Pre-stimulus phase and amplitude regulation of phase-locked responses are maximized in the critical state
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
612.001.123
Netherlands Organization for Scientific Research
406.15.256
Netherlands Organization for Scientific Research
612.001.123
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
406.15.256
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
PubMed
32324137
PubMed Central
PMC7217696
DOI
10.7554/elife.53016
PII: 53016
Knihovny.cz E-zdroje
- Klíčová slova
- critical brain dynamics, neuroscience, ongoing oscillations, perception, versatility,
- MeSH
- lidé MeSH
- mozek cytologie fyziologie MeSH
- nervová síť fyziologie MeSH
- neurony fyziologie MeSH
- počítačová simulace MeSH
- zraková percepce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Understanding why identical stimuli give differing neuronal responses and percepts is a central challenge in research on attention and consciousness. Ongoing oscillations reflect functional states that bias processing of incoming signals through amplitude and phase. It is not known, however, whether the effect of phase or amplitude on stimulus processing depends on the long-term global dynamics of the networks generating the oscillations. Here, we show, using a computational model, that the ability of networks to regulate stimulus response based on pre-stimulus activity requires near-critical dynamics-a dynamical state that emerges from networks with balanced excitation and inhibition, and that is characterized by scale-free fluctuations. We also find that networks exhibiting critical oscillations produce differing responses to the largest range of stimulus intensities. Thus, the brain may bring its dynamics close to the critical state whenever such network versatility is required.
Czech Technical University Prague Prague Czech Republic
Neuroscience Institute New York University School of Medicine New York United States
Zobrazit více v PubMed
Aru J, Bachmann T, Singer W, Melloni L. Distilling the neural correlates of consciousness. Neuroscience & Biobehavioral Reviews. 2012;36:737–746. doi: 10.1016/j.neubiorev.2011.12.003. PubMed DOI
Baird B, Smallwood J, Lutz A, Schooler JW. The decoupled mind: mind-wandering disrupts cortical phase-locking to perceptual events. Journal of Cognitive Neuroscience. 2014;26:2596–2607. doi: 10.1162/jocn_a_00656. PubMed DOI
Bak P, Tang C, Wiesenfeld K. Self-organized criticality: an explanation of the 1/f noise. Physical Review Letters. 1987;59:381–384. doi: 10.1103/PhysRevLett.59.381. PubMed DOI
Beggs JM, Plenz D. Neuronal avalanches in neocortical circuits. The Journal of Neuroscience. 2003;23:11167–11177. doi: 10.1523/JNEUROSCI.23-35-11167.2003. PubMed DOI PMC
Berens P. CircStat : a MATLAB toolbox for circular statistics. Journal of Statistical Software. 2009;31:1–21. doi: 10.18637/jss.v031.i10. DOI
Busch NA, Dubois J, VanRullen R. The phase of ongoing EEG oscillations predicts visual perception. Journal of Neuroscience. 2009;29:7869–7876. doi: 10.1523/JNEUROSCI.0113-09.2009. PubMed DOI PMC
Capilla A, Schoffelen JM, Paterson G, Thut G, Gross J. Dissociated α-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception. Cerebral Cortex. 2014;24:550–561. doi: 10.1093/cercor/bhs343. PubMed DOI PMC
Chen Z, Ivanov PC, Hu K, Stanley HE. Effect of nonstationarities on detrended fluctuation analysis. Physical Review E. 2002;65:41107. doi: 10.1103/PhysRevE.65.041107. PubMed DOI
Chialvo DR. Emergent complex neural dynamics. Nature Physics. 2010;6:744–750. doi: 10.1038/nphys1803. DOI
Cramer B, Stöckel D, Kreft M, Schemmel J, Meier K, Priesemann V. Control of criticality and computation in spiking neuromorphic networks with plasticity. arXiv. 2019 https://arxiv.org/abs/1909.08418 PubMed PMC
Dalla Porta L, Copelli M. Modeling neuronal avalanches and long-range temporal correlations at the emergence of collective oscillations: continuously varying exponents mimic M/EEG results. PLOS Computational Biology. 2019;15:e1006924. doi: 10.1371/journal.pcbi.1006924. PubMed DOI PMC
Dehaene S, Changeux J-P. Experimental and Theoretical Approaches to Conscious Processing. Neuron. 2011;70:200–227. doi: 10.1016/j.neuron.2011.03.018. PubMed DOI
Del Papa B, Priesemann V, Triesch J. Criticality meets learning: criticality signatures in a self-organizing recurrent neural network. PLOS ONE. 2017;12:e0178683. doi: 10.1371/journal.pone.0178683. PubMed DOI PMC
Engel AK, Singer W. Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Sciences. 2001;5:16–25. doi: 10.1016/S1364-6613(00)01568-0. PubMed DOI
Ergenoglu T, Demiralp T, Bayraktaroglu Z, Ergen M, Beydagi H, Uresin Y. Alpha rhythm of the EEG modulates visual detection performance in humans. Cognitive Brain Research. 2004;20:376–383. doi: 10.1016/j.cogbrainres.2004.03.009. PubMed DOI
Gao J, Hu J, Tung W-W, Cao Y, Sarshar N, Roychowdhury VP. Assessment of long-range correlation in time series: how to avoid pitfalls. Physical Review E. 2006;73:1–10. doi: 10.1103/PhysRevE.73.016117. PubMed DOI
Gautam SH, Hoang TT, McClanahan K, Grady SK, Shew WL. Maximizing sensory dynamic range by tuning the cortical state to criticality. PLOS Computational Biology. 2015;11:e1004576. doi: 10.1371/journal.pcbi.1004576. PubMed DOI PMC
Haider B, Duque A, Hasenstaub AR, McCormick DA. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. Journal of Neuroscience. 2006;26:4535–4545. doi: 10.1523/JNEUROSCI.5297-05.2006. PubMed DOI PMC
Händel BF, Haarmeier T, Jensen O. Alpha oscillations correlate with the successful inhibition of unattended stimuli. Journal of Cognitive Neuroscience. 2011;23:2494–2502. doi: 10.1162/jocn.2010.21557. PubMed DOI
Hanslmayr S, Klimesch W, Sauseng P, Gruber W, Doppelmayr M, Freunberger R, Pecherstorfer T. Visual discrimination performance is related to decreased alpha amplitude but increased phase locking. Neuroscience Letters. 2005;375:64–68. doi: 10.1016/j.neulet.2004.10.092. PubMed DOI
Hardstone R, Poil SS, Schiavone G, Jansen R, Nikulin VV, Mansvelder HD, Linkenkaer-Hansen K. Detrended fluctuation analysis: a scale-free view on neuronal oscillations. Frontiers in Physiology. 2012;3:450. doi: 10.3389/fphys.2012.00450. PubMed DOI PMC
Hellyer PJ, Shanahan M, Scott G, Wise RJ, Sharp DJ, Leech R. The control of global brain dynamics: opposing actions of frontoparietal control and default mode networks on attention. Journal of Neuroscience. 2014;34:451–461. doi: 10.1523/JNEUROSCI.1853-13.2014. PubMed DOI PMC
Irrmischer M, Poil SS, Mansvelder HD, Intra FS, Linkenkaer-Hansen K. Strong long-range temporal correlations of beta/gamma oscillations are associated with poor sustained visual attention performance. European Journal of Neuroscience. 2018;48:2674–2683. doi: 10.1111/ejn.13672. PubMed DOI PMC
Jensen O, Bonnefond M, VanRullen R. An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences. 2012;16:200–206. doi: 10.1016/j.tics.2012.03.002. PubMed DOI
Jensen O, Mazaheri A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Frontiers in Human Neuroscience. 2010;4:186. doi: 10.3389/fnhum.2010.00186. PubMed DOI PMC
Kinouchi O, Copelli M. Optimal dynamical range of excitable networks at criticality. Nature Physics. 2006;2:348–351. doi: 10.1038/nphys289. DOI
Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: The inhibition–timing hypothesis. Brain Research Reviews. 2007;53:63–88. doi: 10.1016/j.brainresrev.2006.06.003. PubMed DOI
Larremore DB, Shew WL, Restrepo JG. Predicting criticality and dynamic range in complex networks: effects of topology. Physical Review Letters. 2011;106:1–4. doi: 10.1103/PhysRevLett.106.058101. PubMed DOI
Levina A, Herrmann JM, Geisel T. Dynamical synapses causing self-organized criticality in neural networks. Nature Physics. 2007;3:857–860. doi: 10.1038/nphys758. DOI
Li Q, Hill Z, He BJ. Spatiotemporal dissociation of brain activity underlying subjective awareness, objective performance and confidence. Journal of Neuroscience. 2014;34:4382–4395. doi: 10.1523/JNEUROSCI.1820-13.2014. PubMed DOI PMC
Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ. Long-range temporal correlations and scaling behavior in human brain oscillations. The Journal of Neuroscience. 2001;21:1370–1377. doi: 10.1523/JNEUROSCI.21-04-01370.2001. PubMed DOI PMC
Linkenkaer-Hansen K, Nikulin VV, Palva S, Ilmoniemi RJ, Palva JM. Prestimulus oscillations enhance psychophysical performance in humans. Journal of Neuroscience. 2004;24:10186–10190. doi: 10.1523/JNEUROSCI.2584-04.2004. PubMed DOI PMC
Macdonald JS, Mathan S, Yeung N. Trial-by-Trial variations in subjective attentional state are reflected in ongoing prestimulus EEG alpha oscillations. Frontiers in Psychology. 2011;2:82. doi: 10.3389/fpsyg.2011.00082. PubMed DOI PMC
Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ. Dynamic brain sources of visual evoked responses. Science. 2002;295:690–694. doi: 10.1126/science.1066168. PubMed DOI
Mathewson KE, Gratton G, Fabiani M, Beck DM, Ro T. To see or not to see: prestimulus alpha phase predicts visual awareness. Journal of Neuroscience. 2009;29:2725–2732. doi: 10.1523/JNEUROSCI.3963-08.2009. PubMed DOI PMC
Mayer A, Schwiedrzik CM, Wibral M, Singer W, Melloni L. Expecting to see a letter: alpha oscillations as carriers of Top-Down sensory predictions. Cerebral Cortex. 2016;26:3146–3160. doi: 10.1093/cercor/bhv146. PubMed DOI
Melloni L, Schwiedrzik CM, Müller N, Rodriguez E, Singer W. Expectations change the signatures and timing of electrophysiological correlates of perceptual awareness. Journal of Neuroscience. 2011;31:1386–1396. doi: 10.1523/JNEUROSCI.4570-10.2011. PubMed DOI PMC
Min BK, Busch NA, Debener S, Kranczioch C, Hanslmayr S, Engel AK, Herrmann CS. The best of both worlds: phase-reset of human EEG alpha activity and additive power contribute to ERP generation. International Journal of Psychophysiology. 2007;65:58–68. doi: 10.1016/j.ijpsycho.2007.03.002. PubMed DOI
Mitchell DP. Spectrally Optimal Sampling for Distribution Ray Tracing. ACM Siggraph Computer Graphics; 1991.
Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapping. 2002;15:1–25. doi: 10.1002/hbm.1058. PubMed DOI PMC
Palva S, Linkenkaer-Hansen K, Näätänen R, Palva JM. Early neural correlates of conscious somatosensory perception. Journal of Neuroscience. 2005;25:5248–5258. doi: 10.1523/JNEUROSCI.0141-05.2005. PubMed DOI PMC
Pfeffer T, Avramiea AE, Nolte G, Engel AK, Linkenkaer-Hansen K, Donner TH. Catecholamines alter the intrinsic variability of cortical population activity and perception. PLOS Biology. 2018;16:e2003453. doi: 10.1371/journal.pbio.2003453. PubMed DOI PMC
Pins D, Ffytche D. The neural correlates of conscious vision. Cerebral Cortex. 2003;13:461–474. doi: 10.1093/cercor/13.5.461. PubMed DOI
Poil SS, Hardstone R, Mansvelder HD, Linkenkaer-Hansen K. Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks. Journal of Neuroscience. 2012;32:9817–9823. doi: 10.1523/JNEUROSCI.5990-11.2012. PubMed DOI PMC
Rudolph M, Destexhe A. A fast-conducting, stochastic integrative mode for neocortical neurons in vivo. The Journal of Neuroscience. 2003;23:2466–2476. doi: 10.1523/JNEUROSCI.23-06-02466.2003. PubMed DOI PMC
Sauseng P, Klimesch W, Gruber WR, Hanslmayr S, Freunberger R, Doppelmayr M. Are event-related potential components generated by phase resetting of brain oscillations? A critical discussion. Neuroscience. 2007;146:1435–1444. doi: 10.1016/j.neuroscience.2007.03.014. PubMed DOI
Shew WL, Yang H, Petermann T, Roy R, Plenz D. Neuronal avalanches imply maximum dynamic range in cortical networks at criticality. Journal of Neuroscience. 2009;29:15595–15600. doi: 10.1523/JNEUROSCI.3864-09.2009. PubMed DOI PMC
Smit S, Eiben AE. Multi-Problem parameter tuning using bonesa. Artificial Evolution; 2011. pp. 222–233.
Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich MW, Beckmann CF, Jenkinson M, Andersson J, Glasser MF, Van Essen DC, Feinberg DA, Yacoub ES, Ugurbil K. Temporally-independent functional modes of spontaneous brain activity. PNAS. 2012;109:3131–3136. doi: 10.1073/pnas.1121329109. PubMed DOI PMC
Stimberg M, Goodman DF, Benichoux V, Brette R. Equation-oriented specification of neural models for simulations. Frontiers in Neuroinformatics. 2014;8:6. doi: 10.3389/fninf.2014.00006. PubMed DOI PMC
Thut G, Nietzel A, Brandt SA, Pascual-Leone A. Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention Bias and predicts visual target detection. Journal of Neuroscience. 2006;26:9494–9502. doi: 10.1523/JNEUROSCI.0875-06.2006. PubMed DOI PMC
Tomen N, Rotermund D, Ernst U. Marginally subcritical dynamics explain enhanced stimulus discriminability under attention. Frontiers in Systems Neuroscience. 2014;8:1–15. doi: 10.3389/fnsys.2014.00151. PubMed DOI PMC
Tononi G, Koch C. The neural correlates of consciousness: an update. Annals of the New York Academy of Sciences. 2008;1124:239–261. doi: 10.1196/annals.1440.004. PubMed DOI
VanRullen R. Perceptual cycles. Trends in Cognitive Sciences. 2016;20:723–735. doi: 10.1016/j.tics.2016.07.006. PubMed DOI
Vidal JR, Perrone-Bertolotti M, Kahane P, Lachaux J-P. Intracranial spectral amplitude dynamics of perceptual suppression in fronto-insular, occipito-temporal, and primary visual cortex. Frontiers in Psychology. 2015;5:1–14. doi: 10.3389/fpsyg.2014.01545. PubMed DOI PMC
Voloh B, Womelsdorf T. A role of Phase-Resetting in coordinating large scale neural networks during attention and Goal-Directed behavior. Frontiers in Systems Neuroscience. 2016;10:18. doi: 10.3389/fnsys.2016.00018. PubMed DOI PMC
Wyart V, Tallon-Baudry C. How ongoing fluctuations in human visual cortex predict perceptual awareness: baseline shift versus decision Bias. Journal of Neuroscience. 2009;29:8715–8725. doi: 10.1523/JNEUROSCI.0962-09.2009. PubMed DOI PMC
Zierenberg J, Wilting J, Priesemann V, Levina A. Tailored ensembles of neural networks optimize sensitivity to stimulus statistics. Physical Review Research. 2020;2:13115. doi: 10.1103/PhysRevResearch.2.013115. DOI
figshare
10.6084/m9.figshare.12167943.v2