Nanodiamonds and nanoparticles as tumor cell radiosensitizers-promising results but an obscure mechanism of action

. 2017 Jan ; 5 (1) : 18.

Status PubMed-not-MEDLINE Jazyk angličtina Země Čína Médium print

Typ dokumentu časopisecké články, komentáře

Perzistentní odkaz   https://www.medvik.cz/link/pmid28164103
Komentář

PubMed

Zobrazit více v PubMed

Murthy SK. Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomedicine 2007;2:129-41. PubMed PMC

Biffi S, Voltan R, Rampazzo E, et al. Applications of nanoparticles in cancer medicine and beyond: optical and multimodal in vivo imaging, tissue targeting and drug delivery. Expert Opin Drug Deliv 2015;12:1837-49. 10.1517/17425247.2015.1071791 PubMed DOI

Lin W. Introduction: Nanoparticles in Medicine. Chem Rev 2015;115:10407-9. 10.1021/acs.chemrev.5b00534 PubMed DOI

Luque-Michel E, Imbuluzqueta E, Sebastián V, et al. Clinical advances of nanocarrier-based cancer therapy and diagnostics. Expert Opin Drug Deliv 2017;14:75-92. 10.1080/17425247.2016.1205585 PubMed DOI

Babaei M, Ganjalikhani M. The potential effectiveness of nanoparticles as radio sensitizers for radiotherapy. Bioimpacts 2014;4:15-20. PubMed PMC

Falk M. Nanoscopy and Nanoparticles Hand-in-Hand to Fight Cancer: An Exciting Entrée into the Rising NANOworld. Biophys J 2016;110:872-3. 10.1016/j.bpj.2016.01.005 PubMed DOI PMC

Falk M, Lukasova E, Kozubek S. Higher-order chromatin structure in DSB induction, repair and misrepair. Mutat Res 2010;704:88-100. 10.1016/j.mrrev.2010.01.013 PubMed DOI

Falková I, Falk M, Horáková Z, et al. DNA repair in the head and neck cancers and their radiosensitivity – the dilemma of the first therapy. Health and Social Work 2016;11:19-25.

Jiang GL. Particle therapy for cancers: a new weapon in radiation therapy. Front Med 2012;6:165-72. 10.1007/s11684-012-0196-4 PubMed DOI

Ježková L, Falk M, Falková I, et al. Function of chromatin structure and dynamics in DNA damage, repair and misrepair: γ-rays and protons in action. Appl Radiat Isot 2014;83 Pt B:128-36. PubMed

Marx V. Cancer treatment: Sharp shooters. Nature 2014;508:133-8. 10.1038/508133a PubMed DOI

Kamada T, Tsujii H, Blakely EA, et al. Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience. Lancet Oncol 2015;16:e93-e100. 10.1016/S1470-2045(14)70412-7 PubMed DOI

Kwatra D, Venugopal A, Anant S. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res 2013;2:330-42.

Belz JE, Ngwa W, Korideck H, et al. Multifunctional nanoparticles in radiation oncology: an emerging paradigm. In: Harper-Leatherman AS, Solbrig CM. editors. The science and function of nanomaterials: from synthesis to application. Washington, DC: American Chemical Society, 2014:75-106.

Grall R, Girard H, Saad L, et al. Impairing the radioresistance of cancer cells by hydrogenated nanodiamonds. Biomaterials 2015;61:290-8. 10.1016/j.biomaterials.2015.05.034 PubMed DOI

Štefančíková L, Lacombe S, Salado D, et al. Effect of gadolinium-based nanoparticles on nuclear DNA damage and repair in glioblastoma tumor cells. J Nanobiotechnology 2016;14:63. 10.1186/s12951-016-0215-8 PubMed DOI PMC

Hofer M, Falk M, Komůrková D, et al. Two New Faces of Amifostine: Protector from DNA Damage in Normal Cells and Inhibitor of DNA Repair in Cancer Cells. J Med Chem 2016;59:3003-17. 10.1021/acs.jmedchem.5b01628 PubMed DOI

Adams FH, Norman A, Mello RS, et al. Effect of radiation and contrast media on chromosomes. Preliminary report. Radiology 1977;124:823-6. 10.1148/124.3.823 PubMed DOI

Matsudaira H, Ueno AM, Furuno I. Iodine contrast medium sensitizes cultured mammalian cells to X rays but not to gamma rays. Radiat Res 1980;84:144-8. 10.2307/3575225 PubMed DOI

Watson C, Ge J, Cohen J, et al. High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology. ACS Nano 2014;8:2118-33. 10.1021/nn404871p PubMed DOI PMC

Mowat P, Mignot A, Rima W, et al. In vitro radiosensitizing effects of ultrasmall gadolinium based particles on tumour cells. J Nanosci Nanotechnol 2011;11:7833-9. 10.1166/jnn.2011.4725 PubMed DOI

Miladi I, Aloy MT, Armandy E, et al. Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma. Nanomedicine 2015;11:247-57. PubMed

Porcel E, Liehn S, Remita H, et al. Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 2010;21:85103. 10.1088/0957-4484/21/8/085103 PubMed DOI

Turk B, Turk V. Lysosomes as "suicide bags" in cell death: myth or reality? J Biol Chem 2009;284:21783-7. 10.1074/jbc.R109.023820 PubMed DOI PMC

Moser F, Hildenbrand G, Müller P, et al. Cellular Uptake of Gold Nanoparticles and Their Behavior as Labels for Localization Microscopy. Biophys J 2016;110:947-53. 10.1016/j.bpj.2016.01.004 PubMed DOI PMC

Huo S, Jin S, Ma X, et al. Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano 2014;8:5852-62. 10.1021/nn5008572 PubMed DOI PMC

Sevcik J, Falk M, Kleiblova P, et al. The BRCA1 alternative splicing variant Δ14-15 with an in-frame deletion of part of the regulatory serine-containing domain (SCD) impairs the DNA repair capacity in MCF-7 cells. Cell Signal 2012;24:1023-30. 10.1016/j.cellsig.2011.12.023 PubMed DOI

Sevcik J, Falk M, Macurek L, et al. Expression of human BRCA1Δ17-19 alternative splicing variant with a truncated BRCT domain in MCF-7 cells results in impaired assembly of DNA repair complexes and aberrant DNA damage response. Cell Signal 2013;25:1186-93. 10.1016/j.cellsig.2013.02.008 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...