Carbon-Bonded Alumina Filters Coated by Graphene Oxide for Water Treatment

. 2020 Apr 24 ; 13 (8) : . [epub] 20200424

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32344756

Grantová podpora
20-01866S Grantová Agentura České Republiky
Collaborative Research Center SFB 920 Deutsche Forschungsgemeinschaft

The aim of this paper is to prepare nano-functionalized ceramic foam filters from carbon-bonded alumina. The carbon-bonded filters were produced via the Schwartzwalder process using a two-step approach. The prepared ceramic foam filters were further coated using graphene oxide. Graphene oxide was prepared by the modified Tour method. The C/O of the graphene oxide ratio was evaluated by XPS, EDS and elemental analysis (EA). The amount and type of individual oxygen functionalities were characterized by XPS and Raman spectroscopy. The microstructure was studied by TEM, and XRD was used to evaluate the interlayer distance. In the next step, filters were coated by graphene oxide using dip-coating. After drying, the prepared composite filters were used for the purification of the water containing lead, zinc and cadmium ions. The efficiency of the sorption was very high, suggesting the potential use of these materials for the treatment of wastewater from heavy metals.

Zobrazit více v PubMed

Apelian D., Mutharasan R., Ali S. Removal of inclusions from steel melts by filtration. J. Mater. Sci. 1985;20:3501–3514. doi: 10.1007/BF01113756. DOI

Zhang L. Nucleation, growth, transport, and entrapment of inclusions during steel casting. JOM. 2013;65:1138–1144. doi: 10.1007/s11837-013-0688-y. DOI

Karl S., Somers A.V. Method of Making Porous Ceramic Articles. 3,090,094. U.S. Patent. 1963 May 21;

Jankovsky O., Storti E., Schmidt G., Dudczig S., Sofer Z., Aneziris C.G. Unique wettability phenomenon of carbon-bonded alumina with advanced nanocoating. Appl. Mater. Today. 2018;13:24–31. doi: 10.1016/j.apmt.2018.08.002. DOI

Brodie B.C. On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 1859;149:249–259.

Ruess G., Vogt F. *hochstlamellarer kohlenstoff aus graphitoxyhydroxyd-uber den ort der aktiven eigenschaften am kohlenstoffkristall. Mon. Chem. 1948;78:222–242. doi: 10.1007/BF01141527. DOI

Clauss A., Plass R., Boehm H.P., Hofmann U. Untersuchungen zur struktur des graphitoxyds. Z. Anorg. Allg. Chem. 1957;291:205–220. doi: 10.1002/zaac.19572910502. DOI

Mermoux M., Chabre Y., Rousseau A. Ftir and c-13 nmr-study of graphite oxide. Carbon. 1991;29:469–474. doi: 10.1016/0008-6223(91)90216-6. DOI

Lerf A., He H.Y., Forster M., Klinowski J. Structure of graphite oxide revisited. J. Phys. Chem. B. 1998;102:4477–4482. doi: 10.1021/jp9731821. DOI

Nakajima T., Mabuchi A., Hagiwara R. A new structure model of graphite oxide. Carbon. 1988;26:357–361. doi: 10.1016/0008-6223(88)90227-8. DOI

Szabo T., Berkesi O., Forgo P., Josepovits K., Sanakis Y., Petridis D., Dekany I. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 2006;18:2740–2749. doi: 10.1021/cm060258+. DOI

Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010;39:228–240. doi: 10.1039/B917103G. PubMed DOI

Bannov A.G., Manakhov A., Shibaev A.A., Ukhina A.V., Polčák J., Maksimovskii E.A. Synthesis dynamics of graphite oxide. Thermochim. Acta. 2018;663:165–175. doi: 10.1016/j.tca.2018.03.017. DOI

Allen M.J., Tung V.C., Kaner R.B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010;110:132–145. doi: 10.1021/cr900070d. PubMed DOI

Sofer Z., Simek P., Jankovsky O., Sedmidubsky D., Beran P., Pumera M. Neutron diffraction as a precise and reliable method for obtaining structural properties of bulk quantities of graphene. Nanoscale. 2014;6:13082–13089. doi: 10.1039/C4NR04644G. PubMed DOI

Hummers W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI

Staudenmeier L. Verfahren zur darstellung der graphitsäure. Berichte der Deutschen Chemischen Gesellschaft. 1898;31:1481–1499. doi: 10.1002/cber.18980310237. DOI

Ulrich Hofmann E.K. Untersuchungen über graphitoxyd. Z. Anorg. Allg. Chem. 1937;234:311–336. doi: 10.1002/zaac.19372340405. DOI

Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z.Z., Slesarev A., Alemany L.B., Lu W., Tour J.M. Improved synthesis of graphene oxide. ACS Nano. 2010;4:4806–4814. doi: 10.1021/nn1006368. PubMed DOI

Jankovsky O., Jirickova A., Luxa J., Sedmidubsky D., Pumera M., Sofer Z. Fast synthesis of highly oxidized graphene oxide. ChemistrySelect. 2017;2:9000–9006. doi: 10.1002/slct.201701784. DOI

Sturala J., Luxa J., Pumera M., Sofer Z. Chemistry of graphene derivatives: Synthesis, applications, and perspectives. Chem.-Eur. J. 2018;24:5992–6006. doi: 10.1002/chem.201704192. PubMed DOI

Li Y., Chopra N. Progress in large-scale production of graphene. Part 1: Chemical methods. JOM. 2015;67:34–43. doi: 10.1007/s11837-014-1236-0. DOI

Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.T., Ruoff R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558–1565. doi: 10.1016/j.carbon.2007.02.034. DOI

Jankovsky O., Kuckova S.H., Pumera M., Simek P., Sedmidubsky D., Sofer Z. Carbon fragments are ripped off from graphite oxide sheets during their thermal reduction. New. J. Chem. 2014;38:5700–5705. doi: 10.1039/C4NJ00871E. DOI

Bouša D., Luxa J., Mazanek V., Jankovský O., Sedmidubský D., Klimova K., Pumera M., Sofer Z. Toward graphene chloride: Chlorination of graphene and graphene oxide. RSC Adv. 2016;6:66884–66892. doi: 10.1039/C6RA14845J. DOI

Jankovský O., Lojka M., Luxa J., Sedmidubský D., Tomanec O., Zbořil R., Pumera M., Sofer Z. Selective bromination of graphene oxide by the hunsdiecker reaction. Chem.–A Eur. J. 2017;23:10473–10479. doi: 10.1002/chem.201702031. PubMed DOI

Ahmadivand A., Gerislioglu B., Noe G.T., Mishra Y.K. Gated graphene enabled tunable charge-current configurations in hybrid plasmonic metamaterials. ACS Appl. Electron. Mater. 2019;1:637–641. doi: 10.1021/acsaelm.9b00035. DOI

Ahmadivand A., Gerislioglu B., Ramezani Z. Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator. Nanoscale. 2019;11:8091–8095. doi: 10.1039/C8NR10151E. PubMed DOI

Gerislioglu B., Ahmadivand A., Pala N. Hybridized plasmons in graphene nanorings for extreme nonlinear optics. Opt. Mat. 2017;73:729–735. doi: 10.1016/j.optmat.2017.09.042. DOI

Joshi R.K., Alwarappan S., Yoshimura M., Sahajwalla V., Nishina Y. Graphene oxide: The new membrane material. Appl. Mater. Today. 2015;1:1–12. doi: 10.1016/j.apmt.2015.06.002. DOI

Jankovsky O., Novacek M., Luxa J., Sedmidubsky D., Fila V., Pumera M., Sofer Z. A new member of the graphene family: Graphene acid. Chem.-Eur. J. 2016;22:17416–17424. doi: 10.1002/chem.201603766. PubMed DOI

Novacek M., Jankovsky O., Luxa J., Sedmidubsky D., Pumera M., Fila V., Lhotka M., Klimova K., Matejkova S., Sofer Z. Tuning of graphene oxide composition by multiple oxidations for carbon dioxide storage and capture of toxic metals. J. Mater. Chem. A. 2017;5:2739–2748. doi: 10.1039/C6TA03631G. DOI

Jankovský O., Šimek P., Klímová K., Sedmidubský D., Pumera M., Sofer Z. Highly selective removal of Ga3+ ions from Al3+/Ga3+ mixtures using graphite oxide. Carbon. 2015;89:121–129. doi: 10.1016/j.carbon.2015.03.025. DOI

Sreeprasad T.S., Maliyekkal S.M., Lisha K.P., Pradeep T. Reduced graphene oxide-metal/metal oxide composites: Facile synthesis and application in water purification. J. Hazard. Mater. 2011;186:921–931. doi: 10.1016/j.jhazmat.2010.11.100. PubMed DOI

Mukherjee R., Bhunia P., De S. Impact of graphene oxide on removal of heavy metals using mixed matrix membrane. Chem. Eng. J. 2016;292:284–297. doi: 10.1016/j.cej.2016.02.015. DOI

Wołowiec M., Komorowska-Kaufman M., Pruss A., Rzepa G., Bajda T. Removal of heavy metals and metalloids from water using drinking water treatment residuals as adsorbents: A review. Minerals. 2019;9:487. doi: 10.3390/min9080487. DOI

Darling S.B. Perspective: Interfacial materials at the interface of energy and water. J. Appl. Phys. 2018;124:030901. doi: 10.1063/1.5040110. DOI

Jankovský O., Storti E., Moritz K., Luchini B., Jiříčková A., Aneziris C.G. Nano-functionalization of carbon-bonded alumina using graphene oxide and MWCNTS. J. Eur. Ceram. Soc. 2018;38:4732–4738. doi: 10.1016/j.jeurceramsoc.2018.04.068. DOI

Kaniyoor A., Ramaprabhu S. A raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2012;2:13. doi: 10.1063/1.4756995. DOI

Wang Y., Alsmeyer D.C., McCreery R.L. Raman-spectroscopy of carbon materials-structural basis of observed spectra. Chem. Mater. 1990;2:557–563. doi: 10.1021/cm00011a018. DOI

Kudin K.N., Ozbas B., Schniepp H.C., Prud’omme R.K., Aksay I.A., Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008;8:36–41. doi: 10.1021/nl071822y. PubMed DOI

Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143:47–57. doi: 10.1016/j.ssc.2007.03.052. DOI

Arrais A., Diana E., Boccaleri E. A study on the carbon soot derived from the wood combustion and on the relative alkali-extractable fraction. J. Mater. Sci. 2006;41:6035–6045. doi: 10.1007/s10853-006-0511-z. DOI

Klímová K., Pumera M., Luxa J., Jankovský O., Sedmidubský D., Matějková S., Sofer Z. Graphene oxide sorption capacity toward elements over the whole periodic table: A comparative study. J. Phys. Chem. C. 2016;120:24203–24212.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...