Carbon-Bonded Alumina Filters Coated by Graphene Oxide for Water Treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-01866S
Grantová Agentura České Republiky
Collaborative Research Center SFB 920
Deutsche Forschungsgemeinschaft
PubMed
32344756
PubMed Central
PMC7215612
DOI
10.3390/ma13082006
PII: ma13082006
Knihovny.cz E-zdroje
- Klíčová slova
- carbon-bonded alumina, ceramic foam filters, graphene oxide, water treatment,
- Publikační typ
- časopisecké články MeSH
The aim of this paper is to prepare nano-functionalized ceramic foam filters from carbon-bonded alumina. The carbon-bonded filters were produced via the Schwartzwalder process using a two-step approach. The prepared ceramic foam filters were further coated using graphene oxide. Graphene oxide was prepared by the modified Tour method. The C/O of the graphene oxide ratio was evaluated by XPS, EDS and elemental analysis (EA). The amount and type of individual oxygen functionalities were characterized by XPS and Raman spectroscopy. The microstructure was studied by TEM, and XRD was used to evaluate the interlayer distance. In the next step, filters were coated by graphene oxide using dip-coating. After drying, the prepared composite filters were used for the purification of the water containing lead, zinc and cadmium ions. The efficiency of the sorption was very high, suggesting the potential use of these materials for the treatment of wastewater from heavy metals.
Zobrazit více v PubMed
Apelian D., Mutharasan R., Ali S. Removal of inclusions from steel melts by filtration. J. Mater. Sci. 1985;20:3501–3514. doi: 10.1007/BF01113756. DOI
Zhang L. Nucleation, growth, transport, and entrapment of inclusions during steel casting. JOM. 2013;65:1138–1144. doi: 10.1007/s11837-013-0688-y. DOI
Karl S., Somers A.V. Method of Making Porous Ceramic Articles. 3,090,094. U.S. Patent. 1963 May 21;
Jankovsky O., Storti E., Schmidt G., Dudczig S., Sofer Z., Aneziris C.G. Unique wettability phenomenon of carbon-bonded alumina with advanced nanocoating. Appl. Mater. Today. 2018;13:24–31. doi: 10.1016/j.apmt.2018.08.002. DOI
Brodie B.C. On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 1859;149:249–259.
Ruess G., Vogt F. *hochstlamellarer kohlenstoff aus graphitoxyhydroxyd-uber den ort der aktiven eigenschaften am kohlenstoffkristall. Mon. Chem. 1948;78:222–242. doi: 10.1007/BF01141527. DOI
Clauss A., Plass R., Boehm H.P., Hofmann U. Untersuchungen zur struktur des graphitoxyds. Z. Anorg. Allg. Chem. 1957;291:205–220. doi: 10.1002/zaac.19572910502. DOI
Mermoux M., Chabre Y., Rousseau A. Ftir and c-13 nmr-study of graphite oxide. Carbon. 1991;29:469–474. doi: 10.1016/0008-6223(91)90216-6. DOI
Lerf A., He H.Y., Forster M., Klinowski J. Structure of graphite oxide revisited. J. Phys. Chem. B. 1998;102:4477–4482. doi: 10.1021/jp9731821. DOI
Nakajima T., Mabuchi A., Hagiwara R. A new structure model of graphite oxide. Carbon. 1988;26:357–361. doi: 10.1016/0008-6223(88)90227-8. DOI
Szabo T., Berkesi O., Forgo P., Josepovits K., Sanakis Y., Petridis D., Dekany I. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 2006;18:2740–2749. doi: 10.1021/cm060258+. DOI
Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010;39:228–240. doi: 10.1039/B917103G. PubMed DOI
Bannov A.G., Manakhov A., Shibaev A.A., Ukhina A.V., Polčák J., Maksimovskii E.A. Synthesis dynamics of graphite oxide. Thermochim. Acta. 2018;663:165–175. doi: 10.1016/j.tca.2018.03.017. DOI
Allen M.J., Tung V.C., Kaner R.B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010;110:132–145. doi: 10.1021/cr900070d. PubMed DOI
Sofer Z., Simek P., Jankovsky O., Sedmidubsky D., Beran P., Pumera M. Neutron diffraction as a precise and reliable method for obtaining structural properties of bulk quantities of graphene. Nanoscale. 2014;6:13082–13089. doi: 10.1039/C4NR04644G. PubMed DOI
Hummers W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI
Staudenmeier L. Verfahren zur darstellung der graphitsäure. Berichte der Deutschen Chemischen Gesellschaft. 1898;31:1481–1499. doi: 10.1002/cber.18980310237. DOI
Ulrich Hofmann E.K. Untersuchungen über graphitoxyd. Z. Anorg. Allg. Chem. 1937;234:311–336. doi: 10.1002/zaac.19372340405. DOI
Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z.Z., Slesarev A., Alemany L.B., Lu W., Tour J.M. Improved synthesis of graphene oxide. ACS Nano. 2010;4:4806–4814. doi: 10.1021/nn1006368. PubMed DOI
Jankovsky O., Jirickova A., Luxa J., Sedmidubsky D., Pumera M., Sofer Z. Fast synthesis of highly oxidized graphene oxide. ChemistrySelect. 2017;2:9000–9006. doi: 10.1002/slct.201701784. DOI
Sturala J., Luxa J., Pumera M., Sofer Z. Chemistry of graphene derivatives: Synthesis, applications, and perspectives. Chem.-Eur. J. 2018;24:5992–6006. doi: 10.1002/chem.201704192. PubMed DOI
Li Y., Chopra N. Progress in large-scale production of graphene. Part 1: Chemical methods. JOM. 2015;67:34–43. doi: 10.1007/s11837-014-1236-0. DOI
Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.T., Ruoff R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558–1565. doi: 10.1016/j.carbon.2007.02.034. DOI
Jankovsky O., Kuckova S.H., Pumera M., Simek P., Sedmidubsky D., Sofer Z. Carbon fragments are ripped off from graphite oxide sheets during their thermal reduction. New. J. Chem. 2014;38:5700–5705. doi: 10.1039/C4NJ00871E. DOI
Bouša D., Luxa J., Mazanek V., Jankovský O., Sedmidubský D., Klimova K., Pumera M., Sofer Z. Toward graphene chloride: Chlorination of graphene and graphene oxide. RSC Adv. 2016;6:66884–66892. doi: 10.1039/C6RA14845J. DOI
Jankovský O., Lojka M., Luxa J., Sedmidubský D., Tomanec O., Zbořil R., Pumera M., Sofer Z. Selective bromination of graphene oxide by the hunsdiecker reaction. Chem.–A Eur. J. 2017;23:10473–10479. doi: 10.1002/chem.201702031. PubMed DOI
Ahmadivand A., Gerislioglu B., Noe G.T., Mishra Y.K. Gated graphene enabled tunable charge-current configurations in hybrid plasmonic metamaterials. ACS Appl. Electron. Mater. 2019;1:637–641. doi: 10.1021/acsaelm.9b00035. DOI
Ahmadivand A., Gerislioglu B., Ramezani Z. Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator. Nanoscale. 2019;11:8091–8095. doi: 10.1039/C8NR10151E. PubMed DOI
Gerislioglu B., Ahmadivand A., Pala N. Hybridized plasmons in graphene nanorings for extreme nonlinear optics. Opt. Mat. 2017;73:729–735. doi: 10.1016/j.optmat.2017.09.042. DOI
Joshi R.K., Alwarappan S., Yoshimura M., Sahajwalla V., Nishina Y. Graphene oxide: The new membrane material. Appl. Mater. Today. 2015;1:1–12. doi: 10.1016/j.apmt.2015.06.002. DOI
Jankovsky O., Novacek M., Luxa J., Sedmidubsky D., Fila V., Pumera M., Sofer Z. A new member of the graphene family: Graphene acid. Chem.-Eur. J. 2016;22:17416–17424. doi: 10.1002/chem.201603766. PubMed DOI
Novacek M., Jankovsky O., Luxa J., Sedmidubsky D., Pumera M., Fila V., Lhotka M., Klimova K., Matejkova S., Sofer Z. Tuning of graphene oxide composition by multiple oxidations for carbon dioxide storage and capture of toxic metals. J. Mater. Chem. A. 2017;5:2739–2748. doi: 10.1039/C6TA03631G. DOI
Jankovský O., Šimek P., Klímová K., Sedmidubský D., Pumera M., Sofer Z. Highly selective removal of Ga3+ ions from Al3+/Ga3+ mixtures using graphite oxide. Carbon. 2015;89:121–129. doi: 10.1016/j.carbon.2015.03.025. DOI
Sreeprasad T.S., Maliyekkal S.M., Lisha K.P., Pradeep T. Reduced graphene oxide-metal/metal oxide composites: Facile synthesis and application in water purification. J. Hazard. Mater. 2011;186:921–931. doi: 10.1016/j.jhazmat.2010.11.100. PubMed DOI
Mukherjee R., Bhunia P., De S. Impact of graphene oxide on removal of heavy metals using mixed matrix membrane. Chem. Eng. J. 2016;292:284–297. doi: 10.1016/j.cej.2016.02.015. DOI
Wołowiec M., Komorowska-Kaufman M., Pruss A., Rzepa G., Bajda T. Removal of heavy metals and metalloids from water using drinking water treatment residuals as adsorbents: A review. Minerals. 2019;9:487. doi: 10.3390/min9080487. DOI
Darling S.B. Perspective: Interfacial materials at the interface of energy and water. J. Appl. Phys. 2018;124:030901. doi: 10.1063/1.5040110. DOI
Jankovský O., Storti E., Moritz K., Luchini B., Jiříčková A., Aneziris C.G. Nano-functionalization of carbon-bonded alumina using graphene oxide and MWCNTS. J. Eur. Ceram. Soc. 2018;38:4732–4738. doi: 10.1016/j.jeurceramsoc.2018.04.068. DOI
Kaniyoor A., Ramaprabhu S. A raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2012;2:13. doi: 10.1063/1.4756995. DOI
Wang Y., Alsmeyer D.C., McCreery R.L. Raman-spectroscopy of carbon materials-structural basis of observed spectra. Chem. Mater. 1990;2:557–563. doi: 10.1021/cm00011a018. DOI
Kudin K.N., Ozbas B., Schniepp H.C., Prud’omme R.K., Aksay I.A., Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008;8:36–41. doi: 10.1021/nl071822y. PubMed DOI
Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143:47–57. doi: 10.1016/j.ssc.2007.03.052. DOI
Arrais A., Diana E., Boccaleri E. A study on the carbon soot derived from the wood combustion and on the relative alkali-extractable fraction. J. Mater. Sci. 2006;41:6035–6045. doi: 10.1007/s10853-006-0511-z. DOI
Klímová K., Pumera M., Luxa J., Jankovský O., Sedmidubský D., Matějková S., Sofer Z. Graphene oxide sorption capacity toward elements over the whole periodic table: A comparative study. J. Phys. Chem. C. 2016;120:24203–24212.