Unlocking the Hydrolytic Mechanism of GH92 α-1,2-Mannosidases: Computation Inspires the use of C-Glycosides as Michaelis Complex Mimics

. 2022 Mar 07 ; 28 (14) : e202200148. [epub] 20220203

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35049087

Grantová podpora
847548 H2020 Marie Skłodowska-Curie Actions
A1_FPBT_2021_002 VŠCHT
LTAUSA18085 Gilead Sciences
19K15748 Japan Society for the Promotion of Science KAKENHI
2019G097 Photon Factory Program Advisory Committee

The conformational changes in a sugar moiety along the hydrolytic pathway are key to understand the mechanism of glycoside hydrolases (GHs) and to design new inhibitors. The two predominant itineraries for mannosidases go via O S2 →B2,5 →1 S5 and 3 S1 →3 H4 →1 C4 . For the CAZy family 92, the conformational itinerary was unknown. Published complexes of Bacteroides thetaiotaomicron GH92 catalyst with a S-glycoside and mannoimidazole indicate a 4 C1 →4 H5 /1 S5 →1 S5 mechanism. However, as observed with the GH125 family, S-glycosides may not act always as good mimics of GH's natural substrate. Here we present a cooperative study between computations and experiments where our results predict the E5 →B2,5 /1 S5 →1 S5 pathway for GH92 enzymes. Furthermore, we demonstrate the Michaelis complex mimicry of a new kind of C-disaccharides, whose biochemical applicability was still a chimera.

Zobrazit více v PubMed

Ruddock L. W., Molinari M., J. Cell Sci. 2006, 119, 4373–4380. PubMed

Lederkremer G. Z., Curr. Opin. Struct. Biol. 2009, 19, 515. PubMed

H. H. Freeze, H. Schachter. Genetic Disorders of Glycosylation. In: A. Varki, R. D. Cummings, J. D. Esko, editors. Essentials of Glycobiology. 2nd edition, Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 2009. Chapter 42.

Lombard V., Golaconda Ramulu H., Drula E., Coutinho P. M., Henrissat B., Nucleic Acids Res. 2014, 42, D490–5. PubMed PMC

Cobucci-Ponzano B., Conte F., Strazzulli A., Capasso C., Fiume I., Pocsfalvi G., Rossi M., Moracci M., Biochimie 2010, 92, 1895–1907. PubMed

Mast S. W., Moremen K. W., Meth. Enzymol. 2006, 415, 31–46. PubMed PMC

Roth J., Ziak M., Zuber C., Biochimie 2003, 85, 287–294. PubMed

Zhu Y., Suits M. D. L., Thompson A. J., Chavan S., Dinev Z., Dumon C., Smith N., Moremen K. W., Xiang Y., Siriwardena A., Williams S. J., Gilbert H. J., Davies G. J., Nat. Chem. Biol. 2009, 6, 125–132. PubMed PMC

Thompson A. J., Williams R. J., Hakki Z., Alonzi D. S., Wennekes T., Gloster T. M., Songsrirote K., Thomas-Oates J. E., Wrodnigg T. M., Spreitz J., Stütz A. E., Butters T. D., Williams S. J., Davies G. J., Proc. Nat. Acad. Sci. 2012, 109, 781–786. PubMed PMC

Gregg K. J., Zandberg W. F., Hehemann J−H., Whitworth G. E., Deng L., Vocadlo D. J., Boraston A. B., J. Biol. Chem. 2011, 286, 15586–15596. PubMed PMC

Davies G. J., Wilson K. S., Henrissat B., Biochem. J. 1997, 321, 557–669. PubMed PMC

McCarter J. D., Withers S., Curr. Op. Struc. Biol. 1994, 4, 885–892. PubMed

Gloster T. M., Davies G. J., Org. Biomol. Chem. 2010, 8, 305–320. PubMed PMC

Colombo C., Bennet A. J., Adv. Phys. Org. Chem. 2017, 51, 99–127.

Alonso-Gil S., J. Carbohydr. Chem. 2020, 39, 175–188.

Ren W., Farren-Dai M., Sannikova N., Swiderek K., Wang Y., Akintola O., Britton R., Moliner V., Bennet A. J., Chem. Sci. 2020, 11, 10488–10495. PubMed PMC

Qiao M., Zhang L., Jiao R., Zhang S., Li B., Zhang X., Tetrahedron 2021, 81, 131920.

Thompson A. J., Speciale G., Iglesias-Fernandez J., Hakki Z., Belz T., Cartmell A., Spears R. J., Chandler E., Temple M. J., Stepper J., Gilbert H. J., Rovira C., Davies G. J., Angew. Chem. Int. Ed. 2015, 54, 5378–5382. PubMed

Zou J., Kleywegt G. J., Stahlbert J., Driguez H., Nerinckx W., Claeyssens M., Koivula A., Teeri T. T., Jones T. A., Structure 1999, 7, 1035–1045. PubMed

Alonso-Gil S., Males A., Fernandes P. Z., Williams S. J., Davies G. J., Rovira C., J. Am. Chem. Soc. 2017, 139, 1085–1088. PubMed

Cremer D., Pople J. A., J. Am. Chem. Soc. 1975, 97, 1354–1358.

Bérces A., Whitfield D. M., Nukada T., Tetrahedron 2001, 57, 477–491.

Sinnott M. L., Adv. Phys. Org. Chem. 1988, 24, 113.

Bertolotti B., Oroszova B., Sutkeviciute I., Kniezo L., Fieschi F., Parkan K., Lovyova Z., Kasakova M., Carbohydr. Res. 2016, 435, 7–18. PubMed

Raich I., Lovyová Z., Trnka L., Parkan K., Kessler J., Pohl R., Kaminský J., Carbohydr. Res. 2017, 451, 42–50. PubMed

Li Y., Li R., Yu H., Sheng X., Wang J., Fisher A. J., Chen X., FEBS Lett. 2020, 594, 439–451. PubMed PMC

Oroszová B., Choutka J., Pohl J. R., Parkan K., Chem. Eur. J. 2015, 21, 7043–7047. PubMed

Truhlar D. G., Garrett B. C., Klippenstein S. J., J. Phys. Chem. 1996, 100, 12771–12800.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Use of Raman and Raman optical activity to extract atomistic details of saccharides in aqueous solution

. 2022 Jan ; 18 (1) : e1009678. [epub] 20220120

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...