Antimigraine Drug Avitriptan Is a Ligand and Agonist of Human Aryl Hydrocarbon Receptor That Induces CYP1A1 in Hepatic and Intestinal Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV19-05-00220
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
32316498
PubMed Central
PMC7216230
DOI
10.3390/ijms21082799
PII: ijms21082799
Knihovny.cz E-zdroje
- Klíčová slova
- Antimigraine drugs, Aryl Hydrocarbon Receptor, Triptans, repurposing,
- MeSH
- aktivace enzymů účinky léků MeSH
- cytochrom P-450 CYP1A1 genetika MeSH
- hepatocyty metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- ligandy MeSH
- molekulární modely MeSH
- orgánová specificita MeSH
- přehodnocení terapeutických indikací léčivého přípravku MeSH
- promotorové oblasti (genetika) účinky léků MeSH
- receptory aromatických uhlovodíků agonisté chemie metabolismus MeSH
- simulace molekulového dockingu MeSH
- střevní sliznice metabolismus MeSH
- sulfonamidy farmakologie MeSH
- transkripční faktory bHLH agonisté chemie metabolismus MeSH
- tryptaminy farmakologie MeSH
- upregulace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- AHR protein, human MeSH Prohlížeč
- avitriptan MeSH Prohlížeč
- CYP1A1 protein, human MeSH Prohlížeč
- cytochrom P-450 CYP1A1 MeSH
- ligandy MeSH
- receptory aromatických uhlovodíků MeSH
- sulfonamidy MeSH
- transkripční faktory bHLH MeSH
- tryptaminy MeSH
The efforts for therapeutic targeting of the aryl hydrocarbon receptor (AhR) have emerged in recent years. We investigated the effects of available antimigraine triptan drugs, having an indole core in their structure, on AhR signaling in human hepatic and intestinal cells. Activation of AhR in reporter gene assays was observed for Avitriptan and to a lesser extent for Donitriptan, while other triptans were very weak or no activators of AhR. Using competitive binding assay and by homology docking, we identified Avitriptan as a low-affinity ligand of AhR. Avitriptan triggered nuclear translocation of AhR and increased binding of AhR in CYP1A1 promotor DNA, as revealed by immune-fluorescence microscopy and chromatin immune-precipitation assay, respectively. Strong induction of CYP1A1 mRNA was achieved by Avitriptan in wild type but not in AhR-knockout, immortalized human hepatocytes, implying that induction of CYP1A1 is AhR-dependent. Increased levels of CYP1A1 mRNA by Avitriptan were observed in human colon carcinoma cells LS180 but not in primary cultures of human hepatocytes. Collectively, we show that Avitriptan is a weak ligand and activator of human AhR, which induces the expression of CYP1A1 in a cell-type specific manner. Our data warrant the potential off-label therapeutic application of Avitriptan as an AhR-agonist drug.
Zobrazit více v PubMed
Denison M.S., Nagy S.R. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Ann. Rev. Pharmacol. Toxicol. 2003;43:309–334. doi: 10.1146/annurev.pharmtox.43.100901.135828. PubMed DOI
Angelos M.G., Kaufman D.S. Advances in the role of the aryl hydrocarbon receptor to regulate early hematopoietic development. Curr. Opin. Hematol. 2018;25:273–278. doi: 10.1097/MOH.0000000000000432. PubMed DOI
Bock K.W. From TCDD-mediated toxicity to searches of physiologic AHR functions. Biochem. Pharmacol. 2018;155:419–424. doi: 10.1016/j.bcp.2018.07.032. PubMed DOI
Bock K.W. Aryl hydrocarbon receptor (AHR): From selected human target genes and crosstalk with transcription factors to multiple AHR functions. Biochem. Pharmacol. 2019;168:65–70. doi: 10.1016/j.bcp.2019.06.015. PubMed DOI
Gutierrez-Vazquez C., Quintana F.J. Regulation of the Immune Response by the Aryl Hydrocarbon Receptor. Immunity. 2018;48:19–33. doi: 10.1016/j.immuni.2017.12.012. PubMed DOI PMC
Fang Z.Z., Krausz K.W., Nagaoka K., Tanaka N., Gowda K., Amin S.G., Perdew G.H., Gonzalez F.J. In vivo effects of the pure aryl hydrocarbon receptor antagonist GNF-351 after oral administration are limited to the gastrointestinal tract. Br. J. Pharmacol. 2014;171:1735–1746. doi: 10.1111/bph.12576. PubMed DOI PMC
Safe S., Cheng Y., Jin U.H. The Aryl Hydrocarbon Receptor (AhR) as a Drug Target for Cancer Chemotherapy. Curr. Opin. Toxicol. 2017;2:24–29. doi: 10.1016/j.cotox.2017.01.012. PubMed DOI PMC
Bianchi-Smiraglia A., Bagati A., Fink E.E., Affronti H.C., Lipchick B.C., Moparthy S., Long M.D., Rosario S.R., Lightman S.M., Moparthy K., et al. Inhibition of the aryl hydrocarbon receptor/polyamine biosynthesis axis suppresses multiple myeloma. J. Clin. Investig. 2018;128:4682–4696. doi: 10.1172/JCI70712. PubMed DOI PMC
Corre S., Tardif N., Mouchet N., Leclair H.M., Boussemart L., Gautron A., Bachelot L., Perrot A., Soshilov A., Rogiers A., et al. Sustained activation of the Aryl hydrocarbon Receptor transcription factor promotes resistance to BRAF-inhibitors in melanoma. Nat. Commun. 2018;9:4775. doi: 10.1038/s41467-018-06951-2. PubMed DOI PMC
Ghotbaddini M., Moultrie V., Powell J.B. Constitutive Aryl Hydrocarbon Receptor Signaling in Prostate Cancer Progression. J. Cancer Treatment Diagn. 2018;2:11–16. PubMed PMC
Darakhshan S., Pour A.B. Tranilast: A review of its therapeutic applications. Pharmacol. Res. 2015;91:15–28. doi: 10.1016/j.phrs.2014.10.009. PubMed DOI
Wilhelm S.M., Rjater R.G., Kale-Pradhan P.B. Perils and pitfalls of long-term effects of proton pump inhibitors. Expert Rev. Clin. Pharmacol. 2013;6:443–451. doi: 10.1586/17512433.2013.811206. PubMed DOI
Stepankova M., Bartonkova I., Jiskrova E., Vrzal R., Mani S., Kortagere S., Dvorak Z. Methylindoles and Methoxyindoles are Agonists and Antagonists of Human Aryl Hydrocarbon Receptor. Mol. Pharmacol. 2018;93:631–644. doi: 10.1124/mol.118.112151. PubMed DOI PMC
Chen I., Safe S., Bjeldanes L. Indole-3-carbinol and diindolylmethane as aryl hydrocarbon (Ah) receptor agonists and antagonists in T47D human breast cancer cells. Biochem. Pharmacol. 1996;51:1069–1076. doi: 10.1016/0006-2952(96)00060-3. PubMed DOI
Rasmussen M.K., Balaguer P., Ekstrand B., Daujat-Chavanieu M., Gerbal-Chaloin S. Skatole (3-Methylindole) Is a Partial Aryl Hydrocarbon Receptor Agonist and Induces CYP1A1/2 and CYP1B1 Expression in Primary Human Hepatocytes. PLoS ONE. 2016;11:e0154629. doi: 10.1371/journal.pone.0154629. PubMed DOI PMC
Jin U.H., Lee S.O., Sridharan G., Lee K., Davidson L.A., Jayaraman A., Chapkin R.S., Alaniz R., Safe S. Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities. Mol. Pharmacol. 2014;85:777–788. doi: 10.1124/mol.113.091165. PubMed DOI PMC
Hubbard T.D., Murray I.A., Bisson W.H., Lahoti T.S., Gowda K., Amin S.G., Patterson A.D., Perdew G.H. Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles. Sci. Rep. 2015;5:12689. doi: 10.1038/srep12689. PubMed DOI PMC
Tfelt-Hansen P., De Vries P., Saxena P.R. Triptans in migraine: A comparative review of pharmacology, pharmacokinetics and efficacy. Drugs. 2000;60:1259–1287. doi: 10.2165/00003495-200060060-00003. PubMed DOI
Cutler N.R., Salazar D.E., Jhee S.S., Fulmor I.E., Ford N., Smith R.A., Sramek J.J. Pharmacokinetics and pharmacodynamics of avitriptan in patients with migraine after oral dosing. Headache. 1998;38:446–452. doi: 10.1046/j.1526-4610.1998.3806446.x. PubMed DOI
John G.W., Perez M., Pauwels P.J., Le Grand B., Verscheure Y., Colpaert F.C. Donitriptan, a unique high-efficacy 5-HT1B/1D agonist: Key features and acute antimigraine potential. CNS Drug Rev. 2000;6:278–289. doi: 10.1111/j.1527-3458.2000.tb00153.x. DOI
Wilt L.A., Nguyen D., Roberts A.G. Insights into the Molecular Mechanism of Triptan Transport by P-glycoprotein. J. Pharm. Sci. 2017;106:1670–1679. doi: 10.1016/j.xphs.2017.02.032. PubMed DOI PMC
Marathe P.H., Greene D.S., Barbhaiya R.H. Disposition of [14C]avitriptan in rats and humans. Drug Metab. Dispos. 1997;25:881–888. PubMed
Marathe P.H., Greene D.S., Kollia G.D., Barbhaiya R.H. A pharmacokinetic interaction study of avitriptan and propranolol. Clin. Pharmacol. Ther. 1998;63:367–378. doi: 10.1016/S0009-9236(98)90168-0. PubMed DOI
Lamas B., Richard M.L., Leducq V., Pham H.P., Michel M.L., Da Costa G., Bridonneau C., Jegou S., Hoffmann T.W., Natividad J.M., et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 2016;22:598–605. doi: 10.1038/nm.4102. PubMed DOI PMC
Zelante T., Iannitti R.G., Cunha C., De Luca A., Giovannini G., Pieraccini G., Zecchi R., D’Angelo C., Massi-Benedetti C., Fallarino F., et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39:372–385. doi: 10.1016/j.immuni.2013.08.003. PubMed DOI
Denison M.S., Faber S.C. And Now for Something Completely Different: Diversity in Ligand-Dependent Activation of Ah Receptor Responses. Curr. Opin. Toxicol. 2017;2:124–131. doi: 10.1016/j.cotox.2017.01.006. PubMed DOI PMC
Tagliabue S.G., Faber S.C., Motta S., Denison M.S., Bonati L. Modeling the binding of diverse ligands within the Ah receptor ligand binding domain. Sci. Rep. 2019;9:10693. doi: 10.1038/s41598-019-47138-z. PubMed DOI PMC
Seok S.H., Lee W., Jiang L., Molugu K., Zheng A., Li Y., Park S., Bradfield C.A., Xing Y. Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex. Proc. Natl. Acad. Sci. USA. 2017;114:5431–5436. doi: 10.1073/pnas.1617035114. PubMed DOI PMC
Goettel J.A., Gandhi R., Kenison J.E., Yeste A., Murugaiyan G., Sambanthamoorthy S., Griffith A.E., Patel B., Shouval D.S., Weiner H.L., et al. AHR Activation Is Protective against Colitis Driven by T Cells in Humanized Mice. Cell Rep. 2016;17:1318–1329. doi: 10.1016/j.celrep.2016.09.082. PubMed DOI PMC
Saxena P.R., De Vries P., Wang W., Heiligers J.P., MaassenVanDenBrink A., Bax W.A., Yocca F.D. Effects of avitriptan, a new 5-HT 1B/1D receptor agonist, in experimental models predictive of antimigraine activity and coronary side-effect potential. Naunyn. Schmiedeberg’s Arch. Pharmacol. 1997;355:295–302. doi: 10.1007/PL00004946. PubMed DOI
Meng C.Q. Migraine: Current drug discovery trend. Curr. Med. Chem. 1997;4:385–404.
Marathe P.H., Sandefer E.P., Kollia G.E., Greene D.S., Barbhaiya R.H., Lipper R.A., Page R.C., Doll W.J., Ryo U.Y., Digenis G.A. In vivo evaluation of the absorption and gastrointestinal transit of avitriptan in fed and fasted subjects using gamma scintigraphy. J. Pharmacokinet. Biopharm. 1998;26:1–20. doi: 10.1023/A:1023236823320. PubMed DOI
Sharma A., Jusko W.J., Fulmor I.E., Norton J., Uderman H.D., Salazar D.E. Pharmacokinetics and pharmacodynamics of avitriptan during intravenous administration in healthy subjects. J. Clin. Pharmacol. 1999;39:685–694. doi: 10.1177/00912709922008326. PubMed DOI
Marathe P.H., Greene D.S., Lee J.S., Barbhaiya R.H. Assessment of effect of food, gender, and intra-subject variability in the pharmacokinetics of avitriptan. Biopharm. Drug Dispos. 1998;19:153–157. doi: 10.1002/(SICI)1099-081X(199804)19:3<153::AID-BDD90>3.0.CO;2-T. PubMed DOI
Maier L., Pruteanu M., Kuhn M., Zeller G., Telzerow A., Anderson E.E., Brochado A.R., Fernandez K.C., Dose H., Mori H., et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555:623–628. doi: 10.1038/nature25979. PubMed DOI PMC
Novotna A., Pavek P., Dvorak Z. Novel stably transfected gene reporter human hepatoma cell line for assessment of aryl hydrocarbon receptor transcriptional activity: Construction and characterization. Environ. Sci. Technol. 2011;45:10133–10139. doi: 10.1021/es2029334. PubMed DOI
Vrzal R., Knoppová B., Bachleda P., Dvořák Z. Effects of oral anorexiant sibutramine on the expression of cytochromes P450s in human hepatocytes and cancer cell lines. J. Biochem. Mol. Toxicol. 2013;27:515–521. doi: 10.1002/jbt.21516. PubMed DOI
Roy A., Kucukural A., Zhang Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc. 2010;5:725–738. doi: 10.1038/nprot.2010.5. PubMed DOI PMC
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Soshilov A.A., Denison M.S. Ligand promiscuity of aryl hydrocarbon receptor agonists and antagonists revealed by site-directed mutagenesis. Mol. Cell. Biol. 2014;34:1707–1719. doi: 10.1128/MCB.01183-13. PubMed DOI PMC
Motto I., Bordogna A., Soshilov A.A., Denison M.S., Bonati L. New aryl hydrocarbon receptor homology model targeted to improve docking reliability. J. Chem. Inf. Model. 2011;51:2868–2881. doi: 10.1021/ci2001617. PubMed DOI PMC
Laskowski R.A., Swindells M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011;51:2778–2786. doi: 10.1021/ci200227u. PubMed DOI