 10.1016/j.tsf.2015.06.007. DOI
Grubera W., Baehtz C., Horisberger M., Ratschinskid I., Schmidta H. Microstructure and strain relaxation in thin nanocrystalline platinum films produced via different sputtering techniques. Appl. Surf. Sci. 2016;368:341–347. doi: 10.1016/j.apsusc.2016.02.015. DOI
Şennik E., Ürdem Ş., Erkovan M., Kılınç N. Sputtered platinum thin films for resistive hydrogen sensor application. Mater. Lett. 2016;177:104–107. doi: 10.1016/j.matlet.2016.04.134. DOI
Vladoiu R., Tichy M., Mandes A., Dinca-Balan V., Kudrna P. Thermionic Vacuum Arc—A versatile technology for thin film deposition and its applications. Coatings. 2020;10:211. doi: 10.3390/coatings10030211. DOI
Musa G., Mustata I., Blideran M., Ciupina V., Vladoiu R., Prodan G., Vasile E., Ehrich H. Thermionic vacuum arc- new technique for high purity carbon thin film deposition. Acta Phys. Slovaca. 2005;55:417–421.
Lungu C.P., Mustata I., Musa G., Lungu A.M., Brinza O., Moldovan C., Rotaru C., Iosub R., Sava F., Popescu M., et al. Unstressed carbon-metal films deposited by thermionic vacuum arc method. J. Optoelectron. Adv. Mater. 2006;8:74–77.
Ciupina V., Vladoiu R., Lungu C.P., Dinca V., Contulov M., Mandes A., Popov P., Prodan G. Investigation of the SiC thin films synthetized by Thermionic Vacuum Arc method (TVA) Eur. Phys. J. D. 2012;66:99. doi: 10.1140/epjd/e2012-20470-5. DOI
Vladoiu R., Dinca V., Musa G. Surface energy evaluation of unhydrogenated DLC thin film deposited by thermionic vacuum arc (TVA) method. Eur. Phys. J. D. 2009;54:433–437. doi: 10.1140/epjd/e2009-00178-5. DOI
Musa G., Vladoiu R., Ciupina V., Janick J. Raman spectra of carbon thin films. J. Optoelectron. Adv. Mater. 2006;8:621–623.
Vladoiu R., Ciupina V., Lungu C.P., Bursikova V., Musa G. Thermionic vacuum arc (TVA) deposited tungsten thin film characterization. J. Optoelectron. Adv. Mater. 2006;8:71–73.
Musa G., Vladoiu R., Ciupina V., Lungu C., Mustata I., Pat S., Akan T., Ekem N. Characteristics of boron thin films obtained by TVA technology. J. Optoelectron. Adv. Mater. 2006;8:617–620.
Vladoiu R., Ciupina V., Mandes A., Dinca V., Prodan M., Musa G. Growth and characteristics of tantalum oxide thin films deposited using thermionic vacuum arc technology. J. Appl. Phys. 2010;108:093301. doi: 10.1063/1.3503278. DOI
Vladoiu R., Mandes A., Dinca-Balan V., Prodan G., Kudrna P., Tichý M. Magnesium plasma diagnostics by heated probe and characterization of the Mg thin films deposited by thermionic vacuum arc technology. Plasma Sources Sci. Technol. 2015;24:035008. doi: 10.1088/0963-0252/24/3/035008. DOI
Mandes A., Vladoiu R., Dinca V., Prodan G. Binary C-Ag Plasma Breakdown and Structural Characterization of the deposited thin films by Thermionic Vacuum Arc (TVA) method. IEEE Trans. Plasma Sci. 2014;42:2806–2807. doi: 10.1109/TPS.2014.2323086. DOI
Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI
Intermittent Contact Mode. [(accessed on 28 March 2020)]; Available online: https://www.ntmdt-si.com/resources/spm-principles/atomic-force-microscopy/amplitude-modulation-afm/intermittent-contact-mode.
Pelegri A.A., Huang X. Nanoindentation on soft film/hard substrate and hard film/soft substrate material systems with finite element analysis. Compos. Sci. Technol. 2008;68:147–155. doi: 10.1016/j.compscitech.2007.05.033. DOI
Vladoiu R., Mandes A., Dinca-Balan V., Bursikova V. Structural and mechanical properties of nanostructured C-Ag thin films synthesized by Thermionic Vacuum Arc method. J. Nanomater. 2018;2018:9632041. doi: 10.1155/2018/9632041. DOI
Bursikova V., Sťahel P., Navratil Z., Bursik J., Janca J. Surface Energy Evaluation of Plasma Treated Materials by Contact Angle Measurement. Masaryk University; Brno, Czech Republic: 2004.
Wenzel R. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936;28:988–994. doi: 10.1021/ie50320a024. DOI
Cassie A., Baxter S. Wettability of porous surfaces. Trans. Faraday Soc. 1944;40:546–551. doi: 10.1039/tf9444000546. DOI
Teodorescu V.S., Blanchin M.-G. Fast and Simple Specimen Preparation for TEM Studies of Oxide Films Deposited on Silicon Wafers. Microsc. Microanal. 2009;15:15–19. doi: 10.1017/S1431927609090011. PubMed DOI
Langford J.W. Scherrer Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Cryst. 1978;11:102–113. doi: 10.1107/S0021889878012844. DOI
Nelson J.B., Riley D.P. An Experimental Investigation of Extrapolation Methods in the Derivation of Accurate Unit-Cell Dimensions of Crystals. Proc. Phys. Soc. 1945;57:160–176. doi: 10.1088/0959-5309/57/3/302. DOI
Klinger M., Jäger A. Crystallographic Tool Box (CrysTBox) J. Appl. Crystallogr. 2015;48:2012–2018. doi: 10.1107/S1600576715017252. PubMed DOI PMC