Unlocking the Hydrolytic Mechanism of GH92 α-1,2-Mannosidases: Computation Inspires the use of C-Glycosides as Michaelis Complex Mimics
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
847548
H2020 Marie Skłodowska-Curie Actions
A1_FPBT_2021_002
VŠCHT
LTAUSA18085
Gilead Sciences
19K15748
Japan Society for the Promotion of Science KAKENHI
2019G097
Photon Factory Program Advisory Committee
PubMed
35049087
PubMed Central
PMC9305736
DOI
10.1002/chem.202200148
Knihovny.cz E-zdroje
- Klíčová slova
- carbohydrates, conformations, enzymology, inhibitors, quantum mechanics,
- MeSH
- glykosidhydrolasy metabolismus MeSH
- glykosidy * chemie MeSH
- mannosidasy * chemie MeSH
- molekulární konformace MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- C-glycoside MeSH Prohlížeč
- glykosidhydrolasy MeSH
- glykosidy * MeSH
- mannosidasy * MeSH
The conformational changes in a sugar moiety along the hydrolytic pathway are key to understand the mechanism of glycoside hydrolases (GHs) and to design new inhibitors. The two predominant itineraries for mannosidases go via O S2 →B2,5 →1 S5 and 3 S1 →3 H4 →1 C4 . For the CAZy family 92, the conformational itinerary was unknown. Published complexes of Bacteroides thetaiotaomicron GH92 catalyst with a S-glycoside and mannoimidazole indicate a 4 C1 →4 H5 /1 S5 →1 S5 mechanism. However, as observed with the GH125 family, S-glycosides may not act always as good mimics of GH's natural substrate. Here we present a cooperative study between computations and experiments where our results predict the E5 →B2,5 /1 S5 →1 S5 pathway for GH92 enzymes. Furthermore, we demonstrate the Michaelis complex mimicry of a new kind of C-disaccharides, whose biochemical applicability was still a chimera.
Zobrazit více v PubMed
Ruddock L. W., Molinari M., J. Cell Sci. 2006, 119, 4373–4380. PubMed
Lederkremer G. Z., Curr. Opin. Struct. Biol. 2009, 19, 515. PubMed
H. H. Freeze, H. Schachter. Genetic Disorders of Glycosylation. In: A. Varki, R. D. Cummings, J. D. Esko, editors. Essentials of Glycobiology. 2nd edition, Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 2009. Chapter 42.
Lombard V., Golaconda Ramulu H., Drula E., Coutinho P. M., Henrissat B., Nucleic Acids Res. 2014, 42, D490–5. PubMed PMC
Cobucci-Ponzano B., Conte F., Strazzulli A., Capasso C., Fiume I., Pocsfalvi G., Rossi M., Moracci M., Biochimie 2010, 92, 1895–1907. PubMed
Mast S. W., Moremen K. W., Meth. Enzymol. 2006, 415, 31–46. PubMed PMC
Roth J., Ziak M., Zuber C., Biochimie 2003, 85, 287–294. PubMed
Zhu Y., Suits M. D. L., Thompson A. J., Chavan S., Dinev Z., Dumon C., Smith N., Moremen K. W., Xiang Y., Siriwardena A., Williams S. J., Gilbert H. J., Davies G. J., Nat. Chem. Biol. 2009, 6, 125–132. PubMed PMC
Thompson A. J., Williams R. J., Hakki Z., Alonzi D. S., Wennekes T., Gloster T. M., Songsrirote K., Thomas-Oates J. E., Wrodnigg T. M., Spreitz J., Stütz A. E., Butters T. D., Williams S. J., Davies G. J., Proc. Nat. Acad. Sci. 2012, 109, 781–786. PubMed PMC
Gregg K. J., Zandberg W. F., Hehemann J−H., Whitworth G. E., Deng L., Vocadlo D. J., Boraston A. B., J. Biol. Chem. 2011, 286, 15586–15596. PubMed PMC
Davies G. J., Wilson K. S., Henrissat B., Biochem. J. 1997, 321, 557–669. PubMed PMC
McCarter J. D., Withers S., Curr. Op. Struc. Biol. 1994, 4, 885–892. PubMed
Gloster T. M., Davies G. J., Org. Biomol. Chem. 2010, 8, 305–320. PubMed PMC
Colombo C., Bennet A. J., Adv. Phys. Org. Chem. 2017, 51, 99–127.
Alonso-Gil S., J. Carbohydr. Chem. 2020, 39, 175–188.
Ren W., Farren-Dai M., Sannikova N., Swiderek K., Wang Y., Akintola O., Britton R., Moliner V., Bennet A. J., Chem. Sci. 2020, 11, 10488–10495. PubMed PMC
Qiao M., Zhang L., Jiao R., Zhang S., Li B., Zhang X., Tetrahedron 2021, 81, 131920.
Thompson A. J., Speciale G., Iglesias-Fernandez J., Hakki Z., Belz T., Cartmell A., Spears R. J., Chandler E., Temple M. J., Stepper J., Gilbert H. J., Rovira C., Davies G. J., Angew. Chem. Int. Ed. 2015, 54, 5378–5382. PubMed
Zou J., Kleywegt G. J., Stahlbert J., Driguez H., Nerinckx W., Claeyssens M., Koivula A., Teeri T. T., Jones T. A., Structure 1999, 7, 1035–1045. PubMed
Alonso-Gil S., Males A., Fernandes P. Z., Williams S. J., Davies G. J., Rovira C., J. Am. Chem. Soc. 2017, 139, 1085–1088. PubMed
Cremer D., Pople J. A., J. Am. Chem. Soc. 1975, 97, 1354–1358.
Bérces A., Whitfield D. M., Nukada T., Tetrahedron 2001, 57, 477–491.
Sinnott M. L., Adv. Phys. Org. Chem. 1988, 24, 113.
Bertolotti B., Oroszova B., Sutkeviciute I., Kniezo L., Fieschi F., Parkan K., Lovyova Z., Kasakova M., Carbohydr. Res. 2016, 435, 7–18. PubMed
Raich I., Lovyová Z., Trnka L., Parkan K., Kessler J., Pohl R., Kaminský J., Carbohydr. Res. 2017, 451, 42–50. PubMed
Li Y., Li R., Yu H., Sheng X., Wang J., Fisher A. J., Chen X., FEBS Lett. 2020, 594, 439–451. PubMed PMC
Oroszová B., Choutka J., Pohl J. R., Parkan K., Chem. Eur. J. 2015, 21, 7043–7047. PubMed
Truhlar D. G., Garrett B. C., Klippenstein S. J., J. Phys. Chem. 1996, 100, 12771–12800.