Dissecting the interaction of photosynthetic electron transfer with mitochondrial signalling and hypoxic response in the Arabidopsis rcd1 mutant
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32362253
PubMed Central
PMC7209945
DOI
10.1098/rstb.2019.0413
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, hypoxia, mitochondrial dysfunction stimulon, photosynthetic electron transfer, reactive oxygen species, retrograde signalling,
- MeSH
- anaerobióza MeSH
- Arabidopsis genetika fyziologie MeSH
- fotosyntéza * MeSH
- jaderné proteiny genetika MeSH
- mitochondrie metabolismus MeSH
- proteiny huseníčku genetika MeSH
- signální transdukce * MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- jaderné proteiny MeSH
- proteiny huseníčku MeSH
- RCD1 protein, Arabidopsis MeSH Prohlížeč
The Arabidopsis mutant rcd1 is tolerant to methyl viologen (MV). MV enhances the Mehler reaction, i.e. electron transfer from Photosystem I (PSI) to O2, generating reactive oxygen species (ROS) in the chloroplast. To study the MV tolerance of rcd1, we first addressed chloroplast thiol redox enzymes potentially implicated in ROS scavenging. NADPH-thioredoxin oxidoreductase type C (NTRC) was more reduced in rcd1. NTRC contributed to the photosynthetic and metabolic phenotypes of rcd1, but did not determine its MV tolerance. We next tested rcd1 for alterations in the Mehler reaction. In rcd1, but not in the wild type, the PSI-to-MV electron transfer was abolished by hypoxic atmosphere. A characteristic feature of rcd1 is constitutive expression of mitochondrial dysfunction stimulon (MDS) genes that affect mitochondrial respiration. Similarly to rcd1, in other MDS-overexpressing plants hypoxia also inhibited the PSI-to-MV electron transfer. One possible explanation is that the MDS gene products may affect the Mehler reaction by altering the availability of O2. In green tissues, this putative effect is masked by photosynthetic O2 evolution. However, O2 evolution was rapidly suppressed in MV-treated plants. Transcriptomic meta-analysis indicated that MDS gene expression is linked to hypoxic response not only under MV, but also in standard growth conditions. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Center of Plant Systems Biology and Biotechnology 4000 Plovdiv Bulgaria
Department of Biochemistry Molecular Plant Biology University of Turku FI 20014 Turku Finland
Max Planck Institute for Molecular Plant Physiology D 14476 Potsdam Golm Germany
Photon Systems Instruments 664 24 Drásov Czech Republic
Viikki Plant Science Center University of Helsinki FI 00014 Helsinki Finland
Zobrazit více v PubMed
De Clercq I, et al. 2013. The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis . Plant Cell. 25, 3472–3490. (10.1105/tpc.113.117168) PubMed DOI PMC
Van Aken O, De Clercq I, Ivanova A, Law SR, Van Breusegem F, Millar AH, Whelan J.. 2016. Mitochondrial and chloroplast stress responses are modulated in distinct touch and chemical inhibition phases . Plant Physiol. 171, 2150–2165. (10.1104/pp.16.00273) PubMed DOI PMC
Shapiguzov A, et al. 2019. Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors . Elife 8, e43284 (10.7554/eLife.43284) PubMed DOI PMC
Ng S, et al. 2013. A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis. Plant Cell 25, 3450–3471. (10.1105/tpc.113.113985) PubMed DOI PMC
Heiber I, Ströher E, Raatz B, Busse I, Kahmann U, Bevan MW, Dietz KJ, Baier M. 2007. The redox imbalanced mutants of Arabidopsis differentiate signaling pathways for redox regulation of chloroplast antioxidant enzymes . Plant Physiol. 143, 1774–1788. (10.1104/pp.106.093328) PubMed DOI PMC
Hiltscher H, Rudnik R, Shaikhali J, Heiber I, Mellenthin M, Meirelles Duarte I, Schuster G, Kahmann U, Baier M. 2014. The radical induced cell death protein 1 (RCD1) supports transcriptional activation of genes for chloroplast antioxidant enzymes . Front. Plant Sci. 5, 475 (10.3389/fpls.2014.00475) PubMed DOI PMC
Cui F, et al. 2019. Interaction of methyl viologen-induced chloroplast and mitochondrial signalling in Arabidopsis . Free Radic. Biol. Med. 134, 555–566. (10.1016/j.freeradbiomed.2019.02.006) PubMed DOI
Mehler AH. 1951. Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch. Biochem. Biophys. 33, 65–77. PubMed
Asada K. 2000. The water–water cycle as alternative photon and electron sinks . Phil. Trans. R. Soc. Lond. B 355, 1419–1431. (10.1098/rstb.2000.0703) PubMed DOI PMC
Schansker G, Tóth SZ, Strasser RJ. 2005. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP . Biochim. Biophys. Acta. 1706, 250–261. (10.1016/j.bbabio.2004.11.006) PubMed DOI
Schansker G, Tóth SZ, Strasser RJ. 2006. Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: the qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side . Biochim. Biophys. Acta. 1757, 787–797. (10.1016/j.bbabio.2006.04.019) PubMed DOI
Kobayashi Y, Heber U. 1994. Rates of vectorial proton transport supported by cyclic electron flow during oxygen reduction by illuminated intact chloroplasts . Photosynth. Res. 41, 419–428. (10.1007/BF02183044) PubMed DOI
Hawkes TR. 2014. Mechanisms of resistance to paraquat in plants . Pest. Manag. Sci. 70, 1316–1323. (10.1002/ps.3699) PubMed DOI
Xiong Y, Contento AL, Nguyen PQ, Bassham DC. 2007. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis . Plant Physiol. 143, 291–299. (10.1104/pp.106.092106) PubMed DOI PMC
Belles-Boix E, Babiychuk E, Van Montagu M, Inzé D, Kushnir S.. 2000. CEO1, a new protein from Arabidopsis thaliana, protects yeast against oxidative damage . FEBS Lett. 482, 19–24. (10.1016/s0014-5793(00)02016-0) PubMed DOI
Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H Jr, Kangasjärvi J. 2000. Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death . Plant Cell. 12, 1849–1862. (10.1105/tpc.12.10.1849) PubMed DOI PMC
Fujibe T, Saji H, Arakawa K, Yabe N, Takeuchi Y, Yamamoto KT. 2004. A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-B irradiation . Plant Physiol. 134, 275–285. (10.1104/pp.103.033480) PubMed DOI PMC
Awad J, Stotz HU, Fekete A, Krischke M, Engert C, Havaux M, Berger S, Mueller MJ. 2015. 2-cysteine peroxiredoxins and thylakoid ascorbate peroxidase create a water–water cycle that is essential to protect the photosynthetic apparatus under high light stress conditions . Plant Physiol. 167, 1592–1603. (10.1104/pp.114.255356) PubMed DOI PMC
Ojeda V, Pérez-Ruiz JM, Cejudo FJ. 2018. 2-Cys peroxiredoxins participate in the oxidation of chloroplast enzymes in the dark . Mol. Plant. 11, 1377–1388. (10.1016/j.molp.2018.09.005) PubMed DOI
Vaseghi MJ, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Mueller SM, Dietz KJ. 2018. The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism . Elife 7, e38194 (10.7554/eLife.38194) PubMed DOI PMC
Yoshida K, Hara A, Sugiura K, Fukaya Y, Hisabori T.. 2018. Thioredoxin-like2/2-Cys peroxiredoxin redox cascade supports oxidative thiol modulation in chloroplasts. Proc. Natl Acad. Sci. USA 115, E8296–E8304. (10.1073/pnas.1808284115) PubMed DOI PMC
Vanlerberghe GC. 2013. Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants . Int. J. Mol. Sci. 14, 6805–6847. (10.3390/ijms14046805) PubMed DOI PMC
Dinakar C, Vishwakarma A, Raghavendra AS, Padmasree K. 2016. Alternative oxidase pathway optimizes photosynthesis during osmotic and temperature stress by regulating cellular ROS, malate valve and antioxidative systems . Front. Plant Sci. 7, 68 (10.3389/fpls.2016.00068) PubMed DOI PMC
Vishwakarma A, Tetali SD, Selinski J, Scheibe R, Padmasree K. 2015. Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana . Ann. Bot. 116, 555–569. (10.1093/aob/mcv122) PubMed DOI PMC
Selinski J, Scheibe R, Day DA, Whelan J. 2018. Alternative oxidase is positive for plant performance . Trends Plant Sci. 23, 588–597. (10.1016/j.tplants.2018.03.012) PubMed DOI
Watanabe CK, Yamori W, Takahashi S, Terashima I, Noguchi K. 2016. Mitochondrial alternative pathway-associated photoprotection of photosystem II is related to the photorespiratory pathway . Plant Cell Physiol. 57, 1426–1431. (10.1093/pcp/pcw036) PubMed DOI
Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK. 2000. A pigment-binding protein essential for regulation of photosynthetic light harvesting . Nature. 403, 391–395. (10.1038/35000131) PubMed DOI
Wetzel CM, Jiang CZ, Meehan LJ, Voytas DF, Rodermel SR. 1994. Nuclear-organelle interactions: the immutans variegation mutant of Arabidopsis is plastid autonomous and impaired in carotenoid biosynthesis . Plant J. 6, 161–175. (10.1046/j.1365-313x.1994.6020161.x) PubMed DOI
Toivola J, Nikkanen L, Dahlström KM, Salminen TA, Lepistö A, Vignols HF, Rintamäki E. 2013. Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains . Front. Plant Sci. 4, 389 (10.3389/fpls.2013.00389) PubMed DOI PMC
Umbach AL, Fiorani F, Siedow JN. 2005. Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue . Plant Physiol. 139, 1806–1820. (10.1104/pp.105.070763) PubMed DOI PMC
Brosché M, et al. 2014. Transcriptomics and functional genomics of ROS-induced cell death regulation by RADICAL-INDUCED CELL DEATH1 . PLoS Genet. 10, e1004112 (10.1371/journal.pgen.1004112) PubMed DOI PMC
Imhof A, Heinzer I. 1996. Continuous monitoring of oxygen concentrations in several systems for cultivation of anaerobic bacteria . J. Clin. Microbiol. 34, 1646–1648. (10.1128/jcm.34.7.1646-1648.1996) PubMed DOI PMC
Fernie AR, Roscher A, Ratcliffe RG, Kruger NJ. 2001. Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells . Planta. 212, 250–263. (10.1007/s004250000386) PubMed DOI
Obata T, Rosado-Souza L, Fernie AR. 2017. Coupling radiotracer experiments with chemical fractionation for the estimation of respiratory fluxes . Methods Mol. Biol. 1670, 17–30. (10.1007/978-1-4939-7292-0_2) PubMed DOI
Carrari F, et al. 2006. Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior . Plant Physiol. 142, 1380–1396. (10.1104/pp.106.088534) PubMed DOI PMC
Geigenberger P, Reimholz R, Geiger M, Merlo L, Canale V, Stitt M. 1997. Regulation of sucrose and starch metabolism in potato tubers in response to short-term water deficit . Planta. 201, 502–518. (10.1007/s004250050095) DOI
Geigenberger P, Fernie AR, Gibon Y, Christ M, Stitt M. 2000. Metabolic activity decreases as an adaptive response to low internal oxygen in growing potato tubers . Biol. Chem. 381, 723–740. (10.1515/Bc.2000.093) PubMed DOI
Nikkanen L, Toivola J, Trotta A, Diaz MG, Tikkanen M, Aro EM, Rintamäki E. 2018. Regulation of cyclic electron flow by chloroplast NADPH-dependent thioredoxin system . Plant Direct. 2, e00093 (10.1002/pld3.93) PubMed DOI PMC
Beckmann K, Messinger J, Badger MR, Wydrzynski T, Hillier W. 2009. On-line mass spectrometry: membrane inlet sampling . Photosynth. Res. 102, 511–522. (10.1007/s11120-009-9474-7) PubMed DOI PMC
Küpper H, Benedikty Z, Morina F, Andresen E, Mishra A, Trtílek M. 2019. Analysis of OJIP chlorophyll fluorescence kinetics and QA reoxidation kinetics by direct fast imaging . Plant Physiol. 179, 369–381. (10.1104/pp.18.00953) PubMed DOI PMC
Ng S, et al. 2013. Cyclin-dependent kinase E1 (CDKE1) provides a cellular switch in plants between growth and stress responses . J. Biol. Chem. 288, 3449–3459. (10.1074/jbc.M112.416727) PubMed DOI PMC
Branco-Price C, Kaiser KA, Jang CJ, Larive CK, Bailey-Serres J. 2008. Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana . Plant J. 56, 743–755. (10.1111/j.1365-313X.2008.03642.x) PubMed DOI
Sorenson R, Bailey-Serres J.. 2014. Selective mRNA sequestration by OLIGOURIDYLATE-BINDING PROTEIN 1 contributes to translational control during hypoxia in Arabidopsis. Proc. Natl Acad. Sci. USA 111, 2373–2378. (10.1073/pnas.1314851111) PubMed DOI PMC
Nikkanen L, Rintamäki E. 2019. Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants . Biochem. J. 476, 1159–1172. (10.1042/BCJ20180707) PubMed DOI PMC
Nikkanen L, Rintamäki E. 2014. Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions . Phil. Trans. R. Soc. B 369, 20130224 (10.1098/rstb.2013.0224) PubMed DOI PMC
Naranjo B, Mignee C, Krieger-Liszkay A, Hornero-Mendez D, Gallardo-Guerrero L, Cejudo FJ, Lindahl M. 2016. The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis . Plant Cell Environ. 39, 804–822. (10.1111/pce.12652) PubMed DOI
Nikkanen L, Toivola J, Rintamäki E. 2016. Crosstalk between chloroplast thioredoxin systems in regulation of photosynthesis . Plant Cell Environ. 39, 1691–1705. (10.1111/pce.12718) PubMed DOI
Carrillo LR, Froehlich JE, Cruz JA, Savage LJ, Kramer DM. 2016. Multi-level regulation of the chloroplast ATP synthase: the chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance . Plant J. 87, 654–663. (10.1111/tpj.13226) PubMed DOI
Strand DD, Kramer DM. 2014. Control of non-photochemical exciton quenching by the proton circuit of photosynthesis. Adv. Photosynth. Respir. 40, 387–408. (10.1007/978-94-017-9032-1_18) DOI
Nellaepalli S, Kodru S, Tirupathi M, Subramanyam R. 2012. Anaerobiosis induced state transition: a non photochemical reduction of PQ pool mediated by NDH in Arabidopsis thaliana . PLoS ONE. 7, e49839 (10.1371/journal.pone.0049839) PubMed DOI PMC
Stirbet A, Govindjee SA. 2012. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J–I-P rise . Photosynth. Res. 113, 15–61. (10.1007/s11120-012-9754-5) PubMed DOI
Stirbet A, Govindjee SA. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B 104, 236–257. (10.1016/j.jphotobiol.2010.12.010) PubMed DOI
Jia H, Oguchi R, Hope AB, Barber J, Chow WS. 2008. Differential effects of severe water stress on linear and cyclic electron fluxes through photosystem I in spinach leaf discs in CO2-enriched air . Planta. 228, 803–812. (10.1007/s00425-008-0783-4) PubMed DOI
Wagner S, Van Aken O, Elsässer M, Schwarzländer M.. 2018. Mitochondrial energy signaling and its role in the low-oxygen stress response of plants. Plant Physiol. 176, 1156–1170. (10.1104/pp.17.01387) PubMed DOI PMC
Ahlfors R, et al. 2004. Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein–protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses . Plant Cell. 16, 1925–1937. (10.1105/tpc.021832) PubMed DOI PMC
Taniguchi M, Miyake H. 2012. Redox-shuttling between chloroplast and cytosol: integration of intra-chloroplast and extra-chloroplast metabolism . Curr. Opin. Plant Biol. 15, 252–260. (10.1016/j.pbi.2012.01.014) PubMed DOI
Gupta KJ, Zabalza A, van Dongen JT.. 2009. Regulation of respiration when the oxygen availability changes . Physiol. Plant. 137, 383–391. (10.1111/j.1399-3054.2009.01253.x) PubMed DOI
Rasmusson AG, Fernie AR, van Dongen JT.. 2009. Alternative oxidase: a defence against metabolic fluctuations? Physiol. Plant. 137, 371–382. (10.1111/j.1399-3054.2009.01252.x) PubMed DOI
Van Dongen JT, Licausi F.. 2015. Oxygen sensing and signaling . Annu. Rev. Plant Biol. 66, 345–367. (10.1146/annurev-arplant-043014-114813) PubMed DOI
Kelliher T, Walbot V. 2012. Hypoxia triggers meiotic fate acquisition in maize . Science 337, 345–348. (10.1126/science.1220080) PubMed DOI PMC
McAinsh MR, Clayton H, Mansfield TA, Hetherington AM. 1996. Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress . Plant Physiol. 111, 1031–1042. (10.1104/pp.111.4.1031) PubMed DOI PMC
figshare
10.6084/m9.figshare.c.4927803