• This record comes from PubMed

Raman Optical Activity of Glucose and Sorbose in Extended Wavenumber Range

. 2020 Jun 16 ; 21 (12) : 1272-1279. [epub] 20200525

Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
20-10144S Czech Grant Agency - International
18-05770S Czech Grant Agency - International
19-19561S Czech Grant Agency - International
LTC17012 Ministry of Education - International
LM2015042 Ministry of Education - International
CERIT-SC Ministry of Education - International
LM2015085 Ministry of Education - International
CZ.02.1.01/0.0/0.0/16_019/0000729 European Regional Development Fund - International

Raman optical activity (ROA) is pursued as a promising method for structural analyses of sugars in aqueous solutions. In the present study, experimental Raman and ROA spectra of glucose and sorbose obtained in an extended range (50-4000 cm-1 ) are interpreted using molecular dynamics and density functional theory, with the emphasis on CH stretching modes. A reasonable theoretical basis for spectral interpretation was obtained already at the harmonic level. Anharmonic corrections led to minor shifts of band positions (up to 25 cm-1 ) below 2000 cm-1 , while the CH stretching bands shifted more, by ∼180 cm-1 , and better reproduced the experiment. However, the anharmonicities could be included on a relatively low approximation level only, and they did not always improve the harmonic band shapes. The dependence on the structure and conformation shows that the CH stretching ROA spectral pattern is a sensitive marker useful in saccharide structure studies.

See more in PubMed

R. Politi, L. Sapir, D. Harries, J. Phys. Chem. A 2009, 113, 7548-7555.

T. Fukuyama, K. Matsuo, K. Gekko, Chirality 2011, 23, E52-E58.

P. K. Bose, P. L. Polavarapu, Carbohyd. Res. 1999, 319, 172-183.

P. K. Bose, P. L. Polavarapu, J. Am. Chem. Soc. 1999, 121, 6094-6095.

A. Melcerová, J. Kessler, P. Bouř, J. Kaminský, Phys. Chem. Chem. Phys. 2016, 18, 2130-2142.

F. Zielinski, S. T. Mutter, C. Johannessen, E. W. Blanch, P. L. A. Popelier, Phys. Chem. Chem .Phys. 2015, 17, 21799-21809.

J. R. Cheeseman, M. S. Shaik, P. L. A. Popelier, E. W. Blanch, J. Am. Chem. Soc. 2011, 133, 4991-4997.

B. Mulloy, P. A. S. Mourão, E. Gray, J. Biotechnology 2000, 77, 123-135.

M. Buděšínský, P. Daněček, L. Bednárová, J. Kapitán, V. Baumruk, P. Bouř, J. Phys. Chem. A 2008, 112, 8633-8640.

L. Nafie, Vibrational optical activity: Principles and applications, Wiley, Chichester, 2011.

W. Hug, S. Kint, G. F. Bailey, J. R. Schere, J. Am. Chem. Soc. 1975, 97.

J. Hudecová, V. Profant, P. Novotná, V. Baumruk, M. Urbanová, P. Bouř, J. Chem. Theory Comput. 2013, 9, 3096-3108.

P. Michal, R. Čelechovský, M. Dudka, J. Kapitán, M. Vůjtek, M. Berešová, J. Šebestík, K. Thangavel, P. Bouř, J. Phys. Chem. B 2019, 123, 2147-2156.

M. Hope, J. Šebestík, J. Kapitán, P. Bouř, J. Phys. Chem. A 2020, 124, 674-683.

P. Carbonniere, T. Lucca, C. Pouchan, N. Rega, V. Barone, J. Comput. Chem. 2005, 26, 384-388.

V. Barone, J. Chem. Phys. 2005, 122, 014108.

J. Bloino, M. Biczysko, V. Barone, J. Phys. Chem. A 2015, 119, 11862-11874.

V. Palivec, V. Kopecký, P. Jungwirth, P. Bouř, J. Kaminský, H. Martinez-Seara, Phys Chem. Chem. Phys. 2020, 22, 1983-1993.

R. G. Nelson, W. C. Johnson, J. Am. Chem. Soc. 1976, 98, 4290-4295.

W. Hug, Appl. Spectrosc. 2003, 57, 1-13.

L. D. Barron, Molecular Light Scattering and Optical Activity, Cambridge University Press, Cambridge, UK, 2004.

J. R. Cheeseman, M. J. Frisch, J. Chem. Theory Comput. 2011, 7, 3323-3334.

K. N. Kirschner, A. B. Yongye, S. M. Tschampel, J. González-Outeiriño, C. R. Daniels, B. L. Foley, R. J. Woods, J. Comput. Chem. 2008, 29, 622-655.

F. Franks, P. J. Lillford, G. Robinson, J. Chem. Soc., Faraday Trans. 1 1989, 85, 2417-2426.

W. Hug, G. Hangartner, J. Raman Spectrosc. 1999, 30, 841-852.

P. Bouř, D. Michalík, J. Kapitán, J. Chem. Phys. 2005, 122, 144501.

M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, SoftwareX 2015, 1, 19-25.

W. G. Hoover, Phys. Rev. A 1985, 31, 1695-1697.

M. Parrinello, A. Rahman, J. Appl. Phys. 1981, 52, 7182-7190.

R. Danne, C. Poojari, H. Martinez-Seara, S. Rissanen, F. Lolicato, T. Róg, I. Vattulainen, J. Chem. Inf. Model. 2017, 57, 2401-2406.

S. Izadi, A. V. Onufriev, J. Chem. Phys. 2016, 145, 074501.

B. Hess, H. Bekker, H. J. C. Berendsen, J. G. E. M. Fraaije, J. Comput. Chem. 1997, 18, 1463-1472.

T. Darden, Y. D. L. Pedersen, J. Chem. Phys. 1993, 98, 10089-10092.

J. Jungwirth, J. Šebestík, M. Šafařík, J. Kapitán, P. Bouř, J. Phys. Chem. B 2017, 121, 8956-8964.

Y. Zhu, J. Zajicek, A. S. Serianni, J. Org. Chem. 2001, 66, 6244-6251.

A. Klamt, G. Schuurmann, J. Chem. Soc., Perkin Trans. 2 1993, 799-805.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox in Gaussian 16 Rev. A.03, Vol. (Ed. Eds.: Editor), City, 2016.

P. B. Karadakov, K. Morokuma, Chem. Phys. Lett. 1987, 317, 589-596.

A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, J. Chem. Phys. 1983, 79, 926-935.

J. R. Cheeseman in Calculation of Molecular Chiroptical Properties using Density Functional Theory, (B. L. Feringa, W. Meijer, Eds.), University of Groningen, City, 2007, pp. INV 3.

P. L. Polavarapu, Vibrational spectra: principles and applications with emphasis on optical activity, Elsevier, Amsterdam, 1998.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...