Species groups can be transferred across different scales
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32313357
PubMed Central
PMC7159123
DOI
10.1111/j.1365-2699.2006.01514.x
PII: JBI1514
Knihovny.cz E-zdroje
- Klíčová slova
- COCKTAIL method, Czech Republic, Ellenberg indicator values, distribution, grid mapping, multivariate analysis, sampling bias, scaling, vascular plants, vegetation,
- Publikační typ
- časopisecké články MeSH
Aim To test whether species groups (i.e. assemblages of species co-occurring in nature) that are statistically derived at one scale (broad, medium, or fine scale) can be transferred to another scale, and to identify the driving forces that determine species groups at the various scales. Location Northern Bohemia (Czech Republic, central Europe) in the Ještědský hřbet mountain range and its neighbourhood. Methods Three data sets were sampled: a floristic data set at the broad scale, another floristic data set at the intermediate scale, and a vegetation data set at the habitat scale. First, in each data set, species groups were produced by the COCKTAIL algorithm, which ensures maximized joint occurrence in the data set using a fidelity coefficient. Corresponding species groups were produced in the individual data sets by employing the same species for starting the algorithm. Second, the species groups formed in one data set, i.e. at a particular scale, were applied crosswise to the other data sets, i.e. to the other scales. Correspondence of a species group formed at a particular scale with a species group at another scale was determined. Third, to highlight the driving factors for the distribution of the plant species groups at each scale, canonical correspondence analysis was carried out. Results Twelve species groups were used to analyse the transferability of the groups across the three scales, but only six of them were found to be common to all scales. Correspondence of species groups derived from the finest scale with those derived at the broadest scale was, on average, higher than in the opposite direction. Forest (tree layer) cover, altitude and bedrock type explained most of the variability in canonical correspondence analysis across all scales. Main conclusions Transferability of species groups distinguished at a fine scale to broader scales is better than it is in the opposite direction. Therefore, a possible application of the results is to use species groups to predict the potential occurrence of missing species in broad-scale floristic surveys from fine-scale vegetation-plot data.
Institute of Botany Academy of Sciences of the Czech Republic Průhonice Czech Republic
Institute of Geobotany and Botanical Garden Martin Luther University Halle Wittenberg Halle Germany
Zobrazit více v PubMed
Berg, C. , Dengler, J. , Abdank, A. & Isermann, M. (2004) Die Pflanzengesellschaften Mecklenburg‐Vorpommerns und ihre Gefährdung – Textband. Weissdorn‐Verlag, Jena.
Blackburn, T. & Gaston, K.J. (2002) Scale in macroecology. Global Ecology and Biogeography, 11, 185–189.
Ter Braak, C.J.F. & Šmilauer, P. (2002) CANOCO reference manual and CanoDraw for Windows. User's guide. Software for canonical community ordination, Ver. 4.5. Microcomputer Power, Ithaca, NY.
Braun‐Blanquet, J. (1921) Prinzipien einer Systematik der Pflanzengesellschaften auf floristischer Grundlage. Jahrbuch der St . Gallen Naturwissenschaftlichen Gesellschaft, 57, 305–351.
Bruelheide, H. (1995) Die Grünlandgesellschaften des Harzes und ihre Standortsbedingungen. Mit einem Beitrag zum Gliederungssystem auf der Basis von statistisch ermittelten Artengruppen. Dissertationes Botanicae, 244, 1–338.
Bruelheide, H. (2000) A new measure of fidelity and its application to defining species groups. Journal of Vegetation Science, 11, 167–178.
Bruelheide, H. & Chytrý, M. (2000) Towards unification of national vegetation classifications: a comparison of two methods for analysis of large datasets. Journal of Vegetation Science, 11, 295–306.
Bruelheide, H. & Jandt, U. (1995) Survey of limestone grasslands by statistically formed groups of differential species. Colloques Phytosociologiques, 23, 319–338.
Chytrý, M. (2001) Phytosociological data give biased estimates of species richness. Journal of Vegetation Science, 12, 439–444.
Chytrý, M. & Rafajová, M. (2003) Czech national phytosociological database: basic statistics of the available vegetation‐plot data. Preslia, 75, 1–15.
Chytrý, M. & Tichý, L. (2003) Diagnostic, constant and dominant species of vegetation classes and alliances of the Czech Republic: a statistical revision. Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis, 108, 1–231.
Chytrý, M. , Grulich, V. , Tichý, L. & Kouřil, M. (1999) Phytogeographical boundary between the Pannonicum and Hercynicum: a multivariate analysis of landscape in the Podyjí/Thayatal National Park, Czech Republic/Austria. Preslia, 71, 23–41.
Chytrý, M. , Kučera, T. & Kočí, M. (2001) Katalog biotopůČeské republiky. Interpretační příručka k evropským programům Natura 2000 a Smaragd. AOPK ČR, Praha.
Chytrý, M. , Exner, A. , Hrivnák, R. , Ujházy, K. , Valachovič, M. & Willner, W. (2002a) Context‐dependence of diagnostic species: a case study of the central European spruce forests. Folia Geobotanica, 37, 403–417.
Chytrý, M. , Tichý, L. , Holt, J. & Botta‐Dukát, Z. (2002b) Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science, 13, 79–90.
Conrad, O. (2002) DiGeM 2.0. Göttingen. http://www.geogr.uni-goettingen.de/pg/saga/digem/ .
Ellenberg, H. , Weber, H.E. , Düll, R. , Wirth, V. & Werner, W. (2001) Zeigerwerte von Pflanzen in Mitteleuropa. 3rd edn. Scripta Geobotanica, 18, 1–262.
ESRI (1999) ArcView GIS. Environmental Systems Research Institute Inc., Redlands.
Ewald, J. (2001) Der Beitrag pflanzensoziologischer Datenbanken zur vegetationsökologischen Forschung. Berichte der Reinhold Tüxen Gesellschaft, 13, 53–69.
Gaston, K.J. (1996) Biodiversity. A biology of numbers and difference. Blackwell Science Ltd, Oxford.
Gaston, K.J. (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford.
Gause, G.F. (1934) The struggle for existence. Williams & Wilkins, Baltimore, MD.
Gurevitch, J. , Scheiner, S.M. & Fox, G.A. (2002) The ecology of plants. Sinauer Associates, Sunderland, MA.
Haeupler, H. & Schönfelder, P. (1989) Atlas der Farn‐ und Blütenpflanzen der Bundesrepublik Deutschland, 2nd edn. Ulmer, Stuttgart.
Hartley, S. & Kunin, W.E. (2003) Scale dependency of rarity, extinction risk, and conservation priority. Conservation Biology, 17, 1559–1570.
Heikkinen, R.K. & Birks, H.J.B. (1996) Spatial and environmental components of variation in the distribution patterns of subarctic plant species at Kevo, N Finland – a case study at the meso‐scale level. Ecography, 19, 341–351.
Heikkinen, R.K. & Neuvonen, S. (1997) Species richness of vascular plants in the subarctic landscape of northern Finland: modelling relationships to environment. Biodiversity and Conservation, 6, 1181–1201.
Heikkinen, R.K. , Birks, H.J.B. & Kalliola, R.J. (1998) A numerical analysis of the mesoscale distribution patterns of vascular plants in the subarctic Kevo Nature Reserve, northern Finland. Journal of Biogeography, 25, 123–146.
Hennekens, S.M. & Schaminée, J.H.J. (2001) TURBOVEG, a comprehensive data base management system for vegetation data. Journal of Vegetation Science, 12, 589–591.
Hennenberg, K.J. & Bruelheide, H. (2003) Ecological investigations on the northern distribution range of Hippocrepis comosa L. in Germany. Plant Ecology, 166, 167–188.
Herben, T. (1987) Dynamika invaze Orthodontium lineare Schwaegr. v Čechách . PhD thesis, Academy of Sciences of the Czech Republic, Průhonice.
Hill, M.O. (1991) Patterns of species distribution in Britain elucidated by canonical correspondence analysis. Journal of Biogeography, 18, 247–255.
Jalas, J. & Suominen, J. (197294) Atlas Florae Europaeae, Vols 1–10. The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo, Helsinki.
Jalas, J. , Suominen, J. & Lampinen, R. (1996) Atlas Florae Europaeae, Vol. 11. The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo, Helsinki.
Jalas, J. , Suominen, J. , Lampinen, R. & Kurtto, A. (1999) Atlas Florae Europaeae, Vol. 12. The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo, Helsinki.
Jandt, U. (1999) Kalkmagerrasen am Südharzrand und im Kyffhäuser. Gliederung im überregionalen Kontext, Verbreitung, Flora und Standortsverhältnisse. Dissertationes Botanicae, 322, 1–246.
Kolbek J., Mladý F. & Petříček V. (eds) (1999) Květena Chráněné krajinné oblasti a Biosférické rezervace Křivoklátsko. 1. Mapy rozšíření cévnatých rostlin. AOPK ČR & Institute of Botany, Praha.
Koleff, P. & Gaston, J.K. (2002) The relationship between local and regional species richness and spatial turnover. Global Ecology and Biogeography, 11, 363–375.
Korvenpää, T. , Von Numers, M. & Hinneri, S. (2003) A mesoscale analysis of floristic patterns in the south‐west Finnish Archipelago. Journal of Biogeography, 30, 1019–1031.
Kuželová, I. & Chytrý, M. (2004) Interspecific associations in phytosociological data sets: how do they change between local and regional scale? Plant Ecology, 173, 247–257.
Kubát K., Hrouda L., Chrtek J.jun., Kaplan Z., Kirschner J. & Štěpánek J. (eds) (2002) Klíč ke květeněČeské republiky. Academia, Praha.
Kunin, W. (1998) Extrapolating species abundance across spatial scales. Science, 281, 1513–1515. PubMed
Kurtto, A. , Lampinen, R. & Junikka, L. (2004) Atlas Florae Europaeae. Distribution of Vascular Plants in Europe, Vol. 13. The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo, Helsinki.
Levin, S. (1992) The problem of pattern and scale in ecology. Ecology, 73, 1943–1967.
Meusel, H. , Jäger, E.J. , Rauschert, S. & Weinert, E. (196592) Vergleichende Chorologie der zentraleuropäischen Flora, Vols 1–3. G. Fischer Verlag, Jena.
Mucina, L. , Schaminée, J. & Rodwell, J.S. (2001) Common data standards for recording relevés in field survey for vegetation classification. Journal of Vegetation Science, 11, 769–772.
Myklestad, A. (1993) The distribution of Salix species in Fennoscandia – a numerical analysis. Ecography, 16, 329–344.
Myklestad, A. & Birks, H.J.B. (1993) A numerical analysis of the distribution patterns of Salix species in Europe. Journal of Biogeography, 20, 1–32.
Pearson, R.G. & Dawson, T.P. (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361–371.
Pedersen, B. (1990) Distributional patterns of vascular plants in Fennoscandia: a numerical approach. Nordic Journal of Botany, 10, 163–189.
Pflume, S. (1999) Laubwaldgesellschaften im Harz. Gliederung, Ökologie, Verbreitung. Archiv naturwissenschaftlicher Dissertationen, 9, 1–238. Galuuder‐Verlag, Wiehl.
Preston, C.D. , Pearman, D.A. & Dines, T.D. (2002) New atlas of the British and Irish Flora. An atlas of the vascular plants of Britain, Ireland, the Isle of Man and the Channel Islands. Oxford University Press, Oxford.
Schaminée, J.H.J. & Hennekens, S.M. (2001) TURBOVEG, MEGATAB und SYNBIOSYS: neue Entwicklungen in der Pflanzensoziologie. Berichte der Reinhold Tüxen Gesellschaft, 13, 21–34.
Scheller, H. (1989) Flora von Coburg. Die Farn‐ und Blütenpflanzen des Coburger Landes. Natur‐Museum Coburg, Coburg.
Sokal, R.R. & Rohlf, F.J. (1995) Biometry, 3rd edn. Freeman, New York.
Storch, D. , Konvička, M. , Beneš, J. , Martínková, J. & Gaston, K.J. (2003) Distribution patterns in butterflies and birds of the Czech Republic: separating effects of habitat and geographical position. Journal of Biogeography, 30, 1195–1205.
Täuber, T. (2000) Zwergbinsen‐Gesellschaften (Isoëto‐Nanojuncetea) in Niedersachsen – Verbreitung, Gliederung, Dynamik, Keimungsbedingungen der Arten und Schutzkonzepte. Cuvilier, Göttingen.
Tichý, L. (2002) JUICE, software for vegetation classification. Journal of Vegetation Science, 13, 451–453.
Titeux, N. , Dufrêne, M. , Jacob, J.P. , Paquay, M. & Defourny, P. (2004) Multivariate analysis of a fine‐scale breeding bird atlas using a geographical information system and partial canonical correspondence analysis: environmental and spatial effects. Journal of Biogeography, 31, 1841–1856.
Wiens, J. (1989) Spatial scaling in ecology. Functional Ecology, 3, 385–397.
Wilson, R.J. , Thomas, C.D. , Fox, R. , Roy, D.B. & Kunin, W. (2004) Spatial patterns in species distributions reveal biodiversity change. Nature, 432, 393–396. PubMed
Zając, A. & Zając, M. (2001) Atlas rozmieszczenia roślin naczyniowych w Polsce. Instytut Botaniki Uniwersytetu Jagiellońskiego, Kraków.