Immunomodulation of Avian Dendritic Cells under the Induction of Prebiotics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
AF-IGA2020-IP040
Mendelova Univerzita v Brně
PubMed
32316442
PubMed Central
PMC7222706
DOI
10.3390/ani10040698
PII: ani10040698
Knihovny.cz E-zdroje
- Klíčová slova
- antigen-presenting cell, avian dendritic cells, chicken, pattern recognition receptors, prebiotic,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Although the immunomodulatory properties of prebiotics were demonstrated many years ago in poultry, not all mechanisms of action are yet clear. Dendritic cells (DCs) are the main antigen-presenting cells orchestrating the immune response in the chicken gastrointestinal tract, and they are the first line of defense in the immune response. Despite the crucial role of DCs in prebiotic immunomodulatory properties, information is lacking about interaction between prebiotics and DCs in an avian model. Mannan-oligosaccharides, β-glucans, fructooligosaccharides, and chitosan-oligosaccharides are the main groups of prebiotics having immunomodulatory properties. Because pathogen-associated molecular patterns on these prebiotics are recognized by many receptors of DCs, prebiotics can mimic activation of DCs by pathogens. Short-chain fatty acids are products of prebiotic fermentation by microbiota, and their anti-inflammatory properties have also been demonstrated in DCs. This review summarizes current knowledge about avian DCs in the gastrointestinal tract, and for the first-time, their role in the immunomodulatory properties of prebiotics within an avian model.
Zobrazit více v PubMed
Gibson G.R., Roberfroid M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995;125:1401–1412. doi: 10.1093/jn/125.6.1401. PubMed DOI
Chacher M.F.A., Kamran Z., Ahsan U., Ahmad S., Koutoulis K.C., Qutab U., Din H.G., Cengiz Ö. Use of mannan oligosaccharide in broiler diets: An overview of underlying mechanisms. Worlds Poult. Sci. J. 2017;73:831–844. doi: 10.1017/S0043933917000757. DOI
Teng P.Y., Kim W.K. Review: Roles of prebiotics in intestinal ecosystem of broilers. Front. Vet. Sci. 2018;5 doi: 10.3389/fvets.2018.00245. PubMed DOI PMC
Nagy N., Bodi I., Olah I. Avian dendritic cells: Phenotype and ontogeny in lymphoid organs. Dev. Comp. Immunol. 2016;58:47–59. doi: 10.1016/j.dci.2015.12.020. PubMed DOI
Del Cacho E., Gallego M., Lillehoj H.S., López-Bernard F., Sánchez-Acedo C. Avian follicular and interdigitating dendritic cells: Isolation and morphologic, phenotypic, and functional analyses. Vet. Immunol. Immunopathol. 2009;129:66–75. doi: 10.1016/j.vetimm.2008.12.015. PubMed DOI
Wu Z., Kaiser P. Antigen presenting cells in a non-mammalian model system, the chicken. Immunobiology. 2011;216:1177–1183. doi: 10.1016/j.imbio.2011.05.012. PubMed DOI
Beal R.K., Powers C., Davison T.F., Barrow P.A., Smith A.L. Clearance of Enteric Salmonella enterica serovar Typhimurium in chickens is independent of B-cell function. Infect. Immun. 2006;74:1442–1444. doi: 10.1128/IAI.74.2.1442-1444.2006. PubMed DOI PMC
De Geus E.D., Vervelde L. Regulation of macrophage and dendritic cell function by pathogens and through immunomodulation in the avian mucosa. Dev. Comp. Immunol. 2013;41:341–351. doi: 10.1016/j.dci.2013.03.008. PubMed DOI
Kaufman J. Antigen processing and presentation: Evolution from a bird’s eye view. Mol. Immunol. 2013;55:159–161. doi: 10.1016/j.molimm.2012.10.030. PubMed DOI PMC
Amigorena S., Savina A. Intracellular mechanisms of antigen cross presentation in dendritic cells. Curr. Opin. Immunol. 2010;22:109–117. doi: 10.1016/j.coi.2010.01.022. PubMed DOI
Delamarre L., Pack M., Chang H., Mellman I., Trombetta E.S. differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science. 2005;307:1630–1634. doi: 10.1126/science.1108003. PubMed DOI
De Geus E.D., Jansen C.A., Vervelde L. Uptake of particulate antigens in a nonmammalian lung: Phenotypic and functional characterization of avian respiratory phagocytes using bacterial or viral antigens. J. Immunol. 2012;188:4516–4526. doi: 10.4049/jimmunol.1200092. PubMed DOI
Mast J., Goddeeris B., Peeters K., Vandesande F., Berghman L. Characterisation of chicken monocytes, macrophages and interdigitating cells by the monoclonal antibody KUL01. Vet. Immunol. Immunopathol. 1998;61:343–357. doi: 10.1016/S0165-2427(97)00152-9. PubMed DOI
Olah I., Glick B. Secretory cell in the medulla of the bursa of Fabricius. Experientia. 1978;34:1642–1643. doi: 10.1007/BF02034727. PubMed DOI
Olah I., Glick B. Structure of the germinal centers in the chicken caecal tonsil: Light and electron microscopic and autoradiographic studies. Poult. Sci. 1979;58:195–210. doi: 10.3382/ps.0580195. PubMed DOI
Gomez Perdiguero E., Klapproth K., Schulz C., Busch K., Azzoni E., Crozet L., Garner H., Troillet C., de Bruin M.F., Geissmann F.F., et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518:547–551. doi: 10.1038/nature13989. PubMed DOI PMC
Merad M., Sathe P., Helft J., Mille J., Mortha A. The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 2013;31:563–604. doi: 10.1146/annurev-immunol-020711-074950. PubMed DOI PMC
Liu Y.-J. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell. 2001;106:259–262. doi: 10.1016/S0092-8674(01)00456-1. PubMed DOI
Yasmin A.R., Yeap S.K., Tan S.W., Hair-Bejo M., Fakurazi S., Kaiser P., Omar A.R. In vitro characterization of chicken bone marrow-derived dendritic cells following infection with very virulent infectious bursal disease virus. Avian Pathol. 2015;44:452–462. doi: 10.1080/03079457.2015.1084997. PubMed DOI
Yasmin A.R., Yeap S.K., Hair-Bejo M., Omar A.R. Characterization of chicken splenic-derived dendritic cells following vaccine and very virulent strains of infectious bursal disease virus infection. Avian Dis. 2016;60:739–751. doi: 10.1637/11275-091315-Reg.1. PubMed DOI
Xiang B., Zhu W., Li Y., Gao P., Liang J., Liu D., Ding C., Liao M., Kang Y.F., Ren T. Immune responses of mature chicken bone-marrow-derived dendritic cells infected with Newcastle disease virus strains with differing pathogenicity. Arch. Virol. 2018;163:1407–1417. doi: 10.1007/s00705-018-3745-6. PubMed DOI
Jáuregui-Zúñiga D., Pedraza-Escalona M., Espino-Solís G.P., Quintero-Hernández V., Olvera-Rodríguez A., Díaz-Salinas M.A., López M.A., Possani L.D. Targeting antigens to Dec-205 on dendritic cells induces a higher immune response in chickens: Hemagglutinin of avian influenza virus example. Res. Vet. Sci. 2017;111:55–62. doi: 10.1016/j.rvsc.2016.12.002. PubMed DOI
Kamble N.M., Jawale C.V., Lee J.H. Interaction of a live attenuated Salmonella Gallinarum vaccine candidate with chicken bone marrow-derived dendritic cells. Avian Pathol. 2016;45:235–243. doi: 10.1080/03079457.2016.1144919. PubMed DOI
Kamble N.M., Jawale C.V., Lee J.H. Activation of chicken bone marrow-derived dendritic cells induced by a Salmonella Enteritidis ghost vaccine candidate. Poult. Sci. 2016;95:2274–2280. doi: 10.3382/ps/pew158. PubMed DOI
Garceau V., Smith J., Paton I.R., Davey M., Fares M.A., Sester D.P., Burt D.W., Hume D.A. Pivotal advance: Avian colony-stimulating factor 1 (CSF-1), interleukin-34 (IL-34), and CSF-1receptor genes and gene products. J. Leukoc. Biol. 2010;87:753–764. doi: 10.1189/jlb.0909624. PubMed DOI
Garcia-Morales C., Rothwell L., Moffat L., Garceau V., Balic A., Sang H.M., Kaiser P., Hume D.A. Production and characterisation of a monoclonal antibody that recognises the chicken CSF1 receptor and confirms that expression is restricted to macrophage-lineage cells. Dev. Comp. Immunol. 2014;42:278–285. doi: 10.1016/j.dci.2013.09.011. PubMed DOI
Wu Z., Rothwell L., Young J.R., Kaufman J., Butter C., Kaiser P. Generation and characterization of chicken bone marrow-derived dendritic cells. Immunology. 2010;129:133–145. doi: 10.1111/j.1365-2567.2009.03129.x. PubMed DOI PMC
Wu Z., Hu T., Kaiser P. Chicken CCR6 and CCR7 are markers for immature and mature dendritic cells respectively. Dev. Comp. Immunol. 2011;35:563–567. doi: 10.1016/j.dci.2010.12.015. PubMed DOI
Lee S.H., Lillehoj H.S., Jang S.I., Lee K.W., Baldwin C., Tompkins D., Wagner B., Del Cacho E., Lillehoj E.P., Hong Y.H. Development and characterization of mouse monoclonal antibodies reactive with chicken CD83. Vet. Immunol. Immunopathol. 2012;145:527–533. doi: 10.1016/j.vetimm.2011.11.020. PubMed DOI
Staines K., Young J.R., Butter C. Expression of chicken DEC205 reflects the unique structure and function of the avian immune system. PLoS ONE. 2013;8:e51799. doi: 10.1371/journal.pone.0051799. PubMed DOI PMC
Kalaiyarasu S., Bhatia S., Mishra N., Sood R., Kumar M., Senthil Kumar D., Bhat S., Dass Prakash M. Elevated level of pro inflammatory cytokine and chemokine expression in chicken bone marrow and monocyte derived dendritic cells following LPS induced maturation. Cytokine. 2016;85:140–147. doi: 10.1016/j.cyto.2016.06.022. PubMed DOI
Yegani M., Korver D.R. Factors affecting intestinal health in poultry. Poult. Sci. 2008;87:2052–2063. doi: 10.3382/ps.2008-00091. PubMed DOI PMC
Nagy N., Igyarto B., Magyar A., Gazdag E., Palya V., Olah I. Oesophageal tonsil of the chicken. Acta Vet. Hung. 2005;53:173–188. doi: 10.1556/AVet.53.2005.2.3. PubMed DOI
Nagy N., Olah I. Pyloric tonsil as a novel gut-associated lymphoepithelial organ of the chicken. J. Anat. 2007;211:407–411. doi: 10.1111/j.1469-7580.2007.00766.x. PubMed DOI PMC
Gallego M., Cacho E.D., Bascuas J.A. Antigen-binding cells in the cecal tonsil and Peyer’s patches of the chicken after bovine serum albumin administration. Poult. Sci. 1995;74:472–479. doi: 10.3382/ps.0740472. PubMed DOI
Igyarto B.-Z., Magyar A., Olah I. Origin of follicular dendritic cell in the chicken spleen. Cell Tissue Res. 2007;327:83–92. doi: 10.1007/s00441-006-0250-0. PubMed DOI
Olah I., Igyarto B., Magyar A. In chicken spleen the ellipsoid-associated cells are precursors of follicular dendritic cells. FASEB J. 2006;20:876.
Zhang Q., Chen B., Yang P., Zhang L., Liu Y., Ullah S., Wu L., Waqas Y., Le Y., Chen Q. Identification and structural composition of the blood–spleen barrier in chickens. Vet. J. 2015;204 doi: 10.1016/j.tvjl.2015.01.013. PubMed DOI
Gallego M., Del Cacho E., Lopez-Bernad F., Bascuas J.A. Identification of avian dendritic cells in the spleen using a monoclonal antibody specific for chicken follicular dendritic cells. Anat. Rec. 1997;249:81–85. doi: 10.1002/(SICI)1097-0185(199709)249:1<81::AID-AR10>3.0.CO;2-X. PubMed DOI
Kannaki T.R., Reddy M.R., Shanmugam M., Verma P.C., Sharma R.P. Chicken toll-like receptors and their role in immunity. Worlds Poult. Sci. J. 2010;66:727–738. doi: 10.1017/S0043933910000693. DOI
Liang J., Fu J., Kang H., Lin J., Yu Q., Yang Q. The stimulatory effect of TLRs ligands on maturation of chicken bone marrow-derived dendritic cells. Vet. Immunol. Immunopathol. 2013;155:205–210. doi: 10.1016/j.vetimm.2013.06.014. PubMed DOI
Abasht B., Kaiser M.G., Lamont S.J. Toll-like receptor gene expression in cecum and spleen of advanced intercross line chicks infected with Salmonella enterica serovar Enteritidis. Vet. Immunol. Immunopathol. 2008;123:314–323. doi: 10.1016/j.vetimm.2008.02.010. PubMed DOI
Poltorak A., He X., Smirnova I., Liu M.Y., Huffel C.V., Du X., Birdwell D., Alejos E., Silva M., Galanos C., et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science. 1998;282:2085–2088. doi: 10.1126/science.282.5396.2085. PubMed DOI
Zanoni I., Ostuni R., Marek L.R., Barresi S., Barbalat R., Barton G.M., Granucci F., Kagan J.C. CD14 controls the LPS-induced endocytosis of toll-like receptor 4. Cell. 2011;147:868–880. doi: 10.1016/j.cell.2011.09.051. PubMed DOI PMC
Fukui A., Inoue N., Matsumoto M., Nomura M., Yamada K., Matsuda Y., Toyoshima K., Seya T. Molecular cloning and functional characterization of chicken toll-like receptors. J. Biol. Chem. 2001;276:47143–47149. doi: 10.1074/jbc.M103902200. PubMed DOI
Hayashi F., Smith K.D., Ozinsky A., Hawn T.R., Yi E.C., Goodlett D.R., Eng J.K., Akira S., Underhill D.M., Aderem A. The innate immune response to bacterial flagellin is mediated by toll-like receptor 5. Nature. 2001;410:1099–1103. doi: 10.1038/35074106. PubMed DOI
Kumar H., Kawai T., Akira S. Toll-like receptors and innate immunity. Biochem. Biophys. Res. Commun. 2009;388:621–625. doi: 10.1016/j.bbrc.2009.08.062. PubMed DOI
De Zoete M.R., Bouwman L.I., Keestra A.M., van Putten J.P.M. Cleavage and activation of a Toll-like receptor by microbial proteases. Proc. Natl. Acad. Sci. USA. 2011;108:4968–4973. doi: 10.1073/pnas.1018135108. PubMed DOI PMC
Keestra A.M., de Zoete M.R., Bouwman L.I., Vaezirad M.M., van Putten J.P.M. Unique features of chicken Toll-like receptors. Dev. Comp. Immunol. 2013;41:316–323. doi: 10.1016/j.dci.2013.04.009. PubMed DOI
Lin J., Kang H., Liang J., Fu J., Yu Q., Yang Q. CpG oligonucleotides and Astragalus polysaccharides are effective adjuvants in cultures of avian bone-marrow-derived dendritic cells. Br. Poult. Sci. 2015;56:30–38. doi: 10.1080/00071668.2014.981146. PubMed DOI
Taghavi A., Allan B., Mutwiri G., Van Kessel A., Willson P., Babiuk L., Potter A., Gomis S. Protection of neonatal broiler chicks against Salmonella Typhimurium septicemia by DNA containing CpG motifs. Avian Dis. 2008;52:398–406. doi: 10.1637/8196-121907-Reg. PubMed DOI
Dalloul R.A., Lillehoj H.S., Klinman D.M., Ding X., Min W., Heckert R.A., Lillehoj E.P. In ovo administration of CpG oligodeoxynucleotides and the recombinant microneme protein MIC2 protects against Eimeria infections. Vaccine. 2005;23:3108–3113. doi: 10.1016/j.vaccine.2005.01.073. PubMed DOI
Singh S.M., Alkie T.N., Hodgins D.C., Nagy É., Shojadoost B., Sharif S. Systemic immune responses to an inactivated, whole H9N2 avian influenza virus vaccine using class B CpG oligonucleotides in chickens. Vaccine. 2015;33:3947–3952. doi: 10.1016/j.vaccine.2015.06.043. PubMed DOI
Parvizi P., Abdul-Careem M.F., Mallick A.I., Haq K., Haghighi H.R., Orouji S., Heidari M., Behboudi S., Sharif S. The effects of administration of ligands for toll-like receptor 4 and 21 against Marek’s disease in chickens. Vaccine. 2014;32:1932–1938. doi: 10.1016/j.vaccine.2014.01.082. PubMed DOI
Barjesteh N., Brisbin J.T., Behboudi S., Nagy É., Sharif S. Induction of antiviral responses against avian influenza virus in embryonated chicken eggs with toll-like receptor ligands. Viral Immunol. 2015;28:192–200. doi: 10.1089/vim.2014.0145. PubMed DOI
St Paul M., Paolucci S., Sharif S. Treatment with ligands for toll-like receptors 2 and 5 induces a mixed T-helper 1- and 2-like response in chicken splenocytes. J. Interferon Cytokine Res. 2012;32:592–598. doi: 10.1089/jir.2012.0004. PubMed DOI
Barjesteh N., Behboudi S., Brisbin J.T., Villanueva A.I., Nagy É., Sharif S. tlr ligands induce antiviral responses in chicken macrophages. PLoS ONE. 2014;9:e105713. doi: 10.1371/journal.pone.0105713. PubMed DOI PMC
Bashir K., Kappala D., Singh Y., Dar J.A., Mariappan A.K., Kumar A., Krishnaswamy N., Dey S., Chellappa M.M., Goswami T.K., et al. Combination of TLR2 and TLR3 agonists derepress infectious bursal disease virus vaccine-induced immunosuppression in the chicken. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-44578-5. PubMed DOI PMC
He H., Genovese K.J., Swaggerty C.L., MacKinnon K.M., Kogut M.H. Co-stimulation with TLR3 and TLR21 ligands synergistically up-regulates Th1-cytokine IFN-γ and regulatory cytokine IL-10 expression in chicken monocytes. Dev. Comp. Immunol. 2012;36:756–760. doi: 10.1016/j.dci.2011.11.006. PubMed DOI
Kim S., Kaiser P., Borowska D., Vervelde L. Synergistic effect of co-stimulation of membrane and endosomal TLRs on chicken innate immune responses. Vet. Immunol. Immunopathol. 2018;199:15–21. doi: 10.1016/j.vetimm.2018.03.005. PubMed DOI
Laursen S.B., Hedemand J.E., Nielsen O.L., Thiel S., Koch C., Jensenius J.C. Serum levels, ontogeny and heritability of chicken mannan-binding lectin (MBL) Immunology. 1998;94:587–593. doi: 10.1046/j.1365-2567.1998.00555.x. PubMed DOI PMC
Laursen S.B., Dalgaard T.S., Thiel S., Lim B.L., Jensen T.V., Juul-Madsen H.R., Takahashi A., Hamana T., Kawakami M., Jensenius J.C. Cloning and sequencing of a cDNA encoding chicken mannan-binding lectin (MBL) and comparison with mammalian analogues. Immunology. 1998;93:421–430. doi: 10.1046/j.1365-2567.1998.00446.x. PubMed DOI PMC
Hogenkamp A., van Eijk M., van Dijk A., van Asten A.J., Veldhuizen E.J., Haagsman H.P. Characterization and expression sites of newly identified chicken collectins. Mol. Immunol. 2006;43:1604–1616. doi: 10.1016/j.molimm.2005.09.015. PubMed DOI
Hogenkamp A., Isohadouten N., Reemers S.S.N., Romijn R.A., Hemrika W., White M.R., Tefsen B., Vervelde L., Van Eijk M., Veldhuizen L.J., et al. Chicken lung lectin is a functional C-type lectin and inhibits haemagglutination by influenza A virus. Vet. Microbiol. 2008;130:37–46. doi: 10.1016/j.vetmic.2007.12.008. PubMed DOI
Dudziak D., Kamphorst A.O., Heidkamp G.F., Buchholz V.R., Trumpfheller C., Yamazaki S., Cheong C., Liu K., Lee H.W., Park C.G., et al. Differential antigen processing by dendritic cell subsets in vivo. Science. 2007;315:107–111. doi: 10.1126/science.1136080. PubMed DOI
Mahnke K., Guo M., Lee S., Sepulveda H., Swain S.L., Nussenzweig M., Steinman R.M. The dendritic cell receptor for endocytosis, Dec-205, can recycle and enhance antigen presentation via major histocompatibility complex class ii–positive lysosomal compartments. J. Cell Biol. 2000;151:673–684. doi: 10.1083/jcb.151.3.673. PubMed DOI PMC
Sallusto F., Cella M., Danieli C., Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: Downregulation by cytokines and bacterial products. J. Exp. Med. 1995;182:389–400. doi: 10.1084/jem.182.2.389. PubMed DOI PMC
Gazi U., Martinez-Pomares L. Influence of the mannose receptor in host immune responses. Immunobiology. 2009;214:554–561. doi: 10.1016/j.imbio.2008.11.004. PubMed DOI
Burgdorf S., Lukacs-Kornek V., Kurts C. The mannose receptor mediates uptake of soluble but not of cell-associated antigen for cross-presentation. J. Immunol. 2006;176:6770–6776. doi: 10.4049/jimmunol.176.11.6770. PubMed DOI
Burgdorf S., Schölz C., Kautz A., Tampé R., Kurts C. Spatial and mechanistic separation of cross-presentation and endogenous antigen presentation. Nat. Immunol. 2008;9:558–566. doi: 10.1038/ni.1601. PubMed DOI
Girardin S.E., Boneca I.G., Carneiro L.A., Antignac A., Jehanno M., Viala J., Tedin K., Taha M.K., Labigne A., Zahringer U., et al. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science. 2003;300:1584–1587. doi: 10.1126/science.1084677. PubMed DOI
Girardin S.E., Boneca I.G., Viala J., Chamaillard M., Labigne A., Thomas G., Philpott D.J., Sansonetti P.J. Nod2 Is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 2003;278:8869–8872. doi: 10.1074/jbc.C200651200. PubMed DOI
Fritz J.H., Ferrero R.L., Philpott D.J., Girardin S.E. Nod-like proteins in immunity, inflammation and disease. Nat. Immunol. 2006;7:1250–1257. doi: 10.1038/ni1412. PubMed DOI
Lian L., Ciraci C., Chang G., Hu J., Lamont S.J. NLRC5 knockdown in chicken macrophages alters response to LPS and poly (I:C) stimulation. BMC Vet. Res. 2012;8:23. doi: 10.1186/1746-6148-8-23. PubMed DOI PMC
Benko S., Magalhaes J.G., Philpott D.J., Girardin S.E. NLRC5 limits the activation of inflammatory pathways. J. Immunol. 2010;185:1681–1691. doi: 10.4049/jimmunol.0903900. PubMed DOI
Qiu L.L., Xu L., Guo X.M., Li Z.T., Wan F., Liu X., Chen G.H., Chang G.B. Gene expression changes in chicken NLRC5 signal pathway associated with in vitro avian leukosis virus subgroup J infection. Genet. Mol. Res. 2016;15 doi: 10.4238/gmr.15017640. PubMed DOI
Yoneyama M., Fujita T. Function of RIG-I-like receptors in antiviral innate immunity. J. Biol. Chem. 2007;282:15315–15318. doi: 10.1074/jbc.R700007200. PubMed DOI
Kawai T., Takahashi K., Sato S., Coban C., Kumar H., Kato H., Ishii K.J., Takeuchi O., Akira S. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 2005;6:981–988. doi: 10.1038/ni1243. PubMed DOI
Deng J., Chen Y., Liu G., Ren J., Go C., Ivanciuc T., Deepthi K., Casola A., Garofalo R.P., Bao X. Mitochondrial antiviral-signalling protein plays an essential role in host immunity against human metapneumovirus. J. Gen. Virol. 2015;96:2104–2113. doi: 10.1099/vir.0.000178. PubMed DOI PMC
Barber M.R.W., Aldridge J.R., Webster R.G., Magor K.E. Association of RIG-I with innate immunity of ducks to influenza. Proc. Natl. Acad. Sci. USA. 2010;107:5913–5918. doi: 10.1073/pnas.1001755107. PubMed DOI PMC
Sun Y., Ding N., Ding S.S., Yu S., Meng C., Chen H., Qiu X., Zhang S., Yu Y., Zhan Y., et al. Goose RIG-I functions in innate immunity against Newcastle disease virus infections. Mol. Immunol. 2013;53:321–327. doi: 10.1016/j.molimm.2012.08.022. PubMed DOI
Cheng Y., Huang Q., Ji W., Du B., Fu Q., An H., Li J., Wang H., Yan Y., Ding C., et al. Muscovy duck retinoic acid-induced gene I (MdRIG-I) functions in innate immunity against H9N2 avian influenza viruses (AIV) infections. Vet. Immunol. Immunopathol. 2015;163:183–193. doi: 10.1016/j.vetimm.2014.12.009. PubMed DOI
Cornelissen J.B., Post J., Peeters B., Vervelde L., Rebel J.M. Differential innate responses of chickens and ducks to low-pathogenic avian influenza. Avian Pathol. 2012;41:519–529. doi: 10.1080/03079457.2012.732691. PubMed DOI
Karpala A.J., Bingham J., Schat K.A., Chen L.M., Donis R.O., Lowenthal J.W., Bean A.G.D. Highly pathogenic (H5N1) avian influenza induces an inflammatory T helper type 1 cytokine response in the chicken. J. Interferon Cytokine Res. 2011;31:393–400. doi: 10.1089/jir.2010.0069. PubMed DOI
Liniger M., Summerfield A., Zimmer G., McCullough K.C., Ruggli N. Chicken cells sense influenza A virus infection through MDA5 and CARDIF signaling involving LGP2. J. Virol. 2012;86:705–717. doi: 10.1128/JVI.00742-11. PubMed DOI PMC
Evseev D., Magor K. Innate immune responses to avian influenza viruses in ducks and chickens. Vet. Sci. 2019;6:5. doi: 10.3390/vetsci6010005. PubMed DOI PMC
Yitbarek A., Echeverry H., Brady J., Hernandez-Doria J., Camelo-Jaimes G., Sharif S., Guenter W., House J.D., Rodriguez-Lecompte J.C. Innate immune response to yeast-derived carbohydrates in broiler chickens fed organic diets and challenged with Clostridium perfringens. Poult. Sci. 2012;91:1105–1112. doi: 10.3382/ps.2011-02109. PubMed DOI
Alizadeh M., Rogiewicz A., McMillan E., Rodriguez-Lecompte J.C., Patterson R., Slominski B.A. Effect of yeast-derived products and distillers dried grains with solubles (DDGS) on growth performance and local innate immune response of broiler chickens challenged with Clostridium perfringens. Avian Pathol. 2016;45:334–345. doi: 10.1080/03079457.2016.1155693. PubMed DOI
Cheled-Shoval S.L., Amit-Romach E., Barbakov M., Uni Z. The effect of in ovo administration of mannan oligosaccharide on small intestine development during the pre- and posthatch periods in chickens. Poult. Sci. 2011;90:2301–2310. doi: 10.3382/ps.2011-01488. PubMed DOI
Shimazu R., Akashi S., Ogata H., Nagai Y., Fukudome K., Miyake K., Kimoto M. MD-2, a molecule that confers lipopolysaccharide responsiveness on toll-like receptor 4. J. Exp. Med. 1999;189:1777–1782. doi: 10.1084/jem.189.11.1777. PubMed DOI PMC
Higuchi M., Matsuo A., Shingai M., Shida K., Ishii A., Funami K., Suzuki Y., Oshiumi H., Matsumoto M., Seya T. Combinational recognition of bacterial lipoproteins and peptidoglycan by chicken Toll-like receptor 2 subfamily. Dev. Comp. Immunol. 2008;32:147–155. doi: 10.1016/j.dci.2007.05.003. PubMed DOI
Netea M.G. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J. Clin. Investig. 2006;116:1642–1650. doi: 10.1172/JCI27114. PubMed DOI PMC
Cambi A., Netea M.G., Mora-Montes H.M., Gow N., Hato S.V., Lowman D.W., Kullberg B.J., Torensma R., Williams D.L., Figdor C.G. Dendritic cell interaction with Candida albicans critically depends on N-linked mannan. J. Biol. Chem. 2008;283:20590–20599. doi: 10.1074/jbc.M709334200. PubMed DOI PMC
Lu Y., Sarson A.J., Gong J., Zhou H., Zhu W., Kang Z., Sharif S., Han Y. Expression profiles of genes in Toll-like receptor-mediated signaling of broilers infected with Clostridium perfringens. Clin. Vaccine Immunol. 2009;16:1639–1647. doi: 10.1128/CVI.00254-09. PubMed DOI PMC
Sato M., Sano H., Iwaki D., Kudo K., Konishi M., Takahashi H., Imaizumi H., Asai Y., Kuroki Y. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-κB activation and TNF-α secretion are down-regulated by lung collectin surfactant protein A. J. Immunol. 2003;171:417–425. doi: 10.4049/jimmunol.171.1.417. PubMed DOI
Macatonia S.E., Hosken N.A., Litton M., Vieira P., Hsieh C.S., Culpepper J.A., Wysocka M., Trinchieri G., Murphy K.M., O’Garra A. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J. Immunol. 1995;154:5071–5079. PubMed
Hirata N., Yanagawa Y., Satoh M., Ogura H., Ebihara T., Noguchi M., Matsumoto M., Togashi H., Seya T., Onoe K., et al. Dendritic cell-derived TNF-α is responsible for development of IL-10-producing CD4+ T cells. Cell Immunol. 2010;261:37–41. doi: 10.1016/j.cellimm.2009.10.009. PubMed DOI
Rajput I.R., Hussain A., Li Y.L., Zhang X., Xu X., Long M.Y., You D.Y., Li W.F. Saccharomyces boulardii and Bacillus subtilis B10 modulate TLRs mediated signaling to induce immunity by chicken BMDCs. J. Cell Biochem. 2014;115:189–198. doi: 10.1002/jcb.24650. PubMed DOI
Jin Y., Wi H.J., Choi M.H., Hong S.T., Bae Y.M. Regulation of anti-inflammatory cytokines IL-10 and TGF-β in mouse dendritic cells through treatment with Clonorchis sinensis crude antigen. Exp. Mol. Med. 2014;46:e74. doi: 10.1038/emm.2013.144. PubMed DOI PMC
Gutiérrez-Martínez E. Cross-presentation of cell-associated antigens by MHC class I in dendritic cell subsets. Front. Immunol. 2015;6 doi: 10.3389/fimmu.2015.00363. PubMed DOI PMC
Tohid T., Hasan G., Alireza T. Efficacy of mannanoligosaccharides and humate on immune response to avian influenza (H9) disease vaccination in broiler chickens. Vet. Res. Commun. 2010;34:709–717. doi: 10.1007/s11259-010-9444-8. PubMed DOI
McDole J.R., Wheeler L.W., McDonald K.G., Wang B., Konjufca V., Knoop K.A., Newberry R.D., Miller M.J. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature. 2012;483:345–349. doi: 10.1038/nature10863. PubMed DOI PMC
Peralta M.F., Magnoli A., Alustiza F., Nilson A., Miazzo R., Vivas A. Gut-associated lymphoid tissue: A key tissue inside the mucosal immune system of hens immunized with Escherichia coli F4. Front. Immunol. 2017;8 doi: 10.3389/fimmu.2017.00568. PubMed DOI PMC
Sun Q., Zhao L., Song Q., Wang Z., Qiu X., Zhang W., Zhao M., Zhao G., Liu W., Liu H., et al. Hybrid- and complex-type N-glycans are not essential for Newcastle disease virus infection and fusion of host cells. Glycobiology. 2011;22:369–378. doi: 10.1093/glycob/cwr146. PubMed DOI PMC
Salehimanesh A., Mohammadi M., Roostaei-Ali Mehr M. Effect of dietary probiotic, prebiotic and synbiotic supplementation on performance, immune responses, intestinal morphology and bacterial populations in broilers. J. Anim. Physiol. Anim. Nutr. 2016;100:694–700. doi: 10.1111/jpn.12431. PubMed DOI
Tokic V., Lazarevic M., Sinovec Z., Baltic M.A., Jokic Z. The influence of different feed additives to performances and immune response in broiler chicken. Acta. Vet. 2007;57:217–229. doi: 10.2298/avb0703217t. DOI
Oliveira M.C., Figueiredo-Lima D.F., Faria Filho D.E., Marques R.H., Moraes V.M.B. Effect of mannanoligosaccharides and/or enzymes on antibody titers against infectious bursal and Newcastle disease viruses. Arq. Bras. Med. Vet. Zootec. 2009;61:6–11. doi: 10.1590/S0102-09352009000100002. DOI
Gomez-Verduzco G., Cortes-Cuevas A., Lopez-Coello C., Avila-Gonzalez E., Nava G.M. Dietary supplementation of mannan-oligosaccharide enhances neonatal immune responses in chickens during natural exposure to Eimeria spp. Acta Vet. Scand. 2009;51:11. doi: 10.1186/1751-0147-51-11. PubMed DOI PMC
Anwar M.I., Muhammad F., Awais M.M., Akhtar M. A review of β-glucans as a growth promoter and antibiotic alternative against enteric pathogens in poultry. Worlds Poult. Sci. J. 2017;73:651–661. doi: 10.1017/S0043933917000241. DOI
Jacob J.P., Pescatore A.J. Barley β-glucan in poultry diets. Ann. Transl. Med. 2014;2:20. doi: 10.3978/j.issn.2305-5839.2014.01.02. PubMed DOI PMC
Tada R., Adachi Y., Ishibashi K., Tsubaki K., Ohno N. Binding capacity of a barley β-d-glucan to the β-glucan recognition molecule dectin-1. J. Agric. Food Chem. 2008;56:1442–1450. doi: 10.1021/jf073221y. PubMed DOI
Tada R., Ikeda F., Aoki K., Yoshikawa M., Kato Y., Adachi Y., Tanioka A., Ishibashi K., Tsubaki K., Ohno N. Barley-derived β-d-glucan induces immunostimulation via a dectin-1-mediated pathway. Immunol. Lett. 2009;123:144–148. doi: 10.1016/j.imlet.2009.03.005. PubMed DOI
Nerren J.R., Kogut M.H. The selective dectin-1 agonist, curdlan, induces an oxidative burst response in chicken heterophils and peripheral blood mononuclear cells. Vet. Immunol. Immunopathol. 2009;127:162–166. doi: 10.1016/j.vetimm.2008.09.011. PubMed DOI
Cox C.M., Stuard L.H., Kim S., McElroy A.P., Bedford M.R., Dalloul R.A. Performance and immune responses to dietary β-glucan in broiler chicks. Poult. Sci. 2010;89:1924–1933. doi: 10.3382/ps.2010-00865. PubMed DOI
Cox C.M., Sumners L.H., Kim S., McElroy A.P., Bedford M.R., Dalloul R.A. Immune responses to dietary β-glucan in broiler chicks during an Eimeria challenge. Poult. Sci. 2010;89:2597–2607. doi: 10.3382/ps.2010-00987. PubMed DOI
Ding J., Ning Y., Bai Y., Xu X., Sun X., Qi C. β-Glucan induces autophagy in dendritic cells and influences T-cell differentiation. Med. Microbiol. Immunol. 2019;208:39–48. doi: 10.1007/s00430-018-0556-z. PubMed DOI
Yadav M., Schorey J.S. The β-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood. 2006;108:3168–3175. doi: 10.1182/blood-2006-05-024406. PubMed DOI PMC
Guo Y., Ali R.A., Qureshi M.A. The influence of β-glucan on immune responses in broiler chicks. Immunopharmacol. Immunotoxicol. 2003;25:461–472. doi: 10.1081/IPH-120024513. PubMed DOI
Zhang B., Guo Y., Wang Z. The modulating effect of β-1, 3/1, 6-glucan supplementation in the diet on performance and immunological responses of broiler chickens. Asian-Australas J. Anim. Sci. 2008;21:237–244. doi: 10.5713/ajas.2008.70207. DOI
Schat K.A., Kaspers B.P., Kaiser P. Avian Immunology. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2014.
Shao Y., Wang Z., Tian X., Guo Y., Zhang H. Yeast β-d-glucans induced antimicrobial peptide expressions against Salmonella infection in broiler chickens. Int. J. Biol. Macromol. 2016;85:573–584. doi: 10.1016/j.ijbiomac.2016.01.031. PubMed DOI
Mantis N.J., Rol N., Corthésy B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal immunol. 2011;4:603–611. doi: 10.1038/mi.2011.41. PubMed DOI PMC
Corinti S., Albanesi C., la Sala A., Pastore S., Girolomoni G. Regulatory activity of autocrine IL-10 on dendritic cell functions. J. Immunol. 2001;166:4312–4318. doi: 10.4049/jimmunol.166.7.4312. PubMed DOI
Van Goor A., Slawinska A., Schmidt C.J., Lamont S.J. Distinct functional responses to stressors of bone marrow derived dendritic cells from diverse inbred chicken lines. Dev. Comp. Immunol. 2016;63:96–110. doi: 10.1016/j.dci.2016.05.016. PubMed DOI
Baumann J., Park C.G., Mantis N.J. Recognition of secretory IgA by DC-SIGN: Implications for immune surveillance in the intestine. Immunol. Lett. 2010;131:59–66. doi: 10.1016/j.imlet.2010.03.005. PubMed DOI PMC
Corthésy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front. Immunol. 2013;4 doi: 10.3389/fimmu.2013.00185. PubMed DOI PMC
Kawashima T., Ikari N., Kouchi T., Kowatari Y., Kubota Y., Shimojo N., Tsuji N.M. The molecular mechanism for activating IgA production by Pediococcus acidilactici K15 and the clinical impact in a randomized trial. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-23404-4. PubMed DOI PMC
Elder M.J., Webster S.J., Chee R., Williams D.L., Hill Gaston J.S., Goodall J.C. β-glucan size controls dectin-1-mediated immune responses in human dendritic cells by regulating IL-1β production. Front. Immunol. 2017;8 doi: 10.3389/fimmu.2017.00791. PubMed DOI PMC
Pourabedin M., Zhao X. Prebiotics and gut microbiota in chickens. FEMS Microbiol. Lett. 2015;362:fnv122. doi: 10.1093/femsle/fnv122. PubMed DOI
Huang Q., Wei Y., Lv Y., Wang Y., Hu T. Effect of dietary inulin supplements on growth performance and intestinal immunological parameters of broiler chickens. Livest. Sci. 2015;180:72–176. doi: 10.1016/j.livsci.2015.07.015. DOI
Adhikari P., Cosby D.E., Cox N.A., Franca M.S., Williams S.M., Gogal R.M., Ritz C.W., Kim W.K. Effect of dietary fructooligosaccharide supplementation on internal organs Salmonella colonization, immune response, ileal morphology, and ileal immunohistochemistry in laying hens challenged with Salmonella enteritidis. Poult. Sci. 2018;97:2525–2533. doi: 10.3382/ps/pey101. PubMed DOI
Janardhana V., Broadway M.M., Bruce M.P., Lowenthal J.W., Geier M.S., Hughes R.J., Bean A.G.D. Prebiotics modulate immune responses in the gut-associated lymphoid tissue of chickens. J. Nutr. 2009;139:1404–1409. doi: 10.3945/jn.109.105007. PubMed DOI
Rehman H., Hellweg P., Taras D., Zentek J. Effects of dietary inulin on the intestinal short chain fatty acids and microbial ecology in broiler chickens as revealed by denaturing gradient gel electrophoresis. Poult. Sci. 2008;87:783–789. doi: 10.3382/ps.2007-00271. PubMed DOI
Seifert S., Watzl B. Inulin and oligofructose: Review of experimental data on immune modulation. J. Nutr. 2007;137:2563S–2567S. doi: 10.1093/jn/137.11.2563S. PubMed DOI
Ding S., Wang Y., Yan W., Li A., Jiang H., Fang J. Effects of Lactobacillus plantarum 15-1 and fructooligosaccharide on the response of broilers to pathogenic Escherichia coli O78 challenge. PLoS ONE. 2019;14:e0212079. doi: 10.1101/533935. PubMed DOI PMC
Babu U.S., Sommers K., Harrison L.M., Balan K.V. Effects of fructooligosaccharide-inulin on Salmonella-killing and inflammatory gene expression in chicken macrophages. Vet. Immunol. Immunopathol. 2012;149:92–96. doi: 10.1016/j.vetimm.2012.05.003. PubMed DOI
Nastasi C., Candela M., Bonefeld C.M., Geisler C., Hansen M., Krejsgaard T., Biagi E., Andersen M.H., Brigidi P., Ødum N., et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci. Rep. 2015;5 doi: 10.1038/srep16148. PubMed DOI PMC
Ganapathy V., Thangaraju M., Prasad P.D., Martin P.M., Singh N. Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Curr. Opin. Pharmacol. 2013;13:869–874. doi: 10.1016/j.coph.2013.08.006. PubMed DOI
Liu L., Li L., Min J., Wang J., Wu H., Zeng Y., Chen S., Chu Z. Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. Cell Immunol. 2012;277:66–73. doi: 10.1016/j.cellimm.2012.05.011. PubMed DOI
Iraporda C., Errea A., Romanin D.E., Cayet D., Pereyra E., Pignataro O., Sirard J.C., Garrote G.L., Abraham A.G., Rumbo M. Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology. 2015;220:1161–1169. doi: 10.1016/j.imbio.2015.06.004. PubMed DOI
Singh N., Gurav A., Sivaprakasam S., Brady E., Padia R., Shi H., Thangaraju M., Prasad P.D., Manicassamy S., Munn D.H., et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40:128–139. doi: 10.1016/j.immuni.2013.12.007. PubMed DOI PMC
Shang H.M., Hu T.M., Lu Y.J., Wu H.X. Effects of inulin on performance, egg quality, gut microflora and serum and yolk cholesterol in laying hens. Br. Poult. Sci. 2010;51:791–796. doi: 10.1080/00071668.2010.531005. PubMed DOI
Ruiz L., Delgado S., Ruas-Madiedo P., Sánchez B., Margolles A. Bifidobacteria and their molecular communication with the immune system. Front. Microbiol. 2017;8 doi: 10.3389/fmicb.2017.02345. PubMed DOI PMC
Corrêa-Oliveira R., Fachi J.L., Vieira A., Sato F.T., Vinolo M.A.R. Regulation of immune cell function by short-chain fatty acids. Clin. Transl. Immunol. 2016;5:e73. doi: 10.1038/cti.2016.17. PubMed DOI PMC
Meslin C., Desert C., Callebaut I., Djari A., Klopp C., Pitel F., Leroux S., Martin P., Froment P., Guilbert E., et al. Expanding duplication of free fatty acid receptor-2 (GPR43) genes in the chicken genome. Genome Biol. Evol. 2015;7:1332–1348. doi: 10.1093/gbe/evv072. PubMed DOI PMC
Mielenz M. Invited review: Nutrient-sensing receptors for free fatty acids and hydroxycarboxylic acids in farm animals. Animal. 2017;11:1008–1016. doi: 10.1017/S175173111600238X. PubMed DOI
Huang R.L., Deng Z.Y., Yang C., Yin Y.L., Xie M.Y., Wu G.Y., Li T.J., Li L.L., Tang Z.R., Ping K., et al. Dietary oligochitosan supplementation enhances immune status of broilers. J. Sci. Food Agric. 2006;87:153–159. doi: 10.1002/jsfa.2694. DOI
Elieh Ali Komi D., Sharma L., Dela Cruz C.S. Chitin and its effects on inflammatory and immune responses. Clin. Rev. Allergy Immunol. 2018;54:213–223. doi: 10.1007/s12016-017-8600-0. PubMed DOI PMC
Deng X., Li X., Liu P., Yuan S., Zang J., Li S., Piao X. Effect of chito-oligosaccharide supplementation on immunity in broiler chickens. Asian Australas J. Anim. Sci. 2008;21:1651–1658. doi: 10.5713/ajas.2008.80056. DOI
Catalli A., Kulka M. Chitin and β-glucan polysaccharides as immunomodulators of airway inflammation and atopic disease. recent patents on endocrine. Metab. Immune Drug Discov. 2010;4:175–189. doi: 10.2174/1872214811004030175. DOI