The Role of Taste Receptor mTAS1R3 in Chemical Communication of Gametes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA-18-11275S
Grantová Agentura České Republiky
PubMed
32290318
PubMed Central
PMC7177404
DOI
10.3390/ijms21072651
PII: ijms21072651
Knihovny.cz E-zdroje
- Klíčová slova
- L-glutamate, TAS1R family, acrosome reaction, chemoattractant, chemotaxis, gamete, mTAS1R3 receptor, mouse, sperm,
- MeSH
- buněčná diferenciace MeSH
- chemotaxe MeSH
- exprese genu MeSH
- glutamáty metabolismus MeSH
- interakce spermie a vajíčka * MeSH
- messenger RNA genetika MeSH
- mezibuněčná komunikace * MeSH
- myši MeSH
- receptory spřažené s G-proteiny genetika metabolismus MeSH
- spermie cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glutamáty MeSH
- messenger RNA MeSH
- receptory spřažené s G-proteiny MeSH
- taste receptors, type 1 MeSH Prohlížeč
Fertilization is a multiple step process leading to the fusion of female and male gametes and the formation of a zygote. Besides direct gamete membrane interaction via binding receptors localized on both oocyte and sperm surface, fertilization also involves gamete communication via chemical molecules triggering various signaling pathways. This work focuses on a mouse taste receptor, mTAS1R3, encoded by the Tas1r3 gene, as a potential receptor mediating chemical communication between gametes using the C57BL/6J lab mouse strain. In order to specify the role of mTAS1R3, we aimed to characterize its precise localization in testis and sperm using super resolution microscopy. The testis cryo-section, acrosome-intact sperm released from cauda epididymis and sperm which underwent the acrosome reaction (AR) were evaluated. The mTAS1R3 receptor was detected in late spermatids where the acrosome was being formed and in the acrosomal cap of acrosome intact sperm. AR is triggered in mice during sperm maturation in the female reproductive tract and by passing through the egg surroundings such as cumulus oophorus cells. This AR onset is independent of the extracellular matrix of the oocyte called zona pellucida. After AR, the relocation of mTAS1R3 to the equatorial segment was observed and the receptor remained exposed to the outer surroundings of the female reproductive tract, where its physiological ligand, the amino acid L-glutamate, naturally occurs. Therefore, we targeted the possible interaction in vitro between the mTAS1R3 and L-glutamate as a part of chemical communication between sperm and egg and used an anti-mTAS1R3-specific antibody to block it. We detected that the acrosome reacted spermatozoa showed a chemotactic response in the presence of L-glutamate during and after the AR, and it is likely that mTAS1R3 acted as its mediator.
Zobrazit více v PubMed
Eisenbach M., Giojalas L.C. Sperm guidance in mammals—An unpaved road to the egg. Nat. Rev. Mol. Cell Biol. 2006;7:276–285. doi: 10.1038/nrm1893. PubMed DOI
Perez-Cerezales S., Boryshpolets S., Eisenbach M. Behavioral mechanisms of mammalian sperm guidance. Asian J. Androl. 2015;17:628–632. doi: 10.4103/1008-682X.154308. PubMed DOI PMC
Guidobaldi H.A., Teves M.E., Unates D.R., Giojalas L.C. Sperm transport and retention at the fertilization site is orchestrated by a chemical guidance and oviduct movement. Reproduction. 2012;143:587–596. doi: 10.1530/REP-11-0478. PubMed DOI
Harper M.J. Stimulation of sperm movement from the isthmus to the site of fertilization in the rabbit oviduct. Biol. Reprod. 1973;8:369–377. doi: 10.1093/biolreprod/8.3.369. PubMed DOI
Luddi A., Governini L., Wilmskotter D., Gudermann T., Boekhoff I., Piomboni P. Taste Receptors: New Players in Sperm Biology. Int. J. Mol. Sci. 2019;20:967. doi: 10.3390/ijms20040967. PubMed DOI PMC
Simons J., Fauci L. A Model for the Acrosome Reaction in Mammalian Sperm. Bull. Math. Biol. 2018;80:2481–2501. doi: 10.1007/s11538-018-0478-3. PubMed DOI
Clift L.E., Andrlikova P., Frolikova M., Stopka P., Bryja J., Flanagan B.F., Johnson P.M., Dvorakova-Hortova K. Absence of spermatozoal CD46 protein expression and associated rapid acrosome reaction rate in striped field mice (Apodemus agrarius) Reprod. Biol. Endocrinol. 2009;7:29. doi: 10.1186/1477-7827-7-29. PubMed DOI PMC
Johnson P.M., Clift L.E., Andrlikova P., Jursova M., Flanagan B.F., Cummerson J.A., Stopka P., Dvorakova-Hortova K. Rapid sperm acrosome reaction in the absence of acrosomal CD46 expression in promiscuous field mice (Apodemus) Reproduction. 2007;134:739–747. doi: 10.1530/REP-07-0363. PubMed DOI
Jin M., Fujiwara E., Kakiuchi Y., Okabe M., Satouh Y., Baba S.A., Chiba K., Hirohashi N. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc. Natl. Acad. Sci. USA. 2011;108:4892–4896. doi: 10.1073/pnas.1018202108. PubMed DOI PMC
Meyer D., Voigt A., Widmayer P., Borth H., Huebner S., Breit A., Marschall S., De Angelis M.H., Boehm U., Meyerhof W., et al. Expression of Tas1 taste receptors in mammalian spermatozoa: Functional role of Tas1r1 in regulating basal Ca(2)(+) and cAMP concentrations in spermatozoa. PLoS ONE. 2012;7:e32354. doi: 10.1371/journal.pone.0032354. PubMed DOI PMC
Hino T., Muro Y., Tamura-Nakano M., Okabe M., Tateno H., Yanagimachi R. The Behavior and Acrosomal Status of Mouse Spermatozoa In Vitro, and Within the Oviduct During Fertilization after Natural Mating. Biol. Reprod. 2016;95:50. doi: 10.1095/biolreprod.116.140400. PubMed DOI
La Spina F.A., Puga Molina L.C., Romarowski A., Vitale A.M., Falzone T.L., Krapf D., Hirohashi N., Buffone M.G. Mouse sperm begin to undergo acrosomal exocytosis in the upper isthmus of the oviduct. Dev. Biol. 2016;411:172–182. doi: 10.1016/j.ydbio.2016.02.006. PubMed DOI PMC
Muro Y., Hasuwa H., Isotani A., Miyata H., Yamagata K., Ikawa M., Yanagimachi R., Okabe M. Behavior of Mouse Spermatozoa in the Female Reproductive Tract from Soon after Mating to the Beginning of Fertilization. Biol. Reprod. 2016;94:80. doi: 10.1095/biolreprod.115.135368. PubMed DOI
Hoon M.A., Adler E., Lindemeier J., Battey J.F., Ryba N.J., Zuker C.S. Putative mammalian taste receptors: A class of taste-specific GPCRs with distinct topographic selectivity. Cell. 1999;96:541–551. doi: 10.1016/S0092-8674(00)80658-3. PubMed DOI
Nelson G., Chandrashekar J., Hoon M.A., Feng L., Zhao G., Ryba N.J., Zuker C.S. An amino-acid taste receptor. Nature. 2002;416:199–202. doi: 10.1038/nature726. PubMed DOI
Nelson G., Hoon M.A., Chandrashekar J., Zhang Y., Ryba N.J., Zuker C.S. Mammalian sweet taste receptors. Cell. 2001;106:381–390. doi: 10.1016/S0092-8674(01)00451-2. PubMed DOI
Shi P., Zhang J., Yang H., Zhang Y.P. Adaptive diversification of bitter taste receptor genes in Mammalian evolution. Mol. Biol. Evol. 2003;20:805–814. doi: 10.1093/molbev/msg083. PubMed DOI
Chandrashekar J., Mueller K.L., Hoon M.A., Adler E., Feng L., Guo W., Zuker C.S., Ryba N.J. T2Rs function as bitter taste receptors. Cell. 2000;100:703–711. doi: 10.1016/S0092-8674(00)80706-0. PubMed DOI
Behrens M., Meyerhof W., Hellfritsch C., Hofmann T. Sweet and umami taste: Natural products, their chemosensory targets, and beyond. Angew. Chem. Int. Ed. Engl. 2011;50:2220–2242. doi: 10.1002/anie.201002094. PubMed DOI
Li F., Zhou M. Depletion of bitter taste transduction leads to massive spermatid loss in transgenic mice. Mol. Hum. Reprod. 2012;18:289–297. doi: 10.1093/molehr/gas005. PubMed DOI PMC
Iwatsuki K., Nomura M., Shibata A., Ichikawa R., Enciso P.L., Wang L., Takayanagi R., Torii K., Uneyama H. Generation and characterization of T1R2-LacZ knock-in mouse. Biochem. Biophys. Res. Commun. 2010;402:495–499. doi: 10.1016/j.bbrc.2010.10.057. PubMed DOI
Li F. Taste perception: From the tongue to the testis. Mol. Hum. Reprod. 2013;19:349–360. doi: 10.1093/molehr/gat009. PubMed DOI
Harris S.E., Gopichandran N., Picton H.M., Leese H.J., Orsi N.M. Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology. 2005;64:992–1006. doi: 10.1016/j.theriogenology.2005.01.004. PubMed DOI
Perez-Cerezales S., Boryshpolets S., Afanzar O., Brandis A., Nevo R., Kiss V., Eisenbach M. Involvement of opsins in mammalian sperm thermotaxis. Sci. Rep. 2015;5:16146. doi: 10.1038/srep16146. PubMed DOI PMC
Stopková R., Vinkler D., Kuntová B., Šedo O., Albrecht T., Suchan J., Dvořáková-Hortová K., Zdráhal Z., Stopka P. Mouse Lipocalins (MUP, OBP, LCN) Are Co-expressed in Tissues Involved in Chemical Communication. Front. Ecol. Evol. 2016;4 doi: 10.3389/fevo.2016.00047. DOI
Mombaerts P. Molecular biology of odorant receptors in vertebrates. Annu. Rev. Neurosci. 1999;22:487–509. doi: 10.1146/annurev.neuro.22.1.487. PubMed DOI
Frolíková M., Stopková R., Antalíková J., Johnson P.M., Stopka P., Dvořáková-Hortová K. Role of complement regulatory proteins CD46, CD55 and CD59 in reproduction. Folia Zool. 2012;61:84–94. doi: 10.25225/fozo.v61.i1.a12.2012. DOI
Frolikova M., Sebkova N., Ded L., Dvorakova-Hortova K. Characterization of CD46 and beta1 integrin dynamics during sperm acrosome reaction. Sci. Rep. 2016;6:33714. doi: 10.1038/srep33714. PubMed DOI PMC
Inoue N., Ikawa M., Nakanishi T., Matsumoto M., Nomura M., Seya T., Okabe M. Disruption of mouse CD46 causes an accelerated spontaneous acrosome reaction in sperm. Mol. Cell Biol. 2003;23:2614–2622. doi: 10.1128/MCB.23.7.2614-2622.2003. PubMed DOI PMC
Nakanishi T., Ikawa M., Yamada S., Parvinen M., Baba T., Nishimune Y., Okabe M. Real-time observation of acrosomal dispersal from mouse sperm using GFP as a marker protein. FEBS Lett. 1999;449:277–283. doi: 10.1016/S0014-5793(99)00433-0. PubMed DOI
Fremeau R.T., Jr., Troyer M.D., Pahner I., Nygaard G.O., Tran C.H., Reimer R.J., Bellocchio E.E., Fortin D., Storm-Mathisen J., Edwards R.H. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron. 2001;31:247–260. doi: 10.1016/S0896-6273(01)00344-0. PubMed DOI
Juge N., Gray J.A., Omote H., Miyaji T., Inoue T., Hara C., Uneyama H., Edwards R.H., Nicoll R.A., Moriyama Y. Metabolic control of vesicular glutamate transport and release. Neuron. 2010;68:99–112. doi: 10.1016/j.neuron.2010.09.002. PubMed DOI PMC
Hu J.H., Yang N., Ma Y.H., Jiang J., Zhang J.F., Fei J., Guo L.H. Identification of glutamate receptors and transporters in mouse and human sperm. J. Androl. 2004;25:140–146. doi: 10.1002/j.1939-4640.2004.tb02769.x. PubMed DOI
Zitranski N., Borth H., Ackermann F., Meyer D., Vieweg L., Breit A., Gudermann T., Boekhoff I. The “acrosomal synapse”: Subcellular organization by lipid rafts and scaffolding proteins exhibits high similarities in neurons and mammalian spermatozoa. Commun. Integr. Biol. 2010;3:513–521. doi: 10.4161/cib.3.6.13137. PubMed DOI PMC
Spehr M., Gisselmann G., Poplawski A., Riffell J.A., Wetzel C.H., Zimmer R.K., Hatt H. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science. 2003;299:2054–2058. doi: 10.1126/science.1080376. PubMed DOI
Flegel C., Vogel F., Hofreuter A., Schreiner B.S., Osthold S., Veitinger S., Becker C., Brockmeyer N.H., Muschol M., Wennemuth G., et al. Characterization of the Olfactory Receptors Expressed in Human Spermatozoa. Front. Mol. Biosci. 2015;2:73. doi: 10.3389/fmolb.2015.00073. PubMed DOI PMC
Yoshida M., Yoshida K. Sperm chemotaxis and regulation of flagellar movement by Ca2+ Mol. Hum. Reprod. 2011;17:457–465. doi: 10.1093/molehr/gar041. PubMed DOI
Jozwik M., Jozwik M., Teng C., Battaglia F.C. Amino acid, ammonia and urea concentrations in human pre-ovulatory ovarian follicular fluid. Hum. Reprod. 2006;21:2776–2782. doi: 10.1093/humrep/del038. PubMed DOI
Uhde K., van Tol H.T.A., Stout T.A.E., Roelen B.A.J. Metabolomic profiles of bovine cumulus cells and cumulus-oocyte-complex-conditioned medium during maturation in vitro. Sci. Rep. 2018;8:9477. doi: 10.1038/s41598-018-27829-9. PubMed DOI PMC
Guidobaldi H.A., Hirohashi N., Cubilla M., Buffone M.G., Giojalas L.C. An intact acrosome is required for the chemotactic response to progesterone in mouse spermatozoa. Mol. Reprod. Dev. 2017;84:310–315. doi: 10.1002/mrd.22782. PubMed DOI PMC
Miller M.R., Mannowetz N., Iavarone A.T., Safavi R., Gracheva E.O., Smith J.F., Hill R.Z., Bautista D.M., Kirichok Y., Lishko P.V. Unconventional endocannabinoid signaling governs sperm activation via the sex hormone progesterone. Science. 2016;352:555–559. doi: 10.1126/science.aad6887. PubMed DOI PMC
Sebkova N., Ded L., Vesela K., Dvorakova-Hortova K. Progress of sperm IZUMO1 relocation during spontaneous acrosome reaction. Reproduction. 2014;147:231. doi: 10.1530/REP-13-0193. PubMed DOI
Endo D., Kon S., Sato T., Toyama F., Katsura Y., Nakauchi Y., Takayama-Watanabe E., Watanabe A. NMDA-type glutamate receptors mediate the acrosome reaction and motility initiation in newt sperm. Mol. Reprod. Dev. 2019;86:1106–1115. doi: 10.1002/mrd.23225. PubMed DOI
Storto M., Sallese M., Salvatore L., Poulet R., Condorelli D.F., Dell’Albani P., Marcello M.F., Romeo R., Piomboni P., Barone N., et al. Expression of metabotropic glutamate receptors in the rat and human testis. J. Endocrinol. 2001;170:71–78. doi: 10.1677/joe.0.1700071. PubMed DOI
Chaudhari N., Landin A.M., Roper S.D. A metabotropic glutamate receptor variant functions as a taste receptor. Nat. Neurosci. 2000;3:113–119. doi: 10.1038/72053. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC