Use of Raman and Raman optical activity to extract atomistic details of saccharides in aqueous solution
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35051172
PubMed Central
PMC8806073
DOI
10.1371/journal.pcbi.1009678
PII: PCOMPBIOL-D-21-02118
Knihovny.cz E-zdroje
- MeSH
- cukry analýza chemie MeSH
- optická otáčivost MeSH
- Ramanova spektroskopie metody MeSH
- simulace molekulární dynamiky MeSH
- voda chemie MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cukry MeSH
- voda MeSH
Sugars are crucial components in biosystems and industrial applications. In aqueous environments, the natural state of short saccharides or charged glycosaminoglycans is floating and wiggling in solution. Therefore, tools to characterize their structure in a native aqueous environment are crucial but not always available. Here, we show that a combination of Raman/ROA and, on occasions, NMR experiments with Molecular Dynamics (MD) and Quantum Mechanics (QM) is a viable method to gain insights into structural features of sugars in solutions. Combining these methods provides information about accessible ring puckering conformers and their proportions. It also provides information about the conformation of the linkage between the sugar monomers, i.e., glycosidic bonds, allowing for identifying significantly accessible conformers and their relative abundance. For mixtures of sugar moieties, this method enables the deconvolution of the Raman/ROA spectra to find the actual amounts of its molecular constituents, serving as an effective analytical technique. For example, it allows calculating anomeric ratios for reducing sugars and analyzing more complex sugar mixtures to elucidate their real content. Altogether, we show that combining Raman/ROA spectroscopies with simulations is a versatile method applicable to saccharides. It allows for accessing many features with precision comparable to other methods routinely used for this task, making it a viable alternative. Furthermore, we prove that the proposed technique can scale up by studying the complicated raffinose trisaccharide, and therefore, we expect its wide adoption to characterize sugar structural features in solution.
Department of Chemistry University of Antwerp Antwerp Belgium
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Vuorio J, Škerlová J, Fábry M, Veverka V, Vattulainen I, Řezáčová P, et al.. N-glycosylation can selectively block or foster different receptor–ligand binding modes. Scientific Reports. 2021;11(1). doi: 10.1038/s41598-021-84569-z PubMed DOI PMC
Tarbell JM, Cancel LM. The glycocalyx and its significance in human medicine. Journal of Internal Medicine. 2016;280(1):97–113. doi: 10.1111/joim.12465 PubMed DOI
Tang Y, Cheng F, Feng Z, Jia G, Li C. Stereostructural elucidation of glucose phosphorylation by Raman optical activity. The Journal of Physical Chemistry B. 2019;123(37):7794–7800. doi: 10.1021/acs.jpcb.9b05968 PubMed DOI
Sodhi H, Panitch A. Glycosaminoglycans in tissue engineering: A review. Biomolecules. 2020;11(1):29. doi: 10.3390/biom11010029 PubMed DOI PMC
Imberty A, Pérez S. Structure, conformation, and dynamics of bioactive oligosaccharides: theoretical approaches and experimental validations. Chemical Reviews. 2000;100(12):4567–4588. doi: 10.1021/cr990343j PubMed DOI
Wormald MR, Petrescu AJ, Pao YL, Glithero A, Elliott T, Dwek RA. Conformational studies of oligosaccharides and glycopeptides: Complementarity of NMR, X-ray crystallography, and molecular modelling. Chemical Reviews. 2002;102(2):371–386. doi: 10.1021/cr990368i PubMed DOI
Rudolph MG, Speir JA, Brunmark A, Mattsson N, Jackson MR, Peterson PA, et al.. The crystal structures of Kbm1 and Kbm8 reveal that subtle changes in the peptide environment impact thermostability and alloreactivity. Immunity. 2001;14(3):231–242. doi: 10.1016/S1074-7613(01)00105-4 PubMed DOI
Peréz S, Mouhous-Riou N, Nifant’ev NE, Tsvetkov YE, Bachet B, Imberty A. Crystal and molecular structure of a histo-blood group antigen involved in cell adhesion: the Lewis x trisaccharide. Glycobiology. 1996;6(5):537–542. doi: 10.1093/glycob/6.5.537 PubMed DOI
Barron LD, Bogaard P, Buckingham AD. Raman scattering of circularly polarized light by optically active molecules. Journal of the American Chemical Society. 1973;95(2):603–605. doi: 10.1021/ja00783a058 DOI
Palivec V, Kopecký V, Jungwirth P, Bouř P, Kaminský J, Martinez-Seara H. Simulation of Raman and Raman optical activity of saccharides in solution. Physical Chemistry Chemical Physics. 2020;22(4). doi: 10.1039/C9CP05682C PubMed DOI
Palivec V, Michal P, Kapitán J, Martinez-Seara H, Bouř P. Raman optical activity of glucose and sorbose in extended wavenumber range. ChemPhysChem. 2020;21(12). doi: 10.1002/cphc.202000261 PubMed DOI
Mutter ST, Zielinski F, Johannessen C, Popelier PLA, Blanch EW. Distinguishing epimers through Raman optical activity. Journal of Physical Chemistry A. 2016;120(11):1908–1916. doi: 10.1021/acs.jpca.6b00358 PubMed DOI
Melcrová A, Kessler J, Bouř P, Kaminský J. Simulation of Raman optical activity of multi-component monosaccharide samples. Physical Chemistry Chemical Physics. 2016;18(3):2130–2142. doi: 10.1039/C5CP04111B PubMed DOI
Kaminský J, Kapitán J, Baumruk V, Bednárová L, Bouř P. Interpretation of Raman and Raman optical activity spectra of a flexible sugar derivative, the gluconic acid anion. Journal of Physical Chemistry A. 2009;113(15):3594–3601. doi: 10.1021/jp809210n PubMed DOI
Rüther A, Forget A, Roy A, Carballo C, Mießmer F, Dukor RK, et al.. Unravelling a direct role for polysaccharide β-Strands in the higher order structure of physical hydrogels. Angewandte Chemie International Edition. 2017;56(16):4603–4607. doi: 10.1002/anie.201701019 PubMed DOI
Pendrill R, Mutter ST, Mensch C, Barron LD, Blanch EW, Popelier PLA, et al.. Solution structure of mannobioses unravelled by means of Raman optical activity. ChemPhysChem. 2019;20(5):695–705. doi: 10.1002/cphc.201801172 PubMed DOI
Brehm M, Thomas M. Computing Bulk Phase Raman Optical Activity Spectra from ab initio Molecular Dynamics Simulations. Journal of Physical Chemistry Letters. 2017;8(14):3409–3414. doi: 10.1021/acs.jpclett.7b01616 PubMed DOI
Cheeseman JR, Shaik MS, Popelier PLA, Blanch EW. Calculation of Raman optical activity spectra of methyl-β-d-glucose incorporating a full molecular dynamics simulation of hydration effects. Journal of the American Chemical Society. 2011;133(13):4991–4997. doi: 10.1021/ja110825z PubMed DOI
Zielinski F, Mutter ST, Johannessen C, Blanch EW, Popelier PLA. The Raman optical activity of β-d-xylose: where experiment and computation meet. Physical chemistry chemical physics: PCCP. 2015;17(34):21799–809. doi: 10.1039/C5CP02969D PubMed DOI
Ghidinelli S, Abbate S, Koshoubu J, Araki Y, Wada T, Longhi G. Solvent Effects and Aggregation Phenomena Studied by Vibrational Optical Activity and Molecular Dynamics: The Case of Pantolactone. Journal of Physical Chemistry B. 2020;124(22):4512–4526. doi: 10.1021/acs.jpcb.0c01483 PubMed DOI PMC
Perera AS, Thomas J, Poopari MR, Xu Y. The clusters-in-a-liquid approach for solvation: New insights from the conformer specific gas phase spectroscopy and vibrational optical activity spectroscopy. Frontiers in Chemistry. 2016;4(FEB):9. doi: 10.3389/fchem.2016.00009 PubMed DOI PMC
Perera AS, Cheramy J, Merten C, Thomas J, Xu Y. IR, Raman, and Vibrational Optical Activity Spectra of Methyl Glycidate in Chloroform and Water: The Clusters-in-a-liquid Solvation Model. ChemPhysChem. 2018;19(17):2234–2242. doi: 10.1002/cphc.201800309 PubMed DOI
Cheeseman JR, Frisch MJ. Basis set dependence of vibrational Raman and Raman optical activity intensities. Journal of Chemical Theory and Computation. 2011;7(10):3323–3334. doi: 10.1021/ct200507e PubMed DOI
Zuber G, Hug W. Rarefied Basis Sets for the calculation of Optical Tensors. 1. The Importance of gradients on hydrogen atoms for the Raman scattering tensor. The Journal of Physical Chemistry A. 2004;108(11):2108–2118. doi: 10.1021/jp031284n DOI
Bouř P, Keiderling TA. Partial optimization of molecular geometry in normal coordinates and use as a tool for simulation of vibrational spectra. The Journal of Chemical Physics. 2002;117(9):4126–4132. doi: 10.1063/1.1498468 DOI
Cremer D, Pople AJ. General definition of ring puckering coordinates. Journal of the American Chemical Society. 1975;97(6):1354–1358. doi: 10.1021/ja00839a011 DOI
ACDLabs. ChemSketch 2015.2.5.
Inkscape. http://www.inkscape.org/; 2020.
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al.. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19–25. doi: 10.1016/j.softx.2015.06.001 DOI
Bonomi M, Bussi G, Camilloni C, Tribello GA, Banáš P, Barducci A, et al.. Promoting transparency and reproducibility in enhanced molecular simulations. Nature Methods. 2019;16(8):670–673. doi: 10.1038/s41592-019-0506-8 PubMed DOI
Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, et al.. GLYCAM06: A generalizable biomolecular force field. Carbohydrates. Journal of Computational Chemistry. 2008;29(4):622–655. doi: 10.1002/jcc.20820 PubMed DOI PMC
Izadi S, Onufriev AV. Accuracy limit of rigid 3-point water models. The Journal of Chemical Physics. 2016;145(7):074501. doi: 10.1063/1.4960175 PubMed DOI PMC
Barducci A, Bussi G, Parrinello M. Well-tempered metadynamics: A smoothly converging and tunable free-energy method. Physical Review Letters. 2008;100(2):020603. doi: 10.1103/PhysRevLett.100.020603 PubMed DOI
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian16 Revision B.01; 2016.
Orozco M, Marchn I, Soteras I, Vreven T, Morokuma K, Mikkelsen KV, et al.. Beyond the continuum approach. In: Continuum solvation models in chemical physics. Chichester, UK: John Wiley & Sons, Ltd; 2007. p. 499–605. Available from: http://doi.wiley.com/10.1002/9780470515235.ch4. DOI
Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ. A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. Journal of Molecular Structure: THEOCHEM. 1999;461-462:1–21. doi: 10.1016/S0166-1280(98)00475-8 DOI
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics. 1983;79(2):926–935. doi: 10.1063/1.445869 DOI
Nafie L. Vibrational optical activity: Principles and applications. Chichester: Wiley; 2011.
Ruud K, Helgaker T, Bouř P. Gauge-origin independent density-functional theory calculations of vibrational Raman optical activity. Journal of Physical Chemistry A. 2002;106(32):7448–7455. doi: 10.1021/jp026037i DOI
Polavarapu PL, Covington CL. Comparison of Experimental and Calculated Chiroptical Spectra for Chiral Molecular Structure Determination. Chirality. 2014;26(9):539–552. doi: 10.1002/chir.22316 PubMed DOI
Säwén E, Massad T, Landersjö C, Damberg P, Widmalm G. Population distribution of flexible molecules from maximum entropy analysis using different priors as background information: Application to the, ψ-conformational space of the α-(1→2)-linked mannose disaccharide present in N- and O-linked glycoproteins. Organic and Biomolecular Chemistry. 2010;8(16):3684–3695. PubMed
Jensen F. Basis set convergence of nuclear magnetic shielding constants calculated by density functional methods. Journal of Chemical Theory and Computation. 2008;4(5):719–727. doi: 10.1021/ct800013z PubMed DOI
Sattelle BM, Hansen SU, Gardiner J, Almond A. Free energy landscapes of iduronic acid and related monosaccharides. Journal of the American Chemical Society. 2010;132(38):13132–13134. doi: 10.1021/ja1054143 PubMed DOI
Mikkelsen LM, Hernáiz MJ, Martín-Pastor M, Skrydstrup T, Jiménez-Barbero J. Conformation of Glycomimetics in the Free and Protein-Bound State: Structural and Binding Features of the C-glycosyl Analogue of the Core Trisaccharide α-d-Man-(1→3)-[α-d-Man-(1→6)]-d-Man. Journal of the American Chemical Society. 2002;124(50):14940–14951. doi: 10.1021/ja020468x PubMed DOI
Raich I, Lövyová Z, Trnka L, Parkan K, Kessler J, Pohl R, et al.. Limitations in the description of conformational preferences of C-disaccharides: The (1→3)-C-mannobiose case. Carbohydrate research. 2017;451:42–50. doi: 10.1016/j.carres.2017.09.006 PubMed DOI
Bouckaert J, Hamelryck TW, Wyns L, Loris R. The crystal structures of Man(alpha1-3)Man(alpha1-O)Me and Man(alpha1-6)Man(alpha1-O)Me in complex with concanavalin A. The Journal of biological chemistry. 1999;274(41):29188–29195. doi: 10.1074/jbc.274.41.29188 PubMed DOI
Brisson JR, Carver JP. Solution conformation of asparagine-linked oligosaccharides: .alpha.(1-2)-, .alpha.(1-3)-, .beta.(1-2)-, and .beta.(1-4)-linked units. Biochemistry. 2002;22(15):3671–3680. doi: 10.1021/bi00284a021 PubMed DOI
Kim HM, Choi YJ, Lee JH, Jeong KJ, Jung SH. Conformational analysis of trimannoside and bisected trimannoside using aqueous molecular dynamics simulations. Bulletin of the Korean Chemical Society. 2009;30(11):2723–2728. doi: 10.5012/bkcs.2009.30.11.2723 DOI
Kan Z, Yan X, Ma J. Conformation dynamics and polarization effect of α,α-trehalose in a vacuum and in aqueous and salt solutions. The journal of physical chemistry A. 2015;119(9):1573–1589. doi: 10.1021/jp507692h PubMed DOI
Bock K, Defaye J, Driguez H, Bar-Guilloux E. Conformations in solution of α,α-trehalose, α-d-glucopyranosyl α-d-mannopyranoside, and their 1-thioglycosyl analogs, and a tentative correlation of their behaviour with respect to the enzyme trehalase. European journal of biochemistry. 1983;131(3):595–600. doi: 10.1111/j.1432-1033.1983.tb07304.x PubMed DOI
Choi Y, Cho KW, Jeong K, Jung S. Molecular dynamics simulations of trehalose as a’dynamic reducer’ for solvent water molecules in the hydration shell. Carbohydrate Research. 2006;341(8):1020–1028. doi: 10.1016/j.carres.2006.02.032 PubMed DOI
Olsson U, Säwén E, Stenutz R, Widmalm G. Conformational flexibility and dynamics of two (1→6)-linked disaccharides related to an oligosaccharide epitope expressed on malignant tumour cells. Chemistry—A European Journal. 2009;15(35):8886–8894. doi: 10.1002/chem.200900507 PubMed DOI
Zhu Y, Zajicek J, Serianni AS. Acyclic forms of [1-13C]aldohexoses in aqueous solution: Quantitation by 13C NMR and deuterium isotope effects on tautomeric equilibria. Journal of Organic Chemistry. 2001;66(19):6244–6251. doi: 10.1021/jo010541m PubMed DOI
Bubb WA. NMR spectroscopy in the study of carbohydrates: Characterizing the structural complexity. Concepts in Magnetic Resonance. 2003;19A(1):1–19. doi: 10.1002/cmr.a.10080 DOI
Franks F, Lillford PJ, Robinson G. Isomeric equilibria of monosaccharides in solution. Influence of solvent and temperature. Journal of the Chemical Society, Faraday Transactions 1. 1989;85(8):2417. doi: 10.1039/f19898502417 DOI
Bezabeh T, Ijare OB, Albiin N, Arnelo U, Lindberg B, Smith ICP. Detection and quantification of d-glucuronic acid in human bile using 1H NMR spectroscopy: relevance to the diagnosis of pancreatic cancer. Magnetic Resonance Materials in Physics, Biology and Medicine. 2009;22(5):267–275. doi: 10.1007/s10334-009-0171-5 PubMed DOI
Moreau B, Lognay G, Blecker C, Destain J, Gerbaux P, Chéry F, et al.. Chromatographic, spectrometric and NMR characterization of a new Set of glucuronic acid esters synthesized by lipase. Biotechnol Agron Soc Environ. 2007;11(1):9–17.
Liu FC, Su CR, Wu TY, Su SG, Yang HL, Lin JHY, et al.. Efficient 1H-NMR quantitation and investigation of N-Acetyl-d-glucosamine (GlcNAc) and N,N’-diacetylchitobiose (GlcNAc)2 from chitin. International Journal of Molecular Sciences. 2011;12(9):5828–5843. doi: 10.3390/ijms12095828 PubMed DOI PMC
Espinosa JF, Bruix M, Jarreton O, Skrydstrup T, Beau JM, Jiménez-Barbero J. Conformational differences between C- and O-glycosides: The α-C-mannobiose/α-O-mannobiose case. Chemistry—A European Journal. 1999;5(2):442–448. doi: 10.1002/(SICI)1521-3765(19990201)5:2<442::AID-CHEM442>3.0.CO;2-1 DOI
Naidoo KJ, Denysyk D, Brady JW. Molecular dynamics simulations of the N-linked oligosaccharide of the lectin from Erythrina corallodendron. Protein Engineering Design and Selection. 1997;10(11):1249–1261. doi: 10.1093/protein/10.11.1249 PubMed DOI
Zhang W, Turney T, Meredith R, Pan Q, Sernau L, Wang X, et al.. Conformational Populations of β-(1→4) O-glycosidic linkages using redundant NMR J-couplings and circular statistics. Journal of Physical Chemistry B. 2017;121(14):3042–3058. doi: 10.1021/acs.jpcb.7b02252 PubMed DOI PMC
Zhang W, Meredith R, Pan Q, Wang X, Woods RJ, Carmichael I, et al.. Use of circular statistics to model αMan-(1→2)-αMan and αMan-(1→3)-α/βMan O-glycosidic linkage conformation in 13C-labeled disaccharides and high-mannose oligosaccharides. Biochemistry. 2019;58(6):546–560. doi: 10.1021/acs.biochem.8b01050 PubMed DOI
Alonso-Gil S, Parkan K, Kaminský J, Pohl R, Miyazaki T, Alonso-Gil S, et al. Unlocking the hydrolytic mechanism of GH92 α-1,2-mannosidases: computation inspires using C-glycosides as Michaelis complex mimics; 2021. Available from: https://chemrxiv.org/engage/chemrxiv/article-details/618a3df7e04a8ec2a42cbd84. PubMed PMC
Dudek M, Zajac G, Szafraniec E, Wiercigroch E, Tott S, Malek K, et al.. Raman Optical Activity and Raman spectroscopy of carbohydrates in solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2019;206:597–612. doi: 10.1016/j.saa.2018.08.017 PubMed DOI
Profant V, Johannessen C, Blanch EW, Bouř P, Baumruk V. Effects of sulfation and the environment on the structure of chondroitin sulfate studied via Raman optical activity. Physical Chemistry Chemical Physics. 2019;21(14):7367–7377. doi: 10.1039/C9CP00472F PubMed DOI
Bogaerts J, Desmet F, Aerts R, Bultinck P, Herrebout W, Johannessen C. A combined Raman optical activity and vibrational circular dichroism study on artemisinin-type products. Physical Chemistry Chemical Physics. 2020;22(32):18014–18024. doi: 10.1039/D0CP03257C PubMed DOI
Koenis MAJ, Tiekink EH, van Raamsdonk DME, Joosten NU, Gooijer SA, Nicu VP, et al.. Analytical chemistry on many-center chiral compounds based on vibrational circular dichroism: Absolute configuration assignments and determination of contaminant levels. Analytica Chimica Acta. 2019;1090:100–105. doi: 10.1016/j.aca.2019.09.021 PubMed DOI
Yamamoto S, Kaminský J, Bouř P. Structure and vibrational motion of insulin from Raman optical activity spectra. Analytical Chemistry. 2012;84(5):2440–2451. doi: 10.1021/ac2032436 PubMed DOI
Kaminský J, Horáčková F, Biačková N, Hubáčková T, Socha O, Kubelka J. Double hydrogen bonding dimerization propensity of aqueous hydroxy acids investigated using vibrational optical activity. The Journal of Physical Chemistry B. 2021;125:11350–11363. doi: 10.1021/acs.jpcb.1c05480 PubMed DOI