Two Novel Semisynthetic Lipoglycopeptides Active against Staphylococcus aureus Biofilms and Cells in Late Stationary Growth Phase

. 2021 Nov 19 ; 14 (11) : . [epub] 20211119

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34832964

Grantová podpora
NV15-28807A Czech Health Research Council
CZ.1.05/1.1.00/02.010 BIOCEV - Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University
GINOP-2.3.2-15-2016-00008 European Regional Development Fund
1 CSRD VA - United States

The increase in antibiotic resistance among Gram-positive bacteria underscores the urgent need to develop new antibiotics. New antibiotics should target actively growing susceptible bacteria that are resistant to clinically accepted antibiotics including bacteria that are not growing or are protected in a biofilm environment. In this paper, we compare the in vitro activities of two new semisynthetic glycopeptide antibiotics, MA79 and ERJ390, with two clinically used glycopeptide antibiotics-vancomycin and teicoplanin. The new antibiotics effectively killed not only exponentially growing cells of Staphylococcus aureus, but also cells in the stationary growth phase and biofilm.

Zobrazit více v PubMed

Turner N.A., Sharma-Kuinkel B.K., Maskarinec S.A., Eichenberger E.M., Shah P.P., Carugati M., Holland T.L., Fowler V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019;17:203–218. doi: 10.1038/s41579-018-0147-4. PubMed DOI PMC

Beauregard D.A., Williams D.H., Gwynn M.N., Knowles D.J.C. Dimerization and membrane anchors in extracellular targeting of vancomycin group antibiotics. Antimicrob. Agents Chemother. 1995;39:781–785. doi: 10.1128/AAC.39.3.781. PubMed DOI PMC

Economou N.J., Zentner I.J., Lazo E., Jakoncic J., Stojanoff V., Weeks S.D., Grasty K.C., Cocklin S., Loll P.J. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: Use of a carrier-protein approach. Acta Crystallogr. Sect. D Biol. Crystallogr. 2013;69:520–533. doi: 10.1107/S0907444912050469. PubMed DOI PMC

Zeng D., Debabov D., Hartsell T.L., Cano R.J., Adams S., Schuyler J.A., McMillan R., Pace J.L. Approved glycopeptide antibacterial drugs: Mechanism of action and resistance. Cold Spring Harb. Perspect. Med. 2016;6:a026989. doi: 10.1101/cshperspect.a026989. PubMed DOI PMC

Cheung A.L., Bayer A.S., Zhang G., Gresham H., Xiong Y.Q. Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol. Med. Microbiol. 2004;40:1–9. doi: 10.1016/S0928-8244(03)00309-2. PubMed DOI

Pintér G., Batta G., Kéki S., Mándi A., Komáromi I., Takács-Novák K., Sztaricskai F., Roth E., Ostorházi E., Rozgonyi F., et al. Diazo transfer-click reaction route to new, lipophilic teicoplanin and ristocetin aglycon derivatives with high antibacterial and anti-influenza virus activity: An aggregation and receptor binding study. J. Med. Chem. 2009;52:6053–6061. doi: 10.1021/jm900950d. PubMed DOI

Csávás M., Miskovics A., Szűcs Z., Rőth E., Nagy Z.L., Bereczki I., Herczeg M., Batta G., Nemes-Nikodém É., Ostorházi E., et al. Synthesis and antibacterial evaluation of some teicoplanin pseudoaglycon derivatives containing alkyl-and arylthiosubstituted maleimides. J. Antibiot. 2015;68:579–585. doi: 10.1038/ja.2015.33. PubMed DOI

Szűcs Z., Kelemen V., Le Thai S., Csávás M., Rőth E., Batta G., Stevaert A., Vanderlinden E., Naesens L., Herczegh P., et al. Structure-activity relationship studies of lipophilic teicoplanin pseudoaglycon derivatives as new anti-influenza virus agents. Eur. J. Med. Chem. 2018;157:1017–1030. doi: 10.1016/j.ejmech.2018.08.058. PubMed DOI PMC

Vimberg V., Gazak R., Szűcs Z., Borbás A., Herczegh P., Cavanagh J.P., Zieglerova L., Závora J., Adámková V., Balikova Novotna G. Fluorescence assay to predict activity of the glycopeptide antibiotics. J. Antibiot. 2019;72:114–117. doi: 10.1038/s41429-018-0120-5. PubMed DOI

Kaplan J.B. Antibiotic-induced biofilm formation. Int. J. Artif. Organs. 2011;34:737–751. doi: 10.5301/ijao.5000027. PubMed DOI

Mirani Z.A., Jamil N. Effect of sub-lethal doses of vancomycin and oxacillin on biofilm formation by vancomycin intermediate resistant Staphylococcus aureus. J. Basic Microbiol. 2011;51:191–195. doi: 10.1002/jobm.201000221. PubMed DOI

El-Azizi M., Rao S., Kanchanapoom T., Khardori N. In vitro activity of vancomycin, quinupristin/dalfopristin, and linezolid against intact and disrupted biofilms of staphylococci. Ann. Clin. Microbiol. Antimicrob. 2005;4:2. doi: 10.1186/1476-0711-4-2. PubMed DOI PMC

Pozzi C., Waters E.M., Rudkin J.K., Schaeffer C.R., Lohan A.J., Tong P., Loftus B.J., Pier G.B., Fey P.D., Massey R.C., et al. Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog. 2012;8:e1002626. doi: 10.1371/journal.ppat.1002626. PubMed DOI PMC

Omar A., Wright J.B., Schultz G., Burrell R., Nadworny P. Microbial biofilms and chronic wounds. Microorganisms. 2017;5:9. doi: 10.3390/microorganisms5010009. PubMed DOI PMC

Miao J., Lin S., Soteyome T., Peters B.M., Li Y., Chen H., Su J., Li L., Li B., Xu Z., et al. Biofilm Formation of Staphylococcus aureus under Food Heat Processing Conditions: First Report on CML Production within Biofilm. Sci. Rep. 2019;9:1312. doi: 10.1038/s41598-018-35558-2. PubMed DOI PMC

Gwynn M.N., Portnoy A., Rittenhouse S.F., Payne D.J. Challenges of antibacterial discovery revisited. Ann. N. Y. Acad. Sci. 2010;1213:5–19. doi: 10.1111/j.1749-6632.2010.05828.x. PubMed DOI

Blaskovich M.A.T., Hansford K.A., Butler M.S., Jia Z., Mark A.E., Cooper M.A. Developments in Glycopeptide Antibiotics. ACS Infect. Dis. 2018;4:715–735. doi: 10.1021/acsinfecdis.7b00258. PubMed DOI PMC

Mühlberg E., Umstätter F., Kleist C., Domhan C., Mier W., Uhl P. Renaissance of vancomycin: Approaches for breaking antibiotic resistance in multidrug-resistant bacteria. Can. J. Microbiol. 2020;66:11–16. doi: 10.1139/cjm-2019-0309. PubMed DOI

Belley A., Neesham-Grenon E., McKay G., Arhin F.F., Harris R., Beveridge T., Parr T.R., Moeck G. Oritavancin kills stationary-phase and biofilm Staphylococcus aureus cells in vitro. Antimicrob. Agents Chemother. 2009;53:918–925. doi: 10.1128/AAC.00766-08. PubMed DOI PMC

Belley A., Lalonde Seguin D., Arhin F., Moeck G. Comparative in vitro activities of oritavancin, dalbavancin, and vancomycin against methicillin-resistant Staphylococcus aureus isolates in a nondividing state. Antimicrob. Agents Chemother. 2016;60:4342–4345. doi: 10.1128/AAC.00169-16. PubMed DOI PMC

Chan C., Hardin T.C., Smart J.I. A review of telavancin activity in in vitro biofilms and animal models of biofilm-associated infections. Future Microbiol. 2015;10:1325–1338. doi: 10.2217/fmb.15.53. PubMed DOI

Meeker D.G., Beenken K.E., Mills W.B., Loughran A.J., Spencer H.J., Lynn W.B., Smeltzer M.S. Evaluation Of Antibiotics Active Against methicillin-resistant Staphylococcus aureus based on activity in an established biofilm. Antimicrob. Agents Chemother. 2016;60:5688–5694. doi: 10.1128/AAC.01251-16. PubMed DOI PMC

Zhanel G.G., Calic D., Schweizer F., Zelenitsky S., Adam H., Lagac-Wiens P.R.S., Rubinstein E., Gin A.S., Hoban D.J., Karlowsky J.A. New lipoglycopeptides: A comparative review of dalbavancin, oritavancin and telavancin. Drugs. 2010;70:859–886. doi: 10.2165/11534440-000000000-00000. PubMed DOI

Zhanel G.G., Schweizer F., Karlowsky J.A. Oritavancin: Mechanism of action. Clin. Infect. Dis. 2012;54:S214–S219. doi: 10.1093/cid/cir920. PubMed DOI

Song Y., Lunde C.S., Benton B.M., Wilkinson B.J. Further insights into the mode of action of the lipoglycopeptide telavancin through global gene expression studies. Antimicrob. Agents Chemother. 2012;56:3157–3164. doi: 10.1128/AAC.05403-11. PubMed DOI PMC

Cheng M., Ziora Z.M., Hansford K.A., Blaskovich M.A., Butler M.S., Cooper M.A. Anti-cooperative ligand binding and dimerisation in the glycopeptide antibiotic dalbavancin. Org. Biomol. Chem. 2014;12:2568–2575. doi: 10.1039/C3OB42428F. PubMed DOI PMC

Berscheid A., François P., Strittmatter A., Gottschalk G., Schrenzel J., Sass P., Bierbaum G. Generation of a vancomycin-intermediate Staphylococcus aureus (VISA) strain by two amino acid exchanges in VraS. J. Antimicrob. Chemother. 2014;69:3190–3198. doi: 10.1093/jac/dku297. PubMed DOI

Werth B.J., Jain R., Hahn A., Cummings L., Weaver T., Waalkes A., Sengupta D., Salipante S.J., Rakita R.M., Butler-Wu S.M. Emergence of dalbavancin non-susceptible, vancomycin-intermediate Staphylococcus aureus (VISA) after treatment of MRSA central line-associated bloodstream infection with a dalbavancin- and vancomycin-containing regimen. Clin. Microbiol. Infect. 2018;24:429.e1–429.e5. doi: 10.1016/j.cmi.2017.07.028. PubMed DOI

Vimberg V., Zieglerová L., Buriánková K., Branny P., Balíková Novotná G. VanZ Reduces the Binding of Lipoglycopeptide Antibiotics to Staphylococcus aureus and Streptococcus pneumoniae Cells. Front. Microbiol. 2020;11:566. doi: 10.3389/fmicb.2020.00566. PubMed DOI PMC

Cong Y., Yang S., Rao X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J. Adv. Res. 2020;21:169–176. doi: 10.1016/j.jare.2019.10.005. PubMed DOI PMC

Gillaspy A.F., Worrell V., Orvis J., Roe B.A., Dyer D.W., Iandolo J.J. Gram-Positive Pathogens. 2nd ed. American Society of Microbiology; Washington, DC, USA: 2006. The Staphylococcus aureus NCTC 8325 Genome; pp. 381–412.

Hiramatsu K. The emergence of Staphylococcus aureus with reduced susceptibility to vancomycin in Japan. Am. J. Med. 1998;104:7S–10S. doi: 10.1016/S0002-9343(98)00149-1. PubMed DOI

Baba T., Bae T., Schneewind O., Takeuchi F., Hiramatsu K. Genome sequence of Staphylococcus aureus strain newman and comparative analysis of staphylococcal genomes: Polymorphism and evolution of two major pathogenicity islands. J. Bacteriol. 2008;190:300–310. doi: 10.1128/JB.01000-07. PubMed DOI PMC

Vimberg V., Kuzma M., Stodůlková E., Novák P., Bednárová L., Šulc M., Gažák R. Hydnocarpin-Type Flavonolignans: Semisynthesis and Inhibitory Effects on Staphylococcus aureus Biofilm Formation. J. Nat. Prod. 2015;78:2095–2103. doi: 10.1021/acs.jnatprod.5b00430. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...