Two Novel Semisynthetic Lipoglycopeptides Active against Staphylococcus aureus Biofilms and Cells in Late Stationary Growth Phase
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV15-28807A
Czech Health Research Council
CZ.1.05/1.1.00/02.010
BIOCEV - Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University
GINOP-2.3.2-15-2016-00008
European Regional Development Fund
1
CSRD VA - United States
PubMed
34832964
PubMed Central
PMC8619453
DOI
10.3390/ph14111182
PII: ph14111182
Knihovny.cz E-zdroje
- Klíčová slova
- Staphylococcus aureus, antibiotic resistance, glycopeptide antibiotics, teicoplanin pseudoaglycon,
- Publikační typ
- časopisecké články MeSH
The increase in antibiotic resistance among Gram-positive bacteria underscores the urgent need to develop new antibiotics. New antibiotics should target actively growing susceptible bacteria that are resistant to clinically accepted antibiotics including bacteria that are not growing or are protected in a biofilm environment. In this paper, we compare the in vitro activities of two new semisynthetic glycopeptide antibiotics, MA79 and ERJ390, with two clinically used glycopeptide antibiotics-vancomycin and teicoplanin. The new antibiotics effectively killed not only exponentially growing cells of Staphylococcus aureus, but also cells in the stationary growth phase and biofilm.
Department of Pharmaceutical Chemistry University of Debrecen Egyetem Tér 1 H 4032 Debrecen Hungary
Institute of Microbiology Czech Academy of Sciences Průmyslova 595 25250 Vestec Czech Republic
Zobrazit více v PubMed
Turner N.A., Sharma-Kuinkel B.K., Maskarinec S.A., Eichenberger E.M., Shah P.P., Carugati M., Holland T.L., Fowler V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019;17:203–218. doi: 10.1038/s41579-018-0147-4. PubMed DOI PMC
Beauregard D.A., Williams D.H., Gwynn M.N., Knowles D.J.C. Dimerization and membrane anchors in extracellular targeting of vancomycin group antibiotics. Antimicrob. Agents Chemother. 1995;39:781–785. doi: 10.1128/AAC.39.3.781. PubMed DOI PMC
Economou N.J., Zentner I.J., Lazo E., Jakoncic J., Stojanoff V., Weeks S.D., Grasty K.C., Cocklin S., Loll P.J. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: Use of a carrier-protein approach. Acta Crystallogr. Sect. D Biol. Crystallogr. 2013;69:520–533. doi: 10.1107/S0907444912050469. PubMed DOI PMC
Zeng D., Debabov D., Hartsell T.L., Cano R.J., Adams S., Schuyler J.A., McMillan R., Pace J.L. Approved glycopeptide antibacterial drugs: Mechanism of action and resistance. Cold Spring Harb. Perspect. Med. 2016;6:a026989. doi: 10.1101/cshperspect.a026989. PubMed DOI PMC
Cheung A.L., Bayer A.S., Zhang G., Gresham H., Xiong Y.Q. Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol. Med. Microbiol. 2004;40:1–9. doi: 10.1016/S0928-8244(03)00309-2. PubMed DOI
Pintér G., Batta G., Kéki S., Mándi A., Komáromi I., Takács-Novák K., Sztaricskai F., Roth E., Ostorházi E., Rozgonyi F., et al. Diazo transfer-click reaction route to new, lipophilic teicoplanin and ristocetin aglycon derivatives with high antibacterial and anti-influenza virus activity: An aggregation and receptor binding study. J. Med. Chem. 2009;52:6053–6061. doi: 10.1021/jm900950d. PubMed DOI
Csávás M., Miskovics A., Szűcs Z., Rőth E., Nagy Z.L., Bereczki I., Herczeg M., Batta G., Nemes-Nikodém É., Ostorházi E., et al. Synthesis and antibacterial evaluation of some teicoplanin pseudoaglycon derivatives containing alkyl-and arylthiosubstituted maleimides. J. Antibiot. 2015;68:579–585. doi: 10.1038/ja.2015.33. PubMed DOI
Szűcs Z., Kelemen V., Le Thai S., Csávás M., Rőth E., Batta G., Stevaert A., Vanderlinden E., Naesens L., Herczegh P., et al. Structure-activity relationship studies of lipophilic teicoplanin pseudoaglycon derivatives as new anti-influenza virus agents. Eur. J. Med. Chem. 2018;157:1017–1030. doi: 10.1016/j.ejmech.2018.08.058. PubMed DOI PMC
Vimberg V., Gazak R., Szűcs Z., Borbás A., Herczegh P., Cavanagh J.P., Zieglerova L., Závora J., Adámková V., Balikova Novotna G. Fluorescence assay to predict activity of the glycopeptide antibiotics. J. Antibiot. 2019;72:114–117. doi: 10.1038/s41429-018-0120-5. PubMed DOI
Kaplan J.B. Antibiotic-induced biofilm formation. Int. J. Artif. Organs. 2011;34:737–751. doi: 10.5301/ijao.5000027. PubMed DOI
Mirani Z.A., Jamil N. Effect of sub-lethal doses of vancomycin and oxacillin on biofilm formation by vancomycin intermediate resistant Staphylococcus aureus. J. Basic Microbiol. 2011;51:191–195. doi: 10.1002/jobm.201000221. PubMed DOI
El-Azizi M., Rao S., Kanchanapoom T., Khardori N. In vitro activity of vancomycin, quinupristin/dalfopristin, and linezolid against intact and disrupted biofilms of staphylococci. Ann. Clin. Microbiol. Antimicrob. 2005;4:2. doi: 10.1186/1476-0711-4-2. PubMed DOI PMC
Pozzi C., Waters E.M., Rudkin J.K., Schaeffer C.R., Lohan A.J., Tong P., Loftus B.J., Pier G.B., Fey P.D., Massey R.C., et al. Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog. 2012;8:e1002626. doi: 10.1371/journal.ppat.1002626. PubMed DOI PMC
Omar A., Wright J.B., Schultz G., Burrell R., Nadworny P. Microbial biofilms and chronic wounds. Microorganisms. 2017;5:9. doi: 10.3390/microorganisms5010009. PubMed DOI PMC
Miao J., Lin S., Soteyome T., Peters B.M., Li Y., Chen H., Su J., Li L., Li B., Xu Z., et al. Biofilm Formation of Staphylococcus aureus under Food Heat Processing Conditions: First Report on CML Production within Biofilm. Sci. Rep. 2019;9:1312. doi: 10.1038/s41598-018-35558-2. PubMed DOI PMC
Gwynn M.N., Portnoy A., Rittenhouse S.F., Payne D.J. Challenges of antibacterial discovery revisited. Ann. N. Y. Acad. Sci. 2010;1213:5–19. doi: 10.1111/j.1749-6632.2010.05828.x. PubMed DOI
Blaskovich M.A.T., Hansford K.A., Butler M.S., Jia Z., Mark A.E., Cooper M.A. Developments in Glycopeptide Antibiotics. ACS Infect. Dis. 2018;4:715–735. doi: 10.1021/acsinfecdis.7b00258. PubMed DOI PMC
Mühlberg E., Umstätter F., Kleist C., Domhan C., Mier W., Uhl P. Renaissance of vancomycin: Approaches for breaking antibiotic resistance in multidrug-resistant bacteria. Can. J. Microbiol. 2020;66:11–16. doi: 10.1139/cjm-2019-0309. PubMed DOI
Belley A., Neesham-Grenon E., McKay G., Arhin F.F., Harris R., Beveridge T., Parr T.R., Moeck G. Oritavancin kills stationary-phase and biofilm Staphylococcus aureus cells in vitro. Antimicrob. Agents Chemother. 2009;53:918–925. doi: 10.1128/AAC.00766-08. PubMed DOI PMC
Belley A., Lalonde Seguin D., Arhin F., Moeck G. Comparative in vitro activities of oritavancin, dalbavancin, and vancomycin against methicillin-resistant Staphylococcus aureus isolates in a nondividing state. Antimicrob. Agents Chemother. 2016;60:4342–4345. doi: 10.1128/AAC.00169-16. PubMed DOI PMC
Chan C., Hardin T.C., Smart J.I. A review of telavancin activity in in vitro biofilms and animal models of biofilm-associated infections. Future Microbiol. 2015;10:1325–1338. doi: 10.2217/fmb.15.53. PubMed DOI
Meeker D.G., Beenken K.E., Mills W.B., Loughran A.J., Spencer H.J., Lynn W.B., Smeltzer M.S. Evaluation Of Antibiotics Active Against methicillin-resistant Staphylococcus aureus based on activity in an established biofilm. Antimicrob. Agents Chemother. 2016;60:5688–5694. doi: 10.1128/AAC.01251-16. PubMed DOI PMC
Zhanel G.G., Calic D., Schweizer F., Zelenitsky S., Adam H., Lagac-Wiens P.R.S., Rubinstein E., Gin A.S., Hoban D.J., Karlowsky J.A. New lipoglycopeptides: A comparative review of dalbavancin, oritavancin and telavancin. Drugs. 2010;70:859–886. doi: 10.2165/11534440-000000000-00000. PubMed DOI
Zhanel G.G., Schweizer F., Karlowsky J.A. Oritavancin: Mechanism of action. Clin. Infect. Dis. 2012;54:S214–S219. doi: 10.1093/cid/cir920. PubMed DOI
Song Y., Lunde C.S., Benton B.M., Wilkinson B.J. Further insights into the mode of action of the lipoglycopeptide telavancin through global gene expression studies. Antimicrob. Agents Chemother. 2012;56:3157–3164. doi: 10.1128/AAC.05403-11. PubMed DOI PMC
Cheng M., Ziora Z.M., Hansford K.A., Blaskovich M.A., Butler M.S., Cooper M.A. Anti-cooperative ligand binding and dimerisation in the glycopeptide antibiotic dalbavancin. Org. Biomol. Chem. 2014;12:2568–2575. doi: 10.1039/C3OB42428F. PubMed DOI PMC
Berscheid A., François P., Strittmatter A., Gottschalk G., Schrenzel J., Sass P., Bierbaum G. Generation of a vancomycin-intermediate Staphylococcus aureus (VISA) strain by two amino acid exchanges in VraS. J. Antimicrob. Chemother. 2014;69:3190–3198. doi: 10.1093/jac/dku297. PubMed DOI
Werth B.J., Jain R., Hahn A., Cummings L., Weaver T., Waalkes A., Sengupta D., Salipante S.J., Rakita R.M., Butler-Wu S.M. Emergence of dalbavancin non-susceptible, vancomycin-intermediate Staphylococcus aureus (VISA) after treatment of MRSA central line-associated bloodstream infection with a dalbavancin- and vancomycin-containing regimen. Clin. Microbiol. Infect. 2018;24:429.e1–429.e5. doi: 10.1016/j.cmi.2017.07.028. PubMed DOI
Vimberg V., Zieglerová L., Buriánková K., Branny P., Balíková Novotná G. VanZ Reduces the Binding of Lipoglycopeptide Antibiotics to Staphylococcus aureus and Streptococcus pneumoniae Cells. Front. Microbiol. 2020;11:566. doi: 10.3389/fmicb.2020.00566. PubMed DOI PMC
Cong Y., Yang S., Rao X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J. Adv. Res. 2020;21:169–176. doi: 10.1016/j.jare.2019.10.005. PubMed DOI PMC
Gillaspy A.F., Worrell V., Orvis J., Roe B.A., Dyer D.W., Iandolo J.J. Gram-Positive Pathogens. 2nd ed. American Society of Microbiology; Washington, DC, USA: 2006. The Staphylococcus aureus NCTC 8325 Genome; pp. 381–412.
Hiramatsu K. The emergence of Staphylococcus aureus with reduced susceptibility to vancomycin in Japan. Am. J. Med. 1998;104:7S–10S. doi: 10.1016/S0002-9343(98)00149-1. PubMed DOI
Baba T., Bae T., Schneewind O., Takeuchi F., Hiramatsu K. Genome sequence of Staphylococcus aureus strain newman and comparative analysis of staphylococcal genomes: Polymorphism and evolution of two major pathogenicity islands. J. Bacteriol. 2008;190:300–310. doi: 10.1128/JB.01000-07. PubMed DOI PMC
Vimberg V., Kuzma M., Stodůlková E., Novák P., Bednárová L., Šulc M., Gažák R. Hydnocarpin-Type Flavonolignans: Semisynthesis and Inhibitory Effects on Staphylococcus aureus Biofilm Formation. J. Nat. Prod. 2015;78:2095–2103. doi: 10.1021/acs.jnatprod.5b00430. PubMed DOI