The Role of Taste Receptor mTAS1R3 in Chemical Communication of Gametes

. 2020 Apr 10 ; 21 (7) : . [epub] 20200410

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32290318

Grantová podpora
GA-18-11275S Grantová Agentura České Republiky

Fertilization is a multiple step process leading to the fusion of female and male gametes and the formation of a zygote. Besides direct gamete membrane interaction via binding receptors localized on both oocyte and sperm surface, fertilization also involves gamete communication via chemical molecules triggering various signaling pathways. This work focuses on a mouse taste receptor, mTAS1R3, encoded by the Tas1r3 gene, as a potential receptor mediating chemical communication between gametes using the C57BL/6J lab mouse strain. In order to specify the role of mTAS1R3, we aimed to characterize its precise localization in testis and sperm using super resolution microscopy. The testis cryo-section, acrosome-intact sperm released from cauda epididymis and sperm which underwent the acrosome reaction (AR) were evaluated. The mTAS1R3 receptor was detected in late spermatids where the acrosome was being formed and in the acrosomal cap of acrosome intact sperm. AR is triggered in mice during sperm maturation in the female reproductive tract and by passing through the egg surroundings such as cumulus oophorus cells. This AR onset is independent of the extracellular matrix of the oocyte called zona pellucida. After AR, the relocation of mTAS1R3 to the equatorial segment was observed and the receptor remained exposed to the outer surroundings of the female reproductive tract, where its physiological ligand, the amino acid L-glutamate, naturally occurs. Therefore, we targeted the possible interaction in vitro between the mTAS1R3 and L-glutamate as a part of chemical communication between sperm and egg and used an anti-mTAS1R3-specific antibody to block it. We detected that the acrosome reacted spermatozoa showed a chemotactic response in the presence of L-glutamate during and after the AR, and it is likely that mTAS1R3 acted as its mediator.

Zobrazit více v PubMed

Eisenbach M., Giojalas L.C. Sperm guidance in mammals—An unpaved road to the egg. Nat. Rev. Mol. Cell Biol. 2006;7:276–285. doi: 10.1038/nrm1893. PubMed DOI

Perez-Cerezales S., Boryshpolets S., Eisenbach M. Behavioral mechanisms of mammalian sperm guidance. Asian J. Androl. 2015;17:628–632. doi: 10.4103/1008-682X.154308. PubMed DOI PMC

Guidobaldi H.A., Teves M.E., Unates D.R., Giojalas L.C. Sperm transport and retention at the fertilization site is orchestrated by a chemical guidance and oviduct movement. Reproduction. 2012;143:587–596. doi: 10.1530/REP-11-0478. PubMed DOI

Harper M.J. Stimulation of sperm movement from the isthmus to the site of fertilization in the rabbit oviduct. Biol. Reprod. 1973;8:369–377. doi: 10.1093/biolreprod/8.3.369. PubMed DOI

Luddi A., Governini L., Wilmskotter D., Gudermann T., Boekhoff I., Piomboni P. Taste Receptors: New Players in Sperm Biology. Int. J. Mol. Sci. 2019;20:967. doi: 10.3390/ijms20040967. PubMed DOI PMC

Simons J., Fauci L. A Model for the Acrosome Reaction in Mammalian Sperm. Bull. Math. Biol. 2018;80:2481–2501. doi: 10.1007/s11538-018-0478-3. PubMed DOI

Clift L.E., Andrlikova P., Frolikova M., Stopka P., Bryja J., Flanagan B.F., Johnson P.M., Dvorakova-Hortova K. Absence of spermatozoal CD46 protein expression and associated rapid acrosome reaction rate in striped field mice (Apodemus agrarius) Reprod. Biol. Endocrinol. 2009;7:29. doi: 10.1186/1477-7827-7-29. PubMed DOI PMC

Johnson P.M., Clift L.E., Andrlikova P., Jursova M., Flanagan B.F., Cummerson J.A., Stopka P., Dvorakova-Hortova K. Rapid sperm acrosome reaction in the absence of acrosomal CD46 expression in promiscuous field mice (Apodemus) Reproduction. 2007;134:739–747. doi: 10.1530/REP-07-0363. PubMed DOI

Jin M., Fujiwara E., Kakiuchi Y., Okabe M., Satouh Y., Baba S.A., Chiba K., Hirohashi N. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc. Natl. Acad. Sci. USA. 2011;108:4892–4896. doi: 10.1073/pnas.1018202108. PubMed DOI PMC

Meyer D., Voigt A., Widmayer P., Borth H., Huebner S., Breit A., Marschall S., De Angelis M.H., Boehm U., Meyerhof W., et al. Expression of Tas1 taste receptors in mammalian spermatozoa: Functional role of Tas1r1 in regulating basal Ca(2)(+) and cAMP concentrations in spermatozoa. PLoS ONE. 2012;7:e32354. doi: 10.1371/journal.pone.0032354. PubMed DOI PMC

Hino T., Muro Y., Tamura-Nakano M., Okabe M., Tateno H., Yanagimachi R. The Behavior and Acrosomal Status of Mouse Spermatozoa In Vitro, and Within the Oviduct During Fertilization after Natural Mating. Biol. Reprod. 2016;95:50. doi: 10.1095/biolreprod.116.140400. PubMed DOI

La Spina F.A., Puga Molina L.C., Romarowski A., Vitale A.M., Falzone T.L., Krapf D., Hirohashi N., Buffone M.G. Mouse sperm begin to undergo acrosomal exocytosis in the upper isthmus of the oviduct. Dev. Biol. 2016;411:172–182. doi: 10.1016/j.ydbio.2016.02.006. PubMed DOI PMC

Muro Y., Hasuwa H., Isotani A., Miyata H., Yamagata K., Ikawa M., Yanagimachi R., Okabe M. Behavior of Mouse Spermatozoa in the Female Reproductive Tract from Soon after Mating to the Beginning of Fertilization. Biol. Reprod. 2016;94:80. doi: 10.1095/biolreprod.115.135368. PubMed DOI

Hoon M.A., Adler E., Lindemeier J., Battey J.F., Ryba N.J., Zuker C.S. Putative mammalian taste receptors: A class of taste-specific GPCRs with distinct topographic selectivity. Cell. 1999;96:541–551. doi: 10.1016/S0092-8674(00)80658-3. PubMed DOI

Nelson G., Chandrashekar J., Hoon M.A., Feng L., Zhao G., Ryba N.J., Zuker C.S. An amino-acid taste receptor. Nature. 2002;416:199–202. doi: 10.1038/nature726. PubMed DOI

Nelson G., Hoon M.A., Chandrashekar J., Zhang Y., Ryba N.J., Zuker C.S. Mammalian sweet taste receptors. Cell. 2001;106:381–390. doi: 10.1016/S0092-8674(01)00451-2. PubMed DOI

Shi P., Zhang J., Yang H., Zhang Y.P. Adaptive diversification of bitter taste receptor genes in Mammalian evolution. Mol. Biol. Evol. 2003;20:805–814. doi: 10.1093/molbev/msg083. PubMed DOI

Chandrashekar J., Mueller K.L., Hoon M.A., Adler E., Feng L., Guo W., Zuker C.S., Ryba N.J. T2Rs function as bitter taste receptors. Cell. 2000;100:703–711. doi: 10.1016/S0092-8674(00)80706-0. PubMed DOI

Behrens M., Meyerhof W., Hellfritsch C., Hofmann T. Sweet and umami taste: Natural products, their chemosensory targets, and beyond. Angew. Chem. Int. Ed. Engl. 2011;50:2220–2242. doi: 10.1002/anie.201002094. PubMed DOI

Li F., Zhou M. Depletion of bitter taste transduction leads to massive spermatid loss in transgenic mice. Mol. Hum. Reprod. 2012;18:289–297. doi: 10.1093/molehr/gas005. PubMed DOI PMC

Iwatsuki K., Nomura M., Shibata A., Ichikawa R., Enciso P.L., Wang L., Takayanagi R., Torii K., Uneyama H. Generation and characterization of T1R2-LacZ knock-in mouse. Biochem. Biophys. Res. Commun. 2010;402:495–499. doi: 10.1016/j.bbrc.2010.10.057. PubMed DOI

Li F. Taste perception: From the tongue to the testis. Mol. Hum. Reprod. 2013;19:349–360. doi: 10.1093/molehr/gat009. PubMed DOI

Harris S.E., Gopichandran N., Picton H.M., Leese H.J., Orsi N.M. Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology. 2005;64:992–1006. doi: 10.1016/j.theriogenology.2005.01.004. PubMed DOI

Perez-Cerezales S., Boryshpolets S., Afanzar O., Brandis A., Nevo R., Kiss V., Eisenbach M. Involvement of opsins in mammalian sperm thermotaxis. Sci. Rep. 2015;5:16146. doi: 10.1038/srep16146. PubMed DOI PMC

Stopková R., Vinkler D., Kuntová B., Šedo O., Albrecht T., Suchan J., Dvořáková-Hortová K., Zdráhal Z., Stopka P. Mouse Lipocalins (MUP, OBP, LCN) Are Co-expressed in Tissues Involved in Chemical Communication. Front. Ecol. Evol. 2016;4 doi: 10.3389/fevo.2016.00047. DOI

Mombaerts P. Molecular biology of odorant receptors in vertebrates. Annu. Rev. Neurosci. 1999;22:487–509. doi: 10.1146/annurev.neuro.22.1.487. PubMed DOI

Frolíková M., Stopková R., Antalíková J., Johnson P.M., Stopka P., Dvořáková-Hortová K. Role of complement regulatory proteins CD46, CD55 and CD59 in reproduction. Folia Zool. 2012;61:84–94. doi: 10.25225/fozo.v61.i1.a12.2012. DOI

Frolikova M., Sebkova N., Ded L., Dvorakova-Hortova K. Characterization of CD46 and beta1 integrin dynamics during sperm acrosome reaction. Sci. Rep. 2016;6:33714. doi: 10.1038/srep33714. PubMed DOI PMC

Inoue N., Ikawa M., Nakanishi T., Matsumoto M., Nomura M., Seya T., Okabe M. Disruption of mouse CD46 causes an accelerated spontaneous acrosome reaction in sperm. Mol. Cell Biol. 2003;23:2614–2622. doi: 10.1128/MCB.23.7.2614-2622.2003. PubMed DOI PMC

Nakanishi T., Ikawa M., Yamada S., Parvinen M., Baba T., Nishimune Y., Okabe M. Real-time observation of acrosomal dispersal from mouse sperm using GFP as a marker protein. FEBS Lett. 1999;449:277–283. doi: 10.1016/S0014-5793(99)00433-0. PubMed DOI

Fremeau R.T., Jr., Troyer M.D., Pahner I., Nygaard G.O., Tran C.H., Reimer R.J., Bellocchio E.E., Fortin D., Storm-Mathisen J., Edwards R.H. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron. 2001;31:247–260. doi: 10.1016/S0896-6273(01)00344-0. PubMed DOI

Juge N., Gray J.A., Omote H., Miyaji T., Inoue T., Hara C., Uneyama H., Edwards R.H., Nicoll R.A., Moriyama Y. Metabolic control of vesicular glutamate transport and release. Neuron. 2010;68:99–112. doi: 10.1016/j.neuron.2010.09.002. PubMed DOI PMC

Hu J.H., Yang N., Ma Y.H., Jiang J., Zhang J.F., Fei J., Guo L.H. Identification of glutamate receptors and transporters in mouse and human sperm. J. Androl. 2004;25:140–146. doi: 10.1002/j.1939-4640.2004.tb02769.x. PubMed DOI

Zitranski N., Borth H., Ackermann F., Meyer D., Vieweg L., Breit A., Gudermann T., Boekhoff I. The “acrosomal synapse”: Subcellular organization by lipid rafts and scaffolding proteins exhibits high similarities in neurons and mammalian spermatozoa. Commun. Integr. Biol. 2010;3:513–521. doi: 10.4161/cib.3.6.13137. PubMed DOI PMC

Spehr M., Gisselmann G., Poplawski A., Riffell J.A., Wetzel C.H., Zimmer R.K., Hatt H. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science. 2003;299:2054–2058. doi: 10.1126/science.1080376. PubMed DOI

Flegel C., Vogel F., Hofreuter A., Schreiner B.S., Osthold S., Veitinger S., Becker C., Brockmeyer N.H., Muschol M., Wennemuth G., et al. Characterization of the Olfactory Receptors Expressed in Human Spermatozoa. Front. Mol. Biosci. 2015;2:73. doi: 10.3389/fmolb.2015.00073. PubMed DOI PMC

Yoshida M., Yoshida K. Sperm chemotaxis and regulation of flagellar movement by Ca2+ Mol. Hum. Reprod. 2011;17:457–465. doi: 10.1093/molehr/gar041. PubMed DOI

Jozwik M., Jozwik M., Teng C., Battaglia F.C. Amino acid, ammonia and urea concentrations in human pre-ovulatory ovarian follicular fluid. Hum. Reprod. 2006;21:2776–2782. doi: 10.1093/humrep/del038. PubMed DOI

Uhde K., van Tol H.T.A., Stout T.A.E., Roelen B.A.J. Metabolomic profiles of bovine cumulus cells and cumulus-oocyte-complex-conditioned medium during maturation in vitro. Sci. Rep. 2018;8:9477. doi: 10.1038/s41598-018-27829-9. PubMed DOI PMC

Guidobaldi H.A., Hirohashi N., Cubilla M., Buffone M.G., Giojalas L.C. An intact acrosome is required for the chemotactic response to progesterone in mouse spermatozoa. Mol. Reprod. Dev. 2017;84:310–315. doi: 10.1002/mrd.22782. PubMed DOI PMC

Miller M.R., Mannowetz N., Iavarone A.T., Safavi R., Gracheva E.O., Smith J.F., Hill R.Z., Bautista D.M., Kirichok Y., Lishko P.V. Unconventional endocannabinoid signaling governs sperm activation via the sex hormone progesterone. Science. 2016;352:555–559. doi: 10.1126/science.aad6887. PubMed DOI PMC

Sebkova N., Ded L., Vesela K., Dvorakova-Hortova K. Progress of sperm IZUMO1 relocation during spontaneous acrosome reaction. Reproduction. 2014;147:231. doi: 10.1530/REP-13-0193. PubMed DOI

Endo D., Kon S., Sato T., Toyama F., Katsura Y., Nakauchi Y., Takayama-Watanabe E., Watanabe A. NMDA-type glutamate receptors mediate the acrosome reaction and motility initiation in newt sperm. Mol. Reprod. Dev. 2019;86:1106–1115. doi: 10.1002/mrd.23225. PubMed DOI

Storto M., Sallese M., Salvatore L., Poulet R., Condorelli D.F., Dell’Albani P., Marcello M.F., Romeo R., Piomboni P., Barone N., et al. Expression of metabotropic glutamate receptors in the rat and human testis. J. Endocrinol. 2001;170:71–78. doi: 10.1677/joe.0.1700071. PubMed DOI

Chaudhari N., Landin A.M., Roper S.D. A metabotropic glutamate receptor variant functions as a taste receptor. Nat. Neurosci. 2000;3:113–119. doi: 10.1038/72053. PubMed DOI

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...