Dissecting the interaction of photosynthetic electron transfer with mitochondrial signalling and hypoxic response in the Arabidopsis rcd1 mutant

. 2020 Jun 22 ; 375 (1801) : 20190413. [epub] 20200504

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32362253

The Arabidopsis mutant rcd1 is tolerant to methyl viologen (MV). MV enhances the Mehler reaction, i.e. electron transfer from Photosystem I (PSI) to O2, generating reactive oxygen species (ROS) in the chloroplast. To study the MV tolerance of rcd1, we first addressed chloroplast thiol redox enzymes potentially implicated in ROS scavenging. NADPH-thioredoxin oxidoreductase type C (NTRC) was more reduced in rcd1. NTRC contributed to the photosynthetic and metabolic phenotypes of rcd1, but did not determine its MV tolerance. We next tested rcd1 for alterations in the Mehler reaction. In rcd1, but not in the wild type, the PSI-to-MV electron transfer was abolished by hypoxic atmosphere. A characteristic feature of rcd1 is constitutive expression of mitochondrial dysfunction stimulon (MDS) genes that affect mitochondrial respiration. Similarly to rcd1, in other MDS-overexpressing plants hypoxia also inhibited the PSI-to-MV electron transfer. One possible explanation is that the MDS gene products may affect the Mehler reaction by altering the availability of O2. In green tissues, this putative effect is masked by photosynthetic O2 evolution. However, O2 evolution was rapidly suppressed in MV-treated plants. Transcriptomic meta-analysis indicated that MDS gene expression is linked to hypoxic response not only under MV, but also in standard growth conditions. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.

Zobrazit více v PubMed

De Clercq I, et al. 2013. The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis . Plant Cell. 25, 3472–3490. (10.1105/tpc.113.117168) PubMed DOI PMC

Van Aken O, De Clercq I, Ivanova A, Law SR, Van Breusegem F, Millar AH, Whelan J.. 2016. Mitochondrial and chloroplast stress responses are modulated in distinct touch and chemical inhibition phases . Plant Physiol. 171, 2150–2165. (10.1104/pp.16.00273) PubMed DOI PMC

Shapiguzov A, et al. 2019. Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors . Elife 8, e43284 (10.7554/eLife.43284) PubMed DOI PMC

Ng S, et al. 2013. A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis. Plant Cell 25, 3450–3471. (10.1105/tpc.113.113985) PubMed DOI PMC

Heiber I, Ströher E, Raatz B, Busse I, Kahmann U, Bevan MW, Dietz KJ, Baier M. 2007. The redox imbalanced mutants of Arabidopsis differentiate signaling pathways for redox regulation of chloroplast antioxidant enzymes . Plant Physiol. 143, 1774–1788. (10.1104/pp.106.093328) PubMed DOI PMC

Hiltscher H, Rudnik R, Shaikhali J, Heiber I, Mellenthin M, Meirelles Duarte I, Schuster G, Kahmann U, Baier M. 2014. The radical induced cell death protein 1 (RCD1) supports transcriptional activation of genes for chloroplast antioxidant enzymes . Front. Plant Sci. 5, 475 (10.3389/fpls.2014.00475) PubMed DOI PMC

Cui F, et al. 2019. Interaction of methyl viologen-induced chloroplast and mitochondrial signalling in Arabidopsis . Free Radic. Biol. Med. 134, 555–566. (10.1016/j.freeradbiomed.2019.02.006) PubMed DOI

Mehler AH. 1951. Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch. Biochem. Biophys. 33, 65–77. PubMed

Asada K. 2000. The water–water cycle as alternative photon and electron sinks . Phil. Trans. R. Soc. Lond. B 355, 1419–1431. (10.1098/rstb.2000.0703) PubMed DOI PMC

Schansker G, Tóth SZ, Strasser RJ. 2005. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP . Biochim. Biophys. Acta. 1706, 250–261. (10.1016/j.bbabio.2004.11.006) PubMed DOI

Schansker G, Tóth SZ, Strasser RJ. 2006. Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: the qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side . Biochim. Biophys. Acta. 1757, 787–797. (10.1016/j.bbabio.2006.04.019) PubMed DOI

Kobayashi Y, Heber U. 1994. Rates of vectorial proton transport supported by cyclic electron flow during oxygen reduction by illuminated intact chloroplasts . Photosynth. Res. 41, 419–428. (10.1007/BF02183044) PubMed DOI

Hawkes TR. 2014. Mechanisms of resistance to paraquat in plants . Pest. Manag. Sci. 70, 1316–1323. (10.1002/ps.3699) PubMed DOI

Xiong Y, Contento AL, Nguyen PQ, Bassham DC. 2007. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis . Plant Physiol. 143, 291–299. (10.1104/pp.106.092106) PubMed DOI PMC

Belles-Boix E, Babiychuk E, Van Montagu M, Inzé D, Kushnir S.. 2000. CEO1, a new protein from Arabidopsis thaliana, protects yeast against oxidative damage . FEBS Lett. 482, 19–24. (10.1016/s0014-5793(00)02016-0) PubMed DOI

Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H Jr, Kangasjärvi J. 2000. Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death . Plant Cell. 12, 1849–1862. (10.1105/tpc.12.10.1849) PubMed DOI PMC

Fujibe T, Saji H, Arakawa K, Yabe N, Takeuchi Y, Yamamoto KT. 2004. A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-B irradiation . Plant Physiol. 134, 275–285. (10.1104/pp.103.033480) PubMed DOI PMC

Awad J, Stotz HU, Fekete A, Krischke M, Engert C, Havaux M, Berger S, Mueller MJ. 2015. 2-cysteine peroxiredoxins and thylakoid ascorbate peroxidase create a water–water cycle that is essential to protect the photosynthetic apparatus under high light stress conditions . Plant Physiol. 167, 1592–1603. (10.1104/pp.114.255356) PubMed DOI PMC

Ojeda V, Pérez-Ruiz JM, Cejudo FJ. 2018. 2-Cys peroxiredoxins participate in the oxidation of chloroplast enzymes in the dark . Mol. Plant. 11, 1377–1388. (10.1016/j.molp.2018.09.005) PubMed DOI

Vaseghi MJ, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Mueller SM, Dietz KJ. 2018. The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism . Elife 7, e38194 (10.7554/eLife.38194) PubMed DOI PMC

Yoshida K, Hara A, Sugiura K, Fukaya Y, Hisabori T.. 2018. Thioredoxin-like2/2-Cys peroxiredoxin redox cascade supports oxidative thiol modulation in chloroplasts. Proc. Natl Acad. Sci. USA 115, E8296–E8304. (10.1073/pnas.1808284115) PubMed DOI PMC

Vanlerberghe GC. 2013. Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants . Int. J. Mol. Sci. 14, 6805–6847. (10.3390/ijms14046805) PubMed DOI PMC

Dinakar C, Vishwakarma A, Raghavendra AS, Padmasree K. 2016. Alternative oxidase pathway optimizes photosynthesis during osmotic and temperature stress by regulating cellular ROS, malate valve and antioxidative systems . Front. Plant Sci. 7, 68 (10.3389/fpls.2016.00068) PubMed DOI PMC

Vishwakarma A, Tetali SD, Selinski J, Scheibe R, Padmasree K. 2015. Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana . Ann. Bot. 116, 555–569. (10.1093/aob/mcv122) PubMed DOI PMC

Selinski J, Scheibe R, Day DA, Whelan J. 2018. Alternative oxidase is positive for plant performance . Trends Plant Sci. 23, 588–597. (10.1016/j.tplants.2018.03.012) PubMed DOI

Watanabe CK, Yamori W, Takahashi S, Terashima I, Noguchi K. 2016. Mitochondrial alternative pathway-associated photoprotection of photosystem II is related to the photorespiratory pathway . Plant Cell Physiol. 57, 1426–1431. (10.1093/pcp/pcw036) PubMed DOI

Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK. 2000. A pigment-binding protein essential for regulation of photosynthetic light harvesting . Nature. 403, 391–395. (10.1038/35000131) PubMed DOI

Wetzel CM, Jiang CZ, Meehan LJ, Voytas DF, Rodermel SR. 1994. Nuclear-organelle interactions: the immutans variegation mutant of Arabidopsis is plastid autonomous and impaired in carotenoid biosynthesis . Plant J. 6, 161–175. (10.1046/j.1365-313x.1994.6020161.x) PubMed DOI

Toivola J, Nikkanen L, Dahlström KM, Salminen TA, Lepistö A, Vignols HF, Rintamäki E. 2013. Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains . Front. Plant Sci. 4, 389 (10.3389/fpls.2013.00389) PubMed DOI PMC

Umbach AL, Fiorani F, Siedow JN. 2005. Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue . Plant Physiol. 139, 1806–1820. (10.1104/pp.105.070763) PubMed DOI PMC

Brosché M, et al. 2014. Transcriptomics and functional genomics of ROS-induced cell death regulation by RADICAL-INDUCED CELL DEATH1 . PLoS Genet. 10, e1004112 (10.1371/journal.pgen.1004112) PubMed DOI PMC

Imhof A, Heinzer I. 1996. Continuous monitoring of oxygen concentrations in several systems for cultivation of anaerobic bacteria . J. Clin. Microbiol. 34, 1646–1648. (10.1128/jcm.34.7.1646-1648.1996) PubMed DOI PMC

Fernie AR, Roscher A, Ratcliffe RG, Kruger NJ. 2001. Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells . Planta. 212, 250–263. (10.1007/s004250000386) PubMed DOI

Obata T, Rosado-Souza L, Fernie AR. 2017. Coupling radiotracer experiments with chemical fractionation for the estimation of respiratory fluxes . Methods Mol. Biol. 1670, 17–30. (10.1007/978-1-4939-7292-0_2) PubMed DOI

Carrari F, et al. 2006. Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior . Plant Physiol. 142, 1380–1396. (10.1104/pp.106.088534) PubMed DOI PMC

Geigenberger P, Reimholz R, Geiger M, Merlo L, Canale V, Stitt M. 1997. Regulation of sucrose and starch metabolism in potato tubers in response to short-term water deficit . Planta. 201, 502–518. (10.1007/s004250050095) DOI

Geigenberger P, Fernie AR, Gibon Y, Christ M, Stitt M. 2000. Metabolic activity decreases as an adaptive response to low internal oxygen in growing potato tubers . Biol. Chem. 381, 723–740. (10.1515/Bc.2000.093) PubMed DOI

Nikkanen L, Toivola J, Trotta A, Diaz MG, Tikkanen M, Aro EM, Rintamäki E. 2018. Regulation of cyclic electron flow by chloroplast NADPH-dependent thioredoxin system . Plant Direct. 2, e00093 (10.1002/pld3.93) PubMed DOI PMC

Beckmann K, Messinger J, Badger MR, Wydrzynski T, Hillier W. 2009. On-line mass spectrometry: membrane inlet sampling . Photosynth. Res. 102, 511–522. (10.1007/s11120-009-9474-7) PubMed DOI PMC

Küpper H, Benedikty Z, Morina F, Andresen E, Mishra A, Trtílek M. 2019. Analysis of OJIP chlorophyll fluorescence kinetics and QA reoxidation kinetics by direct fast imaging . Plant Physiol. 179, 369–381. (10.1104/pp.18.00953) PubMed DOI PMC

Ng S, et al. 2013. Cyclin-dependent kinase E1 (CDKE1) provides a cellular switch in plants between growth and stress responses . J. Biol. Chem. 288, 3449–3459. (10.1074/jbc.M112.416727) PubMed DOI PMC

Branco-Price C, Kaiser KA, Jang CJ, Larive CK, Bailey-Serres J. 2008. Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana . Plant J. 56, 743–755. (10.1111/j.1365-313X.2008.03642.x) PubMed DOI

Sorenson R, Bailey-Serres J.. 2014. Selective mRNA sequestration by OLIGOURIDYLATE-BINDING PROTEIN 1 contributes to translational control during hypoxia in Arabidopsis. Proc. Natl Acad. Sci. USA 111, 2373–2378. (10.1073/pnas.1314851111) PubMed DOI PMC

Nikkanen L, Rintamäki E. 2019. Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants . Biochem. J. 476, 1159–1172. (10.1042/BCJ20180707) PubMed DOI PMC

Nikkanen L, Rintamäki E. 2014. Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions . Phil. Trans. R. Soc. B 369, 20130224 (10.1098/rstb.2013.0224) PubMed DOI PMC

Naranjo B, Mignee C, Krieger-Liszkay A, Hornero-Mendez D, Gallardo-Guerrero L, Cejudo FJ, Lindahl M. 2016. The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis . Plant Cell Environ. 39, 804–822. (10.1111/pce.12652) PubMed DOI

Nikkanen L, Toivola J, Rintamäki E. 2016. Crosstalk between chloroplast thioredoxin systems in regulation of photosynthesis . Plant Cell Environ. 39, 1691–1705. (10.1111/pce.12718) PubMed DOI

Carrillo LR, Froehlich JE, Cruz JA, Savage LJ, Kramer DM. 2016. Multi-level regulation of the chloroplast ATP synthase: the chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance . Plant J. 87, 654–663. (10.1111/tpj.13226) PubMed DOI

Strand DD, Kramer DM. 2014. Control of non-photochemical exciton quenching by the proton circuit of photosynthesis. Adv. Photosynth. Respir. 40, 387–408. (10.1007/978-94-017-9032-1_18) DOI

Nellaepalli S, Kodru S, Tirupathi M, Subramanyam R. 2012. Anaerobiosis induced state transition: a non photochemical reduction of PQ pool mediated by NDH in Arabidopsis thaliana . PLoS ONE. 7, e49839 (10.1371/journal.pone.0049839) PubMed DOI PMC

Stirbet A, Govindjee SA. 2012. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J–I-P rise . Photosynth. Res. 113, 15–61. (10.1007/s11120-012-9754-5) PubMed DOI

Stirbet A, Govindjee SA. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B 104, 236–257. (10.1016/j.jphotobiol.2010.12.010) PubMed DOI

Jia H, Oguchi R, Hope AB, Barber J, Chow WS. 2008. Differential effects of severe water stress on linear and cyclic electron fluxes through photosystem I in spinach leaf discs in CO2-enriched air . Planta. 228, 803–812. (10.1007/s00425-008-0783-4) PubMed DOI

Wagner S, Van Aken O, Elsässer M, Schwarzländer M.. 2018. Mitochondrial energy signaling and its role in the low-oxygen stress response of plants. Plant Physiol. 176, 1156–1170. (10.1104/pp.17.01387) PubMed DOI PMC

Ahlfors R, et al. 2004. Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein–protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses . Plant Cell. 16, 1925–1937. (10.1105/tpc.021832) PubMed DOI PMC

Taniguchi M, Miyake H. 2012. Redox-shuttling between chloroplast and cytosol: integration of intra-chloroplast and extra-chloroplast metabolism . Curr. Opin. Plant Biol. 15, 252–260. (10.1016/j.pbi.2012.01.014) PubMed DOI

Gupta KJ, Zabalza A, van Dongen JT.. 2009. Regulation of respiration when the oxygen availability changes . Physiol. Plant. 137, 383–391. (10.1111/j.1399-3054.2009.01253.x) PubMed DOI

Rasmusson AG, Fernie AR, van Dongen JT.. 2009. Alternative oxidase: a defence against metabolic fluctuations? Physiol. Plant. 137, 371–382. (10.1111/j.1399-3054.2009.01252.x) PubMed DOI

Van Dongen JT, Licausi F.. 2015. Oxygen sensing and signaling . Annu. Rev. Plant Biol. 66, 345–367. (10.1146/annurev-arplant-043014-114813) PubMed DOI

Kelliher T, Walbot V. 2012. Hypoxia triggers meiotic fate acquisition in maize . Science 337, 345–348. (10.1126/science.1220080) PubMed DOI PMC

McAinsh MR, Clayton H, Mansfield TA, Hetherington AM. 1996. Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress . Plant Physiol. 111, 1031–1042. (10.1104/pp.111.4.1031) PubMed DOI PMC

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.4927803

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...