Precise control of the interlayer twist angle in large scale MoS2 homostructures
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
32358571
PubMed Central
PMC7195481
DOI
10.1038/s41467-020-16056-4
PII: 10.1038/s41467-020-16056-4
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Twist angle between adjacent layers of two-dimensional (2D) layered materials provides an exotic degree of freedom to enable various fascinating phenomena, which opens a research direction-twistronics. To realize the practical applications of twistronics, it is of the utmost importance to control the interlayer twist angle on large scales. In this work, we report the precise control of interlayer twist angle in centimeter-scale stacked multilayer MoS2 homostructures via the combination of wafer-scale highly-oriented monolayer MoS2 growth techniques and a water-assisted transfer method. We confirm that the twist angle can continuously change the indirect bandgap of centimeter-scale stacked multilayer MoS2 homostructures, which is indicated by the photoluminescence peak shift. Furthermore, we demonstrate that the stack structure can affect the electrical properties of MoS2 homostructures, where 30° twist angle yields higher electron mobility. Our work provides a firm basis for the development of twistronics.
Department of Electronics and Nanoengineering Aalto University Tietotie 3 Espoo FI 02150 Finland
QTF Centre of Excellence Department of Applied Physics Aalto University Espoo Finland
School of Physical Sciences University of Chinese Academy of Sciences 100190 Beijing China
Songshan Lake Materials Laboratory 523808 Dongguan Guangdong China
Zobrazit více v PubMed
Novoselov KS, Mishchenko A, Carvalho A, Neto AHC. 2D materials and van der Waals heterostructures. Science. 2016;353:aac9439. doi: 10.1126/science.aac9439. PubMed DOI
Dean C, et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moire superlattices. Nature. 2013;497:598–602. doi: 10.1038/nature12186. PubMed DOI
Hunt B, et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science. 2013;340:1427–1430. doi: 10.1126/science.1237240. PubMed DOI
Cao Y, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature. 2018;556:43. doi: 10.1038/nature26160. PubMed DOI
Yankowitz M, et al. Tuning superconductivity in twisted bilayer graphene. Science. 2019;363:1059–1064. doi: 10.1126/science.aav1910. PubMed DOI
Seyler KL, et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature. 2019;567:66. doi: 10.1038/s41586-019-0957-1. PubMed DOI
Tran K, et al. Evidence for moiré excitons in van der Waals heterostructures. Nature. 2019;567:71–75. doi: 10.1038/s41586-019-0975-z. PubMed DOI PMC
Jin C, et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature. 2019;567:76–80. doi: 10.1038/s41586-019-0976-y. PubMed DOI
Mishchenko A, et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 2014;9:808. doi: 10.1038/nnano.2014.187. PubMed DOI
Liao M, et al. Twist angle-dependent conductivities across MoS2/graphene heterojunctions. Nat. Commun. 2018;9:4068. doi: 10.1038/s41467-018-06555-w. PubMed DOI PMC
Autere A, et al. Nonlinear optics with 2D layered materials. Adv. Mater. 2018;30:1705963. doi: 10.1002/adma.201705963. PubMed DOI
Hsu W-T, et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano. 2014;8:2951–2958. doi: 10.1021/nn500228r. PubMed DOI
Ribeiro-Palau R, et al. Twistable electronics with dynamically rotatable heterostructures. Science. 2018;361:690–693. doi: 10.1126/science.aat6981. DOI
Song Y, et al. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat. Mater. 2018;17:894–899. doi: 10.1038/s41563-018-0144-z. PubMed DOI
Huang S, et al. Low-frequency interlayer Raman modes to probe interface of twisted bilayer MoS2. Nano Lett. 2016;16:1435–1444. doi: 10.1021/acs.nanolett.5b05015. PubMed DOI
Huang S, et al. Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano Lett. 2014;14:5500–5508. doi: 10.1021/nl5014597. PubMed DOI
Kim K, et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl Acad. Sci. 2017;114:3364–3369. doi: 10.1073/pnas.1620140114. PubMed DOI PMC
Kim K, et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 2016;16:1989–1995. doi: 10.1021/acs.nanolett.5b05263. PubMed DOI
Du L, et al. Modulating PL and electronic structures of MoS2/graphene heterostructures via interlayer twisting angle. Appl. Phys. Lett. 2017;111:263106. doi: 10.1063/1.5011120. DOI
Wang D, et al. Thermally induced graphene rotation on hexagonal boron nitride. Phys. Rev. Lett. 2016;116:126101. doi: 10.1103/PhysRevLett.116.126101. PubMed DOI
Gurarslan A, et al. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano. 2014;8:11522–11528. doi: 10.1021/nn5057673. PubMed DOI
Ma D, et al. A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Res. 2015;8:3662–3672. doi: 10.1007/s12274-015-0866-z. DOI
Phan HD, et al. Ultraclean and direct transfer of a Wafer-Scale MoS2 thin film onto a plastic substrate. Adv. Mater. 2017;29:1603928. doi: 10.1002/adma.201603928. PubMed DOI
Naik MH, Jain M. Ultraflatbands and shear solitons in Moiré patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 2018;121:266401. doi: 10.1103/PhysRevLett.121.266401. PubMed DOI
Wu F, Lovorn T, Tutuc E, Martin I, MacDonald A. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 2019;122:086402. doi: 10.1103/PhysRevLett.122.086402. PubMed DOI
Fleischmann, M., Gupta R., Sharma S. & Shallcross, S. Moiré quantum well states in tiny angle two dimensional semi-conductors. Preprint at https://arxiv.org/pdf/1901.04679.pdf (2019).
Wu F, Lovorn T, Tutuc E, MacDonald AH. Hubbard model physics in transition metal dichalcogenide Moiré bands. Phys. Rev. Lett. 2018;121:026402. doi: 10.1103/PhysRevLett.121.026402. PubMed DOI
Yu H, et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano. 2017;11:12001–12007. doi: 10.1021/acsnano.7b03819. PubMed DOI
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011;6:147. doi: 10.1038/nnano.2010.279. PubMed DOI
Ahn SJ, et al. Dirac electrons in a dodecagonal graphene quasicrystal. Science. 2018;361:782–786. doi: 10.1126/science.aar8412. PubMed DOI
Liu K, et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014;5:4966. doi: 10.1038/ncomms5966. PubMed DOI
Tang Y, et al. Simulation of Hubbard model physics in WSe2/WS2 moire superlattices. Nature. 2020;579:353–358. doi: 10.1038/s41586-020-2085-3. PubMed DOI
Zhang, Z. et al. Flat bands in small angle twisted bilayer WSe2. Preprint at https://arxiv.org/ftp/arxiv/papers/1910/1910.13068.pdf (2019).
Wang, L. et al. Magic continuum in twisted bilayer WSe2. Preprint at https://arxiv.org/pdf/1910.12147.pdf (2019).
Zhu Z, Cheng Y, Schwingenschlögl U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B. 2011;84:153402. doi: 10.1103/PhysRevB.84.153402. DOI
Du L, et al. Temperature-driven evolution of critical points, interlayer coupling, and layer polarization in bilayer MoS2. Phys. Rev. B. 2018;97:165410. doi: 10.1103/PhysRevB.97.165410. DOI
Liu G-B, Xiao D, Yao Y, Xu X, Yao W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 2015;44:2643–2663. doi: 10.1039/C4CS00301B. PubMed DOI
Yeh P-C, et al. Direct measurement of the tunable electronic structure of bilayer MoS2 by interlayer twist. Nano Lett. 2016;16:953–959. doi: 10.1021/acs.nanolett.5b03883. PubMed DOI
Lee C, et al. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano. 2010;4:2695–2700. doi: 10.1021/nn1003937. PubMed DOI
Molina-Sanchez A, Wirtz L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B. 2011;84:155413. doi: 10.1103/PhysRevB.84.155413. DOI
Du L, et al. Strongly enhanced exciton-phonon coupling in two-dimensional WS2. Phys. Rev. B. 2018;97:235145. doi: 10.1103/PhysRevB.97.235145. DOI
Lin M-L, et al. Moiré phonons in twisted bilayer MoS2. Acs Nano. 2018;12:8770–8780. doi: 10.1021/acsnano.8b05006. PubMed DOI
Chakraborty B, et al. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B. 2012;85:161403. doi: 10.1103/PhysRevB.85.161403. DOI
Li H, et al. Interfacial interactions in van der Waals heterostructures of MoS2 and graphene. ACS Nano. 2017;11:11714–11723. doi: 10.1021/acsnano.7b07015. PubMed DOI
Zhang X, et al. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys. Rev. B. 2013;87:115413. doi: 10.1103/PhysRevB.87.115413. DOI
Yan J, et al. Stacking-dependent interlayer coupling in trilayer MoS2 with broken inversion symmetry. Nano Lett. 2015;15:8155–8161. doi: 10.1021/acs.nanolett.5b03597. PubMed DOI
Zhou K, et al. Interlayer resistance of misoriented MoS2. Phys. Chem. Chem. Phys. 2017;19:10406–10412. doi: 10.1039/C6CP08927E. PubMed DOI
The optical response of artificially twisted MoS[Formula: see text] bilayers