The optical response of artificially twisted MoS[Formula: see text] bilayers
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
2017/27/B/ST3/00205
Narodowe Centrum Nauki (National Science Centre)
2017/27/N/ST3/01612
Narodowe Centrum Nauki (National Science Centre)
ATOMOPTO
Fundacja na rzecz Nauki Polskiej (Foundation for Polish Science)
2018/31/B/ST3/02111
Narodowe Centrum Nauki (National Science Centre)
JPMJCR15F3
MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
JPMJCR15F3
MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
ATOMOPTO
Fundacja na rzecz Nauki Polskiej (Foundation for Polish Science)
ATOMOPTO
Fundacja na rzecz Nauki Polskiej (Foundation for Polish Science)
2017/27/N/ST3/01612
Narodowe Centrum Nauki (National Science Centre)
2018/31/B/ST3/02111)
Narodowe Centrum Nauki (National Science Centre)
PubMed
34426607
PubMed Central
PMC8382769
DOI
10.1038/s41598-021-95700-5
PII: 95700
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Two-dimensional layered materials offer the possibility to create artificial vertically stacked structures possessing an additional degree of freedom-the interlayer twist. We present a comprehensive optical study of artificially stacked bilayers (BLs) MoS[Formula: see text] encapsulated in hexagonal BN with interlayer twist angle ranging from 0[Formula: see text] to 60[Formula: see text] using Raman scattering and photoluminescence spectroscopies. It is found that the strength of the interlayer coupling in the studied BLs can be estimated using the energy dependence of indirect emission versus the A[Formula: see text]-E[Formula: see text] energy separation. Due to the hybridization of electronic states in the valence band, the emission line related to the interlayer exciton is apparent in both the natural (2H) and artificial (62[Formula: see text]) MoS[Formula: see text] BLs, while it is absent in the structures with other twist angles. The interlayer coupling energy is estimated to be of about 50 meV. The effect of temperature on energies and intensities of the direct and indirect emission lines in MoS[Formula: see text] BLs is also quantified.
See more in PubMed
Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin PubMed DOI
Arora A, et al. Excitonic resonances in thin films of WSe PubMed DOI
Arora A, Nogajewski K, Molas M, Koperski M, Potemski M. Exciton band structure in layered MoSe PubMed DOI
Molas MR, et al. The optical response of monolayer, few-layer and bulk tungsten disulfide. Nanoscale. 2017;9:13128. doi: 10.1039/C7NR04672C. PubMed DOI
Ciorciaro L, Kroner M, Watanabe K, Taniguchi T, Imamoglu A. Observation of magnetic proximity effect using resonant optical spectroscopy of an electrically tunable MoSe PubMed DOI
Sun J, et al. Lateral 2d WSe PubMed DOI
Shi H, et al. Ultrafast electrochemical synthesis of defect-free In PubMed DOI
Bandurin DA, et al. High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 2016;12:223–227. doi: 10.1038/nnano.2016.242. PubMed DOI
Britnell L, et al. Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 2013;4:1794. doi: 10.1038/ncomms2817. PubMed DOI PMC
Koperski M, et al. Single photon emitters in exfoliated WSe PubMed DOI
Kern J, et al. Single-photon emitters: Nanoscale positioning of single-photon emitters in atomically thin WSe PubMed DOI
Kumar S, Kaczmarczyk A, Gerardot BD. Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe PubMed DOI PMC
Branny A, Kumar S, Proux R, Gerardot BD. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 2017;8:15053. doi: 10.1038/ncomms15053. PubMed DOI PMC
Hennighausen Z, Kar S. Twistronics: A turning point in 2d quantum materials. Electron. Struct. 2021;3(1):014004. doi: 10.1088/2516-1075/abd957. DOI
He F, et al. Moiré patterns in 2d materials: A review. ACS Nano. 2021 doi: 10.1021/acsnano.0c10435. PubMed DOI
Ponomarenko LA, et al. Cloning of Dirac fermions in graphene superlattices. Nature. 2013;497:594–597. doi: 10.1038/nature12187. PubMed DOI
Hunt B, et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science. 2013;340:1427–1430. doi: 10.1126/science.1237240. PubMed DOI
Rivera P, et al. Observation of long-lived interlayer excitons in monolayer MoSe PubMed DOI
Zhang N, et al. Moiré intralayer excitons in a MoSe PubMed DOI
Jin C, et al. Observation of moiré excitons in WSe PubMed DOI
Tran K, et al. Evidence for moiré excitons in van der Waals heterostructures. Nature. 2019;567:71–75. doi: 10.1038/s41586-019-0975-z. PubMed DOI PMC
Seyler KL, et al. Signatures of moiré-trapped valley excitons in MoSe PubMed DOI
Alexeev EM, et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature. 2019;567:81–86. doi: 10.1038/s41586-019-0986-9. PubMed DOI
Lee C, et al. Anomalous lattice vibrations of single- and few-layer MoS PubMed DOI
Gołasa K, et al. Resonant Raman scattering in MoS DOI
Yamamoto M, et al. Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe PubMed DOI
Lui CH, et al. Observation of interlayer phonon modes in van der Waals heterostructures. Phys. Rev. B. 2015;91:165403. doi: 10.1103/PhysRevB.91.165403. DOI
Grzeszczyk M, et al. Raman scattering of few-layers MoTe DOI
Kipczak L, Grzeszczyk M, Olkowska-Pucko K, Babiński A, Molas MR. The optical signature of few-layer ReSe DOI
Holler J, et al. Low-frequency Raman scattering in WSe DOI
Grzeszczyk M, et al. Breathing modes in few-layer MoTe DOI
Liu K, et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014;5:4966. doi: 10.1038/ncomms5966. PubMed DOI
van Baren J, et al. Stacking-dependent interlayer phonons in 3R and 2H MoS DOI
Hsu W-T, et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano. 2014;8:2951–2958. doi: 10.1021/nn500228r. PubMed DOI
Zhang X, et al. Raman spectroscopy of shear and layer breathing modes in multilayer MoS DOI
Zhao Y, et al. Interlayer breathing and shear modes in few-trilayer MoS PubMed DOI
Puretzky AA, et al. Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations. ACS Nano. 2015;9:6333–6342. doi: 10.1021/acsnano.5b01884. PubMed DOI
Lee J-U, et al. Raman signatures of polytypism in molybdenum disulfide. ACS Nano. 2016;10:1948–1953. doi: 10.1021/acsnano.5b05831. PubMed DOI
van der Zande AM, et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 2014;14:3869. doi: 10.1021/nl501077m. PubMed DOI
Huang S, et al. Low-frequency interlayer Raman modes to probe interface of twisted bilayer MoS PubMed DOI
Lin M-L, et al. Moiré phonons in twisted bilayer MoS PubMed DOI
Liao M, et al. Precise control of the interlayer twist angle in large scale MoS PubMed DOI PMC
Du L, et al. Temperature-driven evolution of critical points, interlayer coupling, and layer polarization in bilayer MoS DOI
Cadiz F, et al. Well separated trion and neutral excitons on superacid treated MoS DOI
Cadiz F, et al. Excitonic linewidth approaching the homogeneous limit in MoS DOI
Molas MR, et al. Tuning carrier concentration in a superacid treated MoS PubMed DOI PMC
Tongay S, et al. Thermally driven crossover from indirect toward direct bandgap in 2d semiconductors: MoSe PubMed DOI
Koperski M, et al. Optical properties of atomically thin transition metal dichalcogenides: Observations and puzzles. Nanophotonics. 2017;6:1289–1308. doi: 10.1515/nanoph-2016-0165. DOI
Arora A, et al. Interlayer excitons in a bulk van der Waals semiconductor. Nat. Commun. 2017;8:639. doi: 10.1038/s41467-017-00691-5. PubMed DOI PMC
Arora A, et al. Valley-contrasting optics of interlayer excitons in Mo- and W-based bulk transition metal dichalcogenides. Nanoscale. 2018;10:15571–15577. doi: 10.1039/C8NR03764G. PubMed DOI
Slobodeniuk AO, et al. Fine structure of k-excitons in multilayers of transition metal dichalcogenides. 2D Mater. 2019;6:025026. doi: 10.1088/2053-1583/ab0776. DOI
Gerber IC, et al. Interlayer excitons in bilayer MoS DOI
Paradisanos I, et al. Controlling interlayer excitons in MoS PubMed DOI PMC
Kormányos, A. et al.
ODonnell KP, Chen X. Temperature dependence of semiconductor band gaps. Appl. Phys. Lett. 1991;58:2924–2926. doi: 10.1063/1.104723. DOI
Wang G, et al. Spin-orbit engineering in transition metal dichalcogenide alloy monolayers. Nat. Commun. 2015;6:10110. doi: 10.1038/ncomms10110. PubMed DOI PMC