VanZ Reduces the Binding of Lipoglycopeptide Antibiotics to Staphylococcus aureus and Streptococcus pneumoniae Cells
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
32318043
PubMed Central
PMC7146870
DOI
10.3389/fmicb.2020.00566
Knihovny.cz E-resources
- Keywords
- Staphylococcus aureus, Streptococcus pneumoniae, VanZ, antibiotic resistance, lipoglycopeptide antibiotics,
- Publication type
- Journal Article MeSH
vanZ, a member of the VanA glycopeptide resistance gene cluster, confers resistance to lipoglycopeptide antibiotics independent of cell wall precursor modification by the vanHAX genes. Orthologs of vanZ are present in the genomes of many clinically relevant bacteria, including Enterococcus faecium and Streptococcus pneumoniae; however, vanZ genes are absent in Staphylococcus aureus. Here, we show that the expression of enterococcal vanZ paralogs in S. aureus increases the minimal inhibitory concentrations of lipoglycopeptide antibiotics teicoplanin, dalbavancin, oritavancin and new teicoplanin pseudoaglycone derivatives. The reduction in the binding of fluorescently labeled teicoplanin to the cells suggests the mechanism of VanZ-mediated resistance. In addition, using a genomic vanZ gene knockout mutant of S. pneumoniae, we have shown that the ability of VanZ proteins to compromise the activity of lipoglycopeptide antibiotics by reducing their binding is a more general feature of VanZ-superfamily proteins.
See more in PubMed
Arthur M., Depardieu F., Molinas C., Reynolds P., Courvalin P. (1995). The vanZ gene of Tn1546 from Enterococcus faecium BM4147 confers resistance to teicoplanin. Gene 154 87–92. 10.1016/0378-1119(94)00851-i PubMed DOI
Arthur M., Depardieu F., Reynolds P., Courvalin P. (1999). Moderate-level resistance to glycopeptide LY333328 mediated by genes of the vanA and vanB clusters in enterococci. Antimicrob. Agents Chemother. 43 1875–1880. 10.1128/aac.43.8.1875 PubMed DOI PMC
Arthur M., Depardieu F., Snaith H. A., Reynolds P. E., Courvalin P. (1994). Contribution of vanY D, D-carboxypeptidase to glycopeptide resistance in Enterococcus faecalis by hydrolysis of peptidoglycan precursors. Antimicrob. Agents Chemother. 38 1899–1903. 10.1128/aac.38.9.1899 PubMed DOI PMC
Beauregard D., Williams D. H., Gwynn M. N., Knowles D. J. (1995). Dimerization and membrane anchors in extracellular targeting of vancomycin group antibiotics. Antimicrob. Agents Chemother. 39 781–785. 10.1128/aac.39.3.781 PubMed DOI PMC
Bugg T. D. H., Wright G. D., Dutkamalen S., Arthur M., Courvalin P., Walsh C. T. (1991). Molecular-basis for vancomycin resistance in Enterococcus faecium BM4147 – biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30 10408–10415. 10.1021/bi00107a007 PubMed DOI
Chang S., Sievert D. M., Hageman J. C., Boulton M. L., Tenover F. C., Downes F. P., et al. (2003). Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N. Engl. J. Med. 348 1342– 1347. PubMed
Csávás M., Miskovics A., Szcs Z., Röth E., Nagy Z. L., Bereczki I., et al. (2015). Synthesis and antibacterial evaluation of some teicoplanin pseudoaglycon derivatives containing alkyl-and arylthiosubstituted maleimides. J. Antibiot. (Tokyo) 68 579–585. 10.1038/ja.2015.33 PubMed DOI
Foucault M. L., Courvalin P., Grillot-Courvalin C. (2009). Fitness cost of VanA-type vancomycin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 53 2354–2359. 10.1128/AAC.01702-08 PubMed DOI PMC
Hava D. L., Camilli A. (2002). Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol. 45 1389–1406. 10.1046/j.1365-2958.2002.03106.x PubMed DOI PMC
Kerns R., Dong S. D., Fukuzawa S., Carbeck J., Kohler J., Silver L., et al. (2000). The role of hydrophobic substituents in the biological activity of glycopeptide antibiotics. J. Am. Chem. Soc. 122 12608–12609. 10.1021/ja0027665 DOI
Kim S. J., Singh M., Sharif S., Schaefer J. (2017). Desleucyl-oritavancin with a damaged d -Ala- d -Ala binding site inhibits the transpeptidation step of cell-wall biosynthesis in whole cells of Staphylococcus aureus. Biochemistry 56 1529–1535. 10.1021/acs.biochem.6b01125 PubMed DOI PMC
Kim S. J., Tanaka K. S. E., Dietrich E., Rafai Far A., Schaefer J. (2013). Locations of the hydrophobic side chains of lipoglycopeptides bound to the peptidoglycan of Staphylococcus aureus. Biochemistry 52 3405–3414. 10.1021/bi400054p PubMed DOI PMC
Lai L., Dai J., Tang H., Zhang S., Wu C., Qiu W., et al. (2017). Streptococcus suis serotype 9 strain GZ0565 contains a type VII secretion system putative substrate EsxA that contributes to bacterial virulence and a vanZ-like gene that confers resistance to teicoplanin and dalbavancin in Streptococcus agalactiae. Vet. Microbiol. 205 26–33. 10.1016/j.vetmic.2017.04.030 PubMed DOI
Lessard I. A. D., Walsh C. T. (1999). VanX, a bacterial D-alanyl-D-alanine dipeptidase: resistance, immunity, or survival function? Proc. Natl. Acad. Sci. U.S.A. 96 11028–11032. 10.1073/pnas.96.20.11028 PubMed DOI PMC
Li Y., Thompson C. M., Lipsitch M. (2014). A modified Janus cassette (sweet Janus) to improve allelic replacement efficiency by high-stringency negative selection in Streptococcus pneumoniae. PLoS One 9:e100510. 10.1371/journal.pone.0100510 PubMed DOI PMC
Ng W. L., Kazmierczak K. M., Robertson G. T., Gilmour R., Winkler M. E. (2003). Transcriptional regulation and signature patterns revealed by microarray analyses of Streptococcus pneumoniae R6 challenged with sublethal concentrations of translation inhibitors. J. Bacteriol. 185 359–370. 10.1128/jb.185.1.359-370.2003 PubMed DOI PMC
Perichon B., Courvalin P. (2009). VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 53 4580–4587. 10.1128/AAC.00346-09 PubMed DOI PMC
Pintér G., Batta G., Kéki S., Mándi A., Komáromi I., Takács-Novák K., et al. (2009). Diazo transfer-click reaction route to new, lipophilic teicoplanin and ristocetin aglycon derivatives with high antibacterial and anti-influenza virus activity: an aggregation and receptor binding study. J. Med. Chem. 52 6053–6061. 10.1021/jm900950d PubMed DOI
Saadat S., Solhjoo K., Norooz-Nejad M. J., Kazemi A. (2014). vanA and vanB positive vancomycin-resistant Staphylococcus aureus among clinical isolates in Shiraz, south of Iran. Oman Med. J. 29 335–339. 10.5001/omj.2014.90 PubMed DOI PMC
Sung C. K., Li H., Claverys J. P., Morrison D. A. (2001). An rpsL cassette, Janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl. Environ. Microbiol. 67 5190–5196. 10.1128/aem.67.11.5190-5196.2001 PubMed DOI PMC
Szucs Z., Csávás M., Röth E., Borbás A., Batta G., Perret F., et al. (2017). Synthesis and biological evaluation of lipophilic teicoplanin pseudoaglycon derivatives containing a substituted triazole function. J. Antibiot. (Tokyo) 70 152–157. 10.1038/ja.2016.80 PubMed DOI
Uttley A. H. C., George R. C., Naidoo J., Woodford N., Johnson A. P., Collins C. H., et al. (1989). High-level vancomycin-resistant enterococci causing hospital infections. Epidemiol. Infect. 103 173–181. 10.1017/s0950268800030478 PubMed DOI PMC
Vimberg V., Gazak R., Szücs Z., Borbás A., Herczegh P., Cavanagh J. P., et al. (2019). Fluorescence assay to predict activity of the glycopeptide antibiotics. J. Antibiot. (Tokyo) 72 114–117. 10.1038/s41429-018-0120-5 PubMed DOI
Woods E. C., Wetzel D., Mukerjee M., McBride S. M. (2018). Examination of the Clostridioides (Clostridium) difficile VanZ ortholog, CD1240. Anaerobe 53 108–115. 10.1016/j.anaerobe.2018.06.013 PubMed DOI PMC
Zeng D., Debabov D., Hartsell T. L., Cano R. J., Adams S., Schuyler J. A., et al. (2016). Approved glycopeptide antibacterial drugs: mechanism of action and resistance. Cold Spring Harb. Perspect. Med 6:a026989. 10.1101/cshperspect.a026989 PubMed DOI PMC
Specific Inhibition of VanZ-Mediated Resistance to Lipoglycopeptide Antibiotics