• This record comes from PubMed

The optical response of artificially twisted MoS[Formula: see text] bilayers

. 2021 Aug 23 ; 11 (1) : 17037. [epub] 20210823

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article

Grant support
2017/27/B/ST3/00205 Narodowe Centrum Nauki (National Science Centre)
2017/27/N/ST3/01612 Narodowe Centrum Nauki (National Science Centre)
ATOMOPTO Fundacja na rzecz Nauki Polskiej (Foundation for Polish Science)
2018/31/B/ST3/02111 Narodowe Centrum Nauki (National Science Centre)
JPMJCR15F3 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
JPMJCR15F3 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
ATOMOPTO Fundacja na rzecz Nauki Polskiej (Foundation for Polish Science)
ATOMOPTO Fundacja na rzecz Nauki Polskiej (Foundation for Polish Science)
2017/27/N/ST3/01612 Narodowe Centrum Nauki (National Science Centre)
2018/31/B/ST3/02111) Narodowe Centrum Nauki (National Science Centre)

Two-dimensional layered materials offer the possibility to create artificial vertically stacked structures possessing an additional degree of freedom-the interlayer twist. We present a comprehensive optical study of artificially stacked bilayers (BLs) MoS[Formula: see text] encapsulated in hexagonal BN with interlayer twist angle ranging from 0[Formula: see text] to 60[Formula: see text] using Raman scattering and photoluminescence spectroscopies. It is found that the strength of the interlayer coupling in the studied BLs can be estimated using the energy dependence of indirect emission versus the A[Formula: see text]-E[Formula: see text] energy separation. Due to the hybridization of electronic states in the valence band, the emission line related to the interlayer exciton is apparent in both the natural (2H) and artificial (62[Formula: see text]) MoS[Formula: see text] BLs, while it is absent in the structures with other twist angles. The interlayer coupling energy is estimated to be of about 50 meV. The effect of temperature on energies and intensities of the direct and indirect emission lines in MoS[Formula: see text] BLs is also quantified.

See more in PubMed

Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin PubMed DOI

Arora A, et al. Excitonic resonances in thin films of WSe PubMed DOI

Arora A, Nogajewski K, Molas M, Koperski M, Potemski M. Exciton band structure in layered MoSe PubMed DOI

Molas MR, et al. The optical response of monolayer, few-layer and bulk tungsten disulfide. Nanoscale. 2017;9:13128. doi: 10.1039/C7NR04672C. PubMed DOI

Ciorciaro L, Kroner M, Watanabe K, Taniguchi T, Imamoglu A. Observation of magnetic proximity effect using resonant optical spectroscopy of an electrically tunable MoSe PubMed DOI

Sun J, et al. Lateral 2d WSe PubMed DOI

Shi H, et al. Ultrafast electrochemical synthesis of defect-free In PubMed DOI

Bandurin DA, et al. High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 2016;12:223–227. doi: 10.1038/nnano.2016.242. PubMed DOI

Britnell L, et al. Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 2013;4:1794. doi: 10.1038/ncomms2817. PubMed DOI PMC

Koperski M, et al. Single photon emitters in exfoliated WSe PubMed DOI

Kern J, et al. Single-photon emitters: Nanoscale positioning of single-photon emitters in atomically thin WSe PubMed DOI

Kumar S, Kaczmarczyk A, Gerardot BD. Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe PubMed DOI PMC

Branny A, Kumar S, Proux R, Gerardot BD. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 2017;8:15053. doi: 10.1038/ncomms15053. PubMed DOI PMC

Hennighausen Z, Kar S. Twistronics: A turning point in 2d quantum materials. Electron. Struct. 2021;3(1):014004. doi: 10.1088/2516-1075/abd957. DOI

He F, et al. Moiré patterns in 2d materials: A review. ACS Nano. 2021 doi: 10.1021/acsnano.0c10435. PubMed DOI

Ponomarenko LA, et al. Cloning of Dirac fermions in graphene superlattices. Nature. 2013;497:594–597. doi: 10.1038/nature12187. PubMed DOI

Hunt B, et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science. 2013;340:1427–1430. doi: 10.1126/science.1237240. PubMed DOI

Rivera P, et al. Observation of long-lived interlayer excitons in monolayer MoSe PubMed DOI

Zhang N, et al. Moiré intralayer excitons in a MoSe PubMed DOI

Jin C, et al. Observation of moiré excitons in WSe PubMed DOI

Tran K, et al. Evidence for moiré excitons in van der Waals heterostructures. Nature. 2019;567:71–75. doi: 10.1038/s41586-019-0975-z. PubMed DOI PMC

Seyler KL, et al. Signatures of moiré-trapped valley excitons in MoSe PubMed DOI

Alexeev EM, et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature. 2019;567:81–86. doi: 10.1038/s41586-019-0986-9. PubMed DOI

Lee C, et al. Anomalous lattice vibrations of single- and few-layer MoS PubMed DOI

Gołasa K, et al. Resonant Raman scattering in MoS DOI

Yamamoto M, et al. Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe PubMed DOI

Lui CH, et al. Observation of interlayer phonon modes in van der Waals heterostructures. Phys. Rev. B. 2015;91:165403. doi: 10.1103/PhysRevB.91.165403. DOI

Grzeszczyk M, et al. Raman scattering of few-layers MoTe DOI

Kipczak L, Grzeszczyk M, Olkowska-Pucko K, Babiński A, Molas MR. The optical signature of few-layer ReSe DOI

Holler J, et al. Low-frequency Raman scattering in WSe DOI

Grzeszczyk M, et al. Breathing modes in few-layer MoTe DOI

Liu K, et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014;5:4966. doi: 10.1038/ncomms5966. PubMed DOI

van Baren J, et al. Stacking-dependent interlayer phonons in 3R and 2H MoS DOI

Hsu W-T, et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano. 2014;8:2951–2958. doi: 10.1021/nn500228r. PubMed DOI

Zhang X, et al. Raman spectroscopy of shear and layer breathing modes in multilayer MoS DOI

Zhao Y, et al. Interlayer breathing and shear modes in few-trilayer MoS PubMed DOI

Puretzky AA, et al. Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations. ACS Nano. 2015;9:6333–6342. doi: 10.1021/acsnano.5b01884. PubMed DOI

Lee J-U, et al. Raman signatures of polytypism in molybdenum disulfide. ACS Nano. 2016;10:1948–1953. doi: 10.1021/acsnano.5b05831. PubMed DOI

van der Zande AM, et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 2014;14:3869. doi: 10.1021/nl501077m. PubMed DOI

Huang S, et al. Low-frequency interlayer Raman modes to probe interface of twisted bilayer MoS PubMed DOI

Lin M-L, et al. Moiré phonons in twisted bilayer MoS PubMed DOI

Liao M, et al. Precise control of the interlayer twist angle in large scale MoS PubMed DOI PMC

Du L, et al. Temperature-driven evolution of critical points, interlayer coupling, and layer polarization in bilayer MoS DOI

Cadiz F, et al. Well separated trion and neutral excitons on superacid treated MoS DOI

Cadiz F, et al. Excitonic linewidth approaching the homogeneous limit in MoS DOI

Molas MR, et al. Tuning carrier concentration in a superacid treated MoS PubMed DOI PMC

Tongay S, et al. Thermally driven crossover from indirect toward direct bandgap in 2d semiconductors: MoSe PubMed DOI

Koperski M, et al. Optical properties of atomically thin transition metal dichalcogenides: Observations and puzzles. Nanophotonics. 2017;6:1289–1308. doi: 10.1515/nanoph-2016-0165. DOI

Arora A, et al. Interlayer excitons in a bulk van der Waals semiconductor. Nat. Commun. 2017;8:639. doi: 10.1038/s41467-017-00691-5. PubMed DOI PMC

Arora A, et al. Valley-contrasting optics of interlayer excitons in Mo- and W-based bulk transition metal dichalcogenides. Nanoscale. 2018;10:15571–15577. doi: 10.1039/C8NR03764G. PubMed DOI

Slobodeniuk AO, et al. Fine structure of k-excitons in multilayers of transition metal dichalcogenides. 2D Mater. 2019;6:025026. doi: 10.1088/2053-1583/ab0776. DOI

Gerber IC, et al. Interlayer excitons in bilayer MoS DOI

Paradisanos I, et al. Controlling interlayer excitons in MoS PubMed DOI PMC

Kormányos, A. et al.

ODonnell KP, Chen X. Temperature dependence of semiconductor band gaps. Appl. Phys. Lett. 1991;58:2924–2926. doi: 10.1063/1.104723. DOI

Wang G, et al. Spin-orbit engineering in transition metal dichalcogenide alloy monolayers. Nat. Commun. 2015;6:10110. doi: 10.1038/ncomms10110. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...