Chimeric Antigen Receptor Based Cellular Therapy for Treatment Of T-Cell Malignancies
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
35600381
PubMed Central
PMC9121778
DOI
10.3389/fonc.2022.876758
Knihovny.cz E-resources
- Keywords
- CAR-T cells, T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma, T-cell lymphoma, chimeric antigen receptor (CAR), immunotherapy, therapy,
- Publication type
- Journal Article MeSH
- Review MeSH
T-cell malignancies can be divided into precursor (T-acute lymphoblastic leukemia/lymphoblastic lymphoma, T-ALL/LBL) and mature T-cell neoplasms, which are comprised of 28 different entities. Most of these malignancies are aggressive with rather poor prognosis. Prognosis of relapsed/refractory (R/R) disease is especially dismal, with an expected survival only several months after progression. Targeted therapies, such as antiCD30 immunotoxin brentuximab vedotin, antiCD38 antibody daratumumab, and anti-CCR4 antibody mogamulizumab are effective only in subsets of patients with T-cell neoplasms. T-cells equipped with chimeric antigen receptor (CAR-Ts) are routinely used for treatment of R/R B-cell malignancies, however, there are specific obstacles for their use in T-cell leukemias and lymphomas which are fratricide killing, risk of transfection of malignant cells, and T-cell aplasia. The solution for these problems relies on target antigen selection, CRISPR/Cas9 or TALEN gene editing, posttranslational regulation of CAR-T surface antigen expression, and safety switches. Structural chromosomal changes and global changes in gene expression were observed with gene-edited products. We identified 49 studies of CAR-based therapies registered on www.clinicaltrials.gov. Most of them target CD30 or CD7 antigen. Results are available only for a minority of these studies. In general, clinical responses are above 50% but reported follow-up is very short. Specific toxicities of CAR-based therapies, namely cytokine release syndrome (CRS), seem to be connected with the antigen of interest and source of cells for manufacturing. CRS is more frequent in antiCD7 CAR-T cells than in antiCD30 cells, but it is mild in most patients. More severe CRS was observed after gene-edited allogeneic CAR-T cells. Immune effector cell associated neurotoxicity (ICANS) was mild and infrequent. Graft-versus-host disease (GvHD) after allogeneic CAR-T cells from previous hematopoietic stem cell donor was also observed. Most frequent toxicities, similarly to antiCD19 CAR-T cells, are cytopenias. CAR-based cellular therapy seems feasible and effective for T-cell malignancies, however, the optimal design of CAR-based products is still unknown and long-term follow-up is needed for evaluation of their true potential.
1st Department of Medicine 1st Faculty of Medicine Charles University Prague Czechia
1st Department of Medicine General University Hospital Prague Prague Czechia
Clinical Department Institute of Haematology and Blood Transfusion Prague Czechia
Department of Cell Therapy Institute of Haematology and Blood Transfusion Prague Czechia
Department of Immunotherapy Institute of Haematology and Blood Transfusion Prague Czechia
See more in PubMed
Vose J, Armitage J, Weisenburger D. International Peripheral T-Cell and Natural Killer/T-Cell Lymphoma Study: Pathology Findings and Clinical Outcomes. J Clin Oncol (2008) 26(25):4124–30. doi: 10.1200/JCO.2008.16.4558 PubMed DOI
Rafei H, Kantarjian HM, Jabbour EJ. Recent Advances in the Treatment of Acute Lymphoblastic Leukemia. Leuk Lymphoma (2019) 60(11):2606–21. doi: 10.1080/10428194.2019.1605071 PubMed DOI
Morita K, Jain N, Kantarjian H, Takahashi K, Fang H, Konopleva M, et al. . Outcome of T-Cell Acute Lymphoblastic Leukemia/Lymphoma: Focus on Near-ETP Phenotype and Differential Impact of Nelarabine. Am J Hematol (2021) 96(5):589–98. doi: 10.1002/ajh.26144 PubMed DOI
Gökbuget N, Basara N, Baurmann H, Beck J, Brüggemann M, Diedrich H, et al. . High Single-Drug Activity of Nelarabine in Relapsed T-Lymphoblastic Leukemia/Lymphoma Offers Curative Option With Subsequent Stem Cell Transplantation. Blood (2011) 118(13):3504–11. doi: 10.1182/blood-2011-01-329441 PubMed DOI
Candoni A, Lazzarotto D, Ferrara F, Curti A, Lussana F, Papayannidis C, et al. . Nelarabine as Salvage Therapy and Bridge to Allogeneic Stem Cell Transplant in 118 Adult Patients With Relapsed/Refractory T-Cell Acute Lymphoblastic Leukemia/Lymphoma. A CAMPUS ALL Study. Am J Hematol (2020) 95(12):1466–72. doi: 10.1002/ajh.25957 PubMed DOI
Giebel S, Marks DI, Boissel N, Baron F, Chiaretti S, Ciceri F, et al. . Hematopoietic Stem Cell Transplantation for Adults With Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia in First Remission: A Position Statement of the European Working Group for Adult Acute Lymphoblastic Leukemia (EWALL) and the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant (2019) 54(6):798–809. doi: 10.1038/s41409-018-0373-4 PubMed DOI
Sin C, Man PM. Early T-Cell Precursor Acute Lymphoblastic Leukemia: Diagnosis, Updates in Molecular Pathogenesis, Management, and Novel Therapies. Front Oncol (2021) 11:750789. doi: 10.3389/fonc.2021.750789 PubMed DOI PMC
Bond J, Graux C, Lhermitte L, Lara D, Cluzeau T, Leguay T, et al. . Early Response–Based Therapy Stratification Improves Survival in Adult Early Thymic Precursor Acute Lymphoblastic Leukemia: A Group for Research on Adult Acute Lymphoblastic Leukemia Study. J Clin Oncol (2017) 35(23):2683–91. doi: 10.1200/JCO.2016.71.8585 PubMed DOI
Quist-Paulsen P, Toft N, Heyman M, Abrahamsson J, Griškevičius L, Hallböök H, et al. . T-Cell Acute Lymphoblastic Leukemia in Patients 1–45 Years Treated With the Pediatric NOPHO ALL2008 Protocol. Leukemia (2020) 34(2):347–57. doi: 10.1038/s41375-019-0598-2 PubMed DOI
Gökbuget N, Kneba M, Raff T, Trautmann H, Bartram C-R, Arnold R, et al. . Adult Patients With Acute Lymphoblastic Leukemia and Molecular Failure Display a Poor Prognosis and are Candidates for Stem Cell Transplantation and Targeted Therapies. Blood (2012) 120(9):1868–76. doi: 10.1182/blood-2011-09-377713 PubMed DOI
Richard-Carpentier G, Jabbour E, Short NJ, Rausch CR, Savoy JM, Bose P, et al. . Clinical Experience With Venetoclax Combined With Chemotherapy for Relapsed or Refractory T-Cell Acute Lymphoblastic Leukemia. Clin Lymphoma Myeloma Leuk (2020) 20(4):212–8. doi: 10.1016/j.clml.2019.09.608 PubMed DOI
Bride KL, Vincent TL, Im S-Y, Aplenc R, Barrett DM, Carroll WL, et al. . Preclinical Efficacy of Daratumumab in T-Cell Acute Lymphoblastic Leukemia. Blood (2018) 131(9):995–9. doi: 10.1182/blood-2017-07-794214 PubMed DOI PMC
Bonda A, Punatar S, Gokarn A, Mohite A, Shanmugam K, Nayak L, et al. . Daratumumab at the Frontiers of Post-Transplant Refractory T-Acute Lymphoblastic Leukemia—a Worthwhile Strategy? Bone Marrow Transplant (2018) 53(11):1487–9. doi: 10.1038/s41409-018-0222-5 PubMed DOI
Zhang Y, Xue S, Liu F, Wang J. Daratumumab for Quick and Sustained Remission in Post-Transplant Relapsed/Refractory Acute Lymphoblastic Leukemia. Leuk Res (2020) 91:106332. doi: 10.1016/j.leukres.2020.106332 PubMed DOI
Jain P, Aoki E, Keating M, Wierda WG, O’Brien S, Gonzalez GN, et al. . Characteristics, Outcomes, Prognostic Factors and Treatment of Patients With T-Cell Prolymphocytic Leukemia (T-PLL). Ann Oncol (2017) 28(7):1554–9. doi: 10.1093/annonc/mdx163 PubMed DOI PMC
Shah MV, Hook CC, Call TG, Go RS. A Population-Based Study of Large Granular Lymphocyte Leukemia. Blood Cancer J (2016) 6(8):e455–5. doi: 10.1038/bcj.2016.59 PubMed DOI PMC
Tang Y-T, Wang D, Luo H, Xiao M, Zhou H-S, Liu D, et al. . Aggressive NK-Cell Leukemia: Clinical Subtypes, Molecular Features, and Treatment Outcomes. Blood Cancer J (2017) 7(12):660. doi: 10.1038/s41408-017-0021-z PubMed DOI PMC
Guo N, Chen Y, Wang Y, Huang Y, Feng Y, Li M, et al. . Clinicopathological Categorization of Hydroa Vacciniforme-Like Lymphoproliferative Disorder: An Analysis of Prognostic Implications and Treatment Based on 19 Cases. Diagn Pathol (2019) 14(1):82. doi: 10.1186/s13000-019-0859-4 PubMed DOI PMC
Scarisbrick JJ. Survival in Mycosis Fungoides and Sezary Syndrome: How Can We Predict Outcome? J Invest Dermatol (2020) 140(2):281–3. doi: 10.1016/j.jid.2019.08.440 PubMed DOI
Liu HL, Hoppe RT, Kohler S, Harvell JD, Reddy S, Kim YH. Cd30+ Cutaneous Lymphoproliferative Disorders: The Stanford Experience in Lymphomatoid Papulosis and Primary Cutaneous Anaplastic Large Cell Lymphoma. J Am Acad Dermatol (2003) 49(6):1049–58. doi: 10.1016/S0190-9622(03)02484-8 PubMed DOI
Toro JR, Liewehr DJ, Pabby N, Sorbara L, Raffeld M, Steinberg SM, et al. . Gamma-Delta T-Cell Phenotype is Associated With Significantly Decreased Survival in Cutaneous T-Cell Lymphoma. Blood (2003) 101(9):3407–12. doi: 10.1182/blood-2002-05-1597 PubMed DOI
Guitart J, Martinez-Escala ME, Subtil A, Duvic M, Pulitzer MP, Olsen EA, et al. . Primary Cutaneous Aggressive Epidermotropic Cytotoxic T-Cell Lymphomas: Reappraisal of a Provisional Entity in the 2016 WHO Classification of Cutaneous Lymphomas. Mod Pathol (2017) 30(5):761–72. doi: 10.1038/modpathol.2016.240 PubMed DOI PMC
Yoon SE, Cho J, Kim YJ, Ko YH, Park W-Y, Kim SJ, et al. . Comprehensive Analysis of Clinical, Pathological, and Genomic Characteristics of Follicular Helper T-Cell Derived Lymphomas. Exp Hematol Oncol (2021) 10(1):33. doi: 10.1186/s40164-021-00224-3 PubMed DOI PMC
Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. . The 2016 Revision of the World Health Organization Classification of Lymphoid Neoplasms. Blood (2016) 127(20):2375–90. doi: 10.1182/blood-2016-01-643569 PubMed DOI PMC
Iqbal J, Wright G, Wang C, Rosenwald A, Gascoyne RD, Weisenburger DD, et al. . Gene Expression Signatures Delineate Biological and Prognostic Subgroups in Peripheral T-Cell Lymphoma. Blood (2014) 123(19):2915–23. doi: 10.1182/blood-2013-11-536359 PubMed DOI PMC
Kim YA, Byun JM, Park K, Bae GH, Lee D, Kim DS, et al. . Redefining the Role of Etoposide in First-Line Treatment of Peripheral T-Cell Lymphoma. Blood Adv (2017) 1(24):2138–46. doi: 10.1182/bloodadvances.2017010819 PubMed DOI PMC
Schmitz N, Trümper L, Ziepert M, Nickelsen M, Ho AD, Metzner B, et al. . Treatment and Prognosis of Mature T-Cell and NK-Cell Lymphoma: An Analysis of Patients With T-Cell Lymphoma Treated in Studies of the German High-Grade Non-Hodgkin Lymphoma Study Group. Blood (2010) 116(18):3418–25. doi: 10.1182/blood-2010-02-270785 PubMed DOI
Wulf GG, Altmann B, Ziepert M, D’Amore F, Held G, Greil R, et al. . Alemtuzumab Plus CHOP Versus CHOP in Elderly Patients With Peripheral T-Cell Lymphoma: The DSHNHL2006-1b/ACT-2 Trial. Leukemia (2021) 35(1):143–55. doi: 10.1038/s41375-020-0838-5 PubMed DOI
Bachy E, Camus V, Thieblemont C, Sibon D, Casasnovas R-O, Ysebaert L, et al. . Romidepsin Plus CHOP Versus CHOP in Patients With Previously Untreated Peripheral T-Cell Lymphoma: Results of the Ro-CHOP Phase III Study (Conducted by LYSA). J Clin Oncol (2021) 40(3):242–51. doi: 10.1200/JCO.21.01815 PubMed DOI
Foss FM, Sjak-Shie N, Goy A, Jacobsen E, Advani R, Smith MR, et al. . A Multicenter Phase II Trial to Determine the Safety and Efficacy of Combination Therapy With Denileukin Diftitox and Cyclophosphamide, Doxorubicin, Vincristine and Prednisone in Untreated Peripheral T-Cell Lymphoma: The CONCEPT Study. Leuk Lymphoma (2013) 54(7):1373–9. doi: 10.3109/10428194.2012.742521 PubMed DOI
Horwitz S, O’Connor OA, Pro B, Trümper L, Iyer S, Advani R, et al. . The ECHELON-2 Trial: 5-Year Results of a Randomized, Phase III Study of Brentuximab Vedotin With Chemotherapy for CD30-Positive Peripheral T-Cell Lymphoma☆ . Ann Oncol (2022) 33(3):288–98. doi: 10.1016/j.annonc.2021.12.002 PubMed DOI PMC
Iżykowska K, Rassek K, Korsak D, Przybylski GK. Novel Targeted Therapies of T Cell Lymphomas. J Hematol Oncol (2020) 13(1):176. doi: 10.1186/s13045-020-01006-w PubMed DOI PMC
Schmitz N, Truemper L, Bouabdallah K, Ziepert M, Leclerc M, Cartron G, et al. . A Randomized Phase 3 Trial of Autologous vs Allogeneic Transplantation as Part of First-Line Therapy in Poor-Risk Peripheral T-NHL. Blood (2021) 137(19):2646–56. doi: 10.1182/blood.2020008825 PubMed DOI PMC
Mamez A-C, Dupont A, Blaise D, Chevallier P, Forcade E, Ceballos P, et al. . Allogeneic Stem Cell Transplantation for Peripheral T Cell Lymphomas: A Retrospective Study in 285 Patients From the Société Francophone De Greffe De Moelle Et De Thérapie Cellulaire (SFGM-Tc). J Hematol Oncol (2020) 13(1):56. doi: 10.1186/s13045-020-00892-4 PubMed DOI PMC
Bellei M, Foss FM, Shustov AR, Horwitz SM, Marcheselli L, Kim WS, et al. . The Outcome of Peripheral T-Cell Lymphoma Patients Failing First-Line Therapy: A Report From the Prospective, International T-Cell Project. Haematologica (2018) 103(7 SE-Articles):1191–7. doi: 10.3324/haematol.2017.186577 PubMed DOI PMC
Foster C, Kuruvilla J. Treatment Approaches in Relapsed or Refractory Peripheral T-Cell Lymphomas [Version 1; Peer Review: 3 Approved]. F1000Research (2020) 9:1091. doi: 10.12688/f1000research.22257.1 PubMed DOI PMC
Chihara D, Fanale MA, Miranda RN, Noorani M, Westin JR, Nastoupil LJ, et al. . The Survival Outcome of Patients With Relapsed/Refractory Peripheral T-Cell Lymphoma-Not Otherwise Specified and Angioimmunoblastic T-Cell Lymphoma. Br J Haematol (2017) 176(5):750–8. doi: 10.1111/bjh.14477 PubMed DOI PMC
Lunning MA, Moskowitz AJ, Horwitz S. Strategies for Relapsed Peripheral T-Cell Lymphoma: The Tail That Wags the Curve. J Clin Oncol (2013) 31(16):1922–7. doi: 10.1200/JCO.2012.48.3883 PubMed DOI PMC
Smith SM, Burns LJ, van Besien K, Lerademacher J, He W, Fenske TS, et al. . Hematopoietic Cell Transplantation for Systemic Mature T-Cell non-Hodgkin Lymphoma. J Clin Oncol (2013) 31(25):3100–9. doi: 10.1200/JCO.2012.46.0188 PubMed DOI PMC
Smith SD, Bolwell BJ, Rybicki LA, Brown S, Dean R, Kalaycio M, et al. . Autologous Hematopoietic Stem Cell Transplantation in Peripheral T-Cell Lymphoma Using a Uniform High-Dose Regimen. Bone Marrow Transplant (2007) 40(3):239–43. doi: 10.1038/sj.bmt.1705712 PubMed DOI
Corradini P, Dodero A, Zallio F, Caracciolo D, Casini M, Bregni M, et al. . Graft-Versus-Lymphoma Effect in Relapsed Peripheral T-Cell Non-Hodgkin’s Lymphomas After Reduced-Intensity Conditioning Followed by Allogeneic Transplantation of Hematopoietic Cells. J Clin Oncol (2004) 22(11):2172–6. doi: 10.1200/JCO.2004.12.050 PubMed DOI
Le Gouill S, Milpied N, Buzyn A, Peffault De Latour R, Vernant J-P, Mohty M, et al. . Graft-Versus-Lymphoma Effect for Aggressive T-Cell Lymphomas in Adults: A Study by the Société Française De Greffe De Moëlle Et De Thérapie Cellulaire. J Clin Oncol (2008) 26(14):2264–71. doi: 10.1200/JCO.2007.14.1366 PubMed DOI
Zain J, Palmer JM, Delioukina M, Thomas S, Tsai N-C, Nademanee A, et al. . Allogeneic Hematopoietic Cell Transplant for Peripheral T-Cell non-Hodgkin Lymphoma Results in Long-Term Disease Control. Leuk Lymphoma (2011) 52(8):1463–73. doi: 10.3109/10428194.2011.574754 PubMed DOI PMC
Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T, et al. . Brentuximab Vedotin (SGN-35) in Patients With Relapsed or Refractory Systemic Anaplastic Large-Cell Lymphoma: Results of a Phase II Study. J Clin Oncol (2012) 30(18):2190–6. doi: 10.1200/JCO.2011.38.0402 PubMed DOI
Saleh K, Michot J-M, Ribrag V. Updates in the Treatment of Peripheral T-Cell Lymphomas. J Exp Pharmacol (2021) 13:577–91. doi: 10.2147/JEP.S262344 PubMed DOI PMC
Shi Y, Jia B, Xu W, Li W, Liu T, Liu P, et al. . Chidamide in Relapsed or Refractory Peripheral T Cell Lymphoma: A Multicenter Real-World Study in China. J Hematol Oncol (2017) 10(1):69. doi: 10.1186/s13045-017-0439-6 PubMed DOI PMC
Morschhauser F, Fitoussi O, Haioun C, Thieblemont C, Quach H, Delarue R, et al. . A Phase 2, Multicentre, Single-Arm, Open-Label Study to Evaluate the Safety and Efficacy of Single-Agent Lenalidomide (Revlimid®) in Subjects With Relapsed or Refractory Peripheral T-Cell non-Hodgkin Lymphoma: The EXPECT Trial. Eur J Cancer (2013) 49(13):2869–76. doi: 10.1016/j.ejca.2013.04.029 PubMed DOI
Hopfinger G, Nösslinger T, Lang A, Linkesch W, Melchardt T, Weiss L, et al. . Lenalidomide in Combination With Vorinostat and Dexamethasone for the Treatment of Relapsed/Refractory Peripheral T Cell Lymphoma (PTCL): Report of a Phase I/II Trial. Ann Hematol (2014) 93(3):459–62. doi: 10.1007/s00277-014-2009-0 PubMed DOI
Enblad G, Hagberg H, Erlanson M, Lundin J, MacDonald AP, Repp R, et al. . A Pilot Study of Alemtuzumab (Anti-CD52 Monoclonal Antibody) Therapy for Patients With Relapsed or Chemotherapy-Refractory Peripheral T-Cell Lymphomas. Blood (2004) 103(8):2920–4. doi: 10.1182/blood-2003-10-3389 PubMed DOI
Schneider CK, Salmikangas P, Jilma B, Flamion B, Todorova LR, Paphitou A, et al. . Challenges With Advanced Therapy Medicinal Products and How to Meet Them. Nat Rev Drug Discov (2010) 9(3):195–201. doi: 10.1038/nrd3052 PubMed DOI
Pytlik R, Polgarova K, Karolova J, Klener P. Current Immunotherapy Approaches in Non-Hodgkin Lymphomas. Vaccines (2020) 8(4):708. doi: 10.3390/vaccines8040708 PubMed DOI PMC
Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, et al. . Long-Term Safety and Activity of Axicabtagene Ciloleucel in Refractory Large B-Cell Lymphoma (ZUMA-1): A Single-Arm, Multicentre, Phase 1-2 Trial. Lancet Oncol (2019) 20(1):31–42. doi: 10.1016/S1470-2045(18)30864-7 PubMed DOI PMC
Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al. . Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N Engl J Med (2018) 380(1):45–56. doi: 10.1056/NEJMoa1804980 PubMed DOI
Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. . Tisagenlecleucel in Children and Young Adults With B-Cell Lymphoblastic Leukemia. N Engl J Med (2018) 378(5):439–48. doi: 10.1056/NEJMoa1709866 PubMed DOI PMC
Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. . KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N Engl J Med (2020) 382(14):1331–42. doi: 10.1056/NEJMoa1914347 PubMed DOI PMC
Munshi NC, Anderson LD, Shah N, Madduri D, Berdeja J, Lonial S, et al. . Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N Engl J Med (2021) 384(8):705–16. doi: 10.1056/NEJMoa2024850 PubMed DOI
Siegler EL, Kenderian SS. Neurotoxicity and Cytokine Release Syndrome After Chimeric Antigen Receptor T Cell Therapy: Insights Into Mechanisms and Novel Therapies. Front Immunol (2020) 11:1973. doi: 10.3389/fimmu.2020.01973 PubMed DOI PMC
Hunter BD, Jacobson CA. CAR T-Cell Associated Neurotoxicity: Mechanisms, Clinicopathologic Correlates, and Future Directions. J Natl Cancer Inst (2019) 111(7):646–54. doi: 10.1093/jnci/djz017 PubMed DOI
Gust J, Hay KA, Hanafi L-A, Li D, Myerson D, Gonzalez-Cuyar LF, et al. . Endothelial Activation and Blood-Brain Barrier Disruption in Neurotoxicity After Adoptive Immunotherapy With CD19 CAR-T Cells. Cancer Discov (2017) 7(12):1404–19. doi: 10.1158/2159-8290.CD-17-0698 PubMed DOI PMC
Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, et al. . Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N Engl J Med (2020) 382(6):545–53. doi: 10.1056/NEJMoa1910607 PubMed DOI PMC
Mamonkin M, Rouce RH, Tashiro H, Brenner MK. A T-Cell-Directed Chimeric Antigen Receptor for the Selective Treatment of T-Cell Malignancies. Blood (2015) 126(8):983–92. doi: 10.1182/blood-2015-02-629527 PubMed DOI PMC
Maciocia PM, Wawrzyniecka PA, Philip B, Ricciardelli I, Akarca AU, Onuoha SC, et al. . Targeting the T Cell Receptor β-Chain Constant Region for Immunotherapy of T Cell Malignancies. Nat Med (2017) 23(12):1416–23. doi: 10.1038/nm.4444 PubMed DOI
Agarwal S, Hanauer JDS, Frank AM, Riechert V, Thalheimer FB, Buchholz CJ. In Vivo Generation of CAR T Cells Selectively in Human CD4(+) Lymphocytes. Mol Ther (2020) 28(8):1783–94. doi: 10.1016/j.ymthe.2020.05.005 PubMed DOI PMC
Ma G, Shen J, Pinz K, Wada M, Park J, Kim S, et al. . Targeting T Cell Malignancies Using CD4CAR T-Cells and Implementing a Natural Safety Switch. Stem Cell Rev Rep (2019) 15(3):443–7. doi: 10.1007/s12015-019-09876-5 PubMed DOI
Grover NS, Savoldo B. Challenges of Driving CD30-Directed CAR-T Cells to the Clinic. BMC Cancer (2019) 19(1):203. doi: 10.1186/s12885-019-5415-9 PubMed DOI PMC
Georgiadis C, Rasaiyaah J, Gkazi SA, Preece R, Etuk A, Christi A, et al. . Base-Edited CAR T Cells for Combinational Therapy Against T Cell Malignancies. Leukemia (2021) 35(12):3466–81. doi: 10.1038/s41375-021-01282-6 PubMed DOI PMC
Pan J, Tan Y, Wang G, Deng B, Ling Z, Song W, et al. . Donor-Derived CD7 Chimeric Antigen Receptor T Cells for T-Cell Acute Lymphoblastic Leukemia: First-In-Human, Phase I Trial. J Clin Oncol (2021) 39(30):3340–51. doi: 10.1200/JCO.21.00389 PubMed DOI
Gomes-Silva D, Srinivasan M, Sharma S, Lee CM, Wagner DL, Davis TH, et al. . CD7-Edited T Cells Expressing a CD7-Specific CAR for the Therapy of T-Cell Malignancies. Blood (2017) 130(3):285–96. doi: 10.1182/blood-2017-01-761320 PubMed DOI PMC
Cooper ML, Choi J, Staser K, Ritchey JK, Devenport JM, Eckardt K, et al. . An “Off-the-Shelf” Fratricide-Resistant CAR-T for the Treatment of T Cell Hematologic Malignancies. Leukemia (2018) 32(9):1970–83. doi: 10.1038/s41375-018-0065-5 PubMed DOI PMC
Cooper ML, DiPersio JF. Chimeric Antigen Receptor T Cells (CAR-T) for the Treatment of T-Cell Malignancies. Best Pract Res Clin Haematol (2019) 32(4):101097. doi: 10.1016/j.beha.2019.101097 PubMed DOI
Mulvey E, Ruan J. Biomarker-Driven Management Strategies for Peripheral T Cell Lymphoma. J Hematol Oncol (2020) 13(1):59. doi: 10.1186/s13045-020-00889-z PubMed DOI PMC
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. CAR-T Cell Therapy in T-Cell Malignancies: Is Success a Low-Hanging Fruit? Stem Cell Res Ther (2021) 12(1):527. doi: 10.1186/s13287-021-02595-0 PubMed DOI PMC
Scherer LD, Brenner MK, Mamonkin M. Chimeric Antigen Receptors for T-Cell Malignancies. Front Oncol (2019) 9:126. doi: 10.3389/fonc.2019.00126 PubMed DOI PMC
Sabattini E, Pizzi M, Tabanelli V, Baldin P, Sacchetti CS, Agostinelli C, et al. . CD30 Expression in Peripheral T-Cell Lymphomas. Haematologica (2013) 98(8):e81–2. doi: 10.3324/haematol.2013.084913 PubMed DOI PMC
Paul S, Pearlman AH, Douglass J, Mog BJ, Hsiue EH-C, Hwang MS, et al. . TCR β Chain-Directed Bispecific Antibodies for the Treatment of T Cell Cancers. Sci Transl Med (2021) 13(584):eabd3595. doi: 10.1126/scitranslmed.abd3595 PubMed DOI PMC
Tobinai K, Takahashi T, Akinaga S. Targeting Chemokine Receptor CCR4 in Adult T-Cell Leukemia-Lymphoma and Other T-Cell Lymphomas. Curr Hematol Malig Rep (2012) 7(3):235–40. doi: 10.1007/s11899-012-0124-3 PubMed DOI PMC
Shaffer DR, Savoldo B, Yi Z, Chow KKH, Kakarla S, Spencer DM, et al. . T Cells Redirected Against CD70 for the Immunotherapy of CD70-Positive Malignancies. Blood (2011) 117(16):4304–14. doi: 10.1182/blood-2010-04-278218 PubMed DOI PMC
Wang QJ, Yu Z, Hanada K, Patel K, Kleiner D, Restifo NP, et al. . Preclinical Evaluation of Chimeric Antigen Receptors Targeting CD70-Expressing Cancers. Clin Cancer Res (2017) 23(9):2267–76. doi: 10.1158/1078-0432.CCR-16-1421 PubMed DOI PMC
Schmidt J, Bonzheim I, Steinhilber J, Montes-Mojarro IA, Ortiz-Hidalgo C, Klapper W, et al. . EMMPRIN (CD147) is Induced by C/Ebpβ and is Differentially Expressed in ALK+ and ALK– Anaplastic Large-Cell Lymphoma. Lab Investig (2017) 97(9):1095–102. doi: 10.1038/labinvest.2017.54 PubMed DOI
Landras A, Reger de Moura C, Jouenne F, Lebbe C, Menashi S, Mourah S. CD147 Is a Promising Target of Tumor Progression and a Prognostic Biomarker. Cancers (2019) 11(11):1803. doi: 10.3390/cancers11111803 PubMed DOI PMC
Sahillioglu AC, Schumacher TN. Safety Switches for Adoptive Cell Therapy. Curr Opin Immunol (2022) 74:190–8. doi: 10.1016/j.coi.2021.07.002 PubMed DOI
Yu S, Yi M, Qin S, Wu K. Next Generation Chimeric Antigen Receptor T Cells: Safety Strategies to Overcome Toxicity. Mol Cancer (2019) 18(1):125. doi: 10.1186/s12943-019-1057-4 PubMed DOI PMC
Milone MC, O’Doherty U. Clinical Use of Lentiviral Vectors. Leukemia (2018) 32(7):1529–41. doi: 10.1038/s41375-018-0106-0 PubMed DOI PMC
Ptáčková P, Musil J, Štach M, Lesný P, Němečková Š, Král V, et al. . A New Approach to CAR T-Cell Gene Engineering and Cultivation Using Piggybac Transposon in the Presence of IL-4, IL-7 and IL-21. Cytotherapy (2018) 20(4):507–20. doi: 10.1016/j.jcyt.2017.10.001 PubMed DOI
Kaštánková I, Štach M, Žižková H, Ptáčková P, Šmilauerová K, Mucha M, et al. . Enzymatically Produced Piggybac Transposon Vectors for Efficient non-Viral Manufacturing of CD19-Specific CAR T cells. Mol Ther Methods Clin Dev (2021) 23:119–27. doi: 10.1016/j.omtm.2021.08.006 PubMed DOI PMC
Prommersberger S, Reiser M, Beckmann J, Danhof S, Amberger M, Quade-Lyssy P, et al. . CARAMBA: A First-in-Human Clinical Trial With SLAMF7 CAR-T Cells Prepared by Virus-Free Sleeping Beauty Gene Transfer to Treat Multiple Myeloma. Gene Ther (2021) 28(9):560–71. doi: 10.1038/s41434-021-00254-w PubMed DOI PMC
Li X, Burnight ER, Cooney AL, Malani N, Brady T, Sander JD, et al. . Piggybac Transposase Tools for Genome Engineering. Proc Natl Acad Sci (2013) 110(25):E2279–87. doi: 10.1073/pnas.1305987110 PubMed DOI PMC
Leibowitz ML, Papathanasiou S, Doerfler PA, Blaine LJ, Sun L, Yao Y, et al. . Chromothripsis as an on-Target Consequence of CRISPR–Cas9 Genome Editing. Nat Genet (2021) 53(6):895–905. doi: 10.1038/s41588-021-00838-7 PubMed DOI PMC
Maganti HB, Kirkham AM, Bailey AJM, Shorr R, Kekre N, Pineault N, et al. . Use of CRISPR/Cas9 Gene Editing to Improve Chimeric Antigen-Receptor T Cell Therapy: A Systematic Review and Meta-Analysis of Preclinical Studies. Cytotherapy (2022) 24(4):405–12. doi: 10.1016/j.jcyt.2021.10.010 PubMed DOI
Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Mangan PA, et al. . CRISPR-Engineered T Cells in Patients With Refractory Cancer. Science (80- ) (2020) 367(6481):eaba7365. doi: 10.1126/science.aba7365 PubMed DOI PMC
Thomas M, Burgio G, Adams DJ, Iyer V. Collateral Damage and CRISPR Genome Editing. PloS Genet (2019) 15(3):e1007994. doi: 10.1371/journal.pgen.1007994 PubMed DOI PMC
Bishop DC, Clancy LE, Simms R, Burgess J, Mathew G, Moezzi L, et al. . Development of CAR T-Cell Lymphoma in 2 of 10 Patients Effectively Treated With Piggybac-Modified CD19 CAR T Cells. Blood (2021) 138(16):1504–9. doi: 10.1182/blood.2021010813 PubMed DOI
Locke FL, Malik S, Tees MT, Neelapu SS, Popplewell L, Abramson JS, et al. . First-In-Human Data of ALLO-501A, an Allogeneic Chimeric Antigen Receptor (CAR) T-Cell Therapy and ALLO-647 in Relapsed/Refractory Large B-Cell Lymphoma (R/R LBCL): ALPHA2 Study. J Clin Oncol (2021) ;39(15_suppl):2529. doi: 10.1200/JCO.2021.39.15_suppl.2529 DOI
Terme M, Ullrich E, Delahaye NF, Chaput N, Zitvogel L. Natural Killer Cell–Directed Therapies: Moving From Unexpected Results to Successful Strategies. Nat Immunol (2008) 9(5):486–94. doi: 10.1038/ni1580 PubMed DOI
Bald T, Krummel MF, Smyth MJ, Barry KC. The NK Cell-Cancer Cycle: Advances and New Challenges in NK Cell-Based Immunotherapies. Nat Immunol (2020) 21(8):835–47. doi: 10.1038/s41590-020-0728-z PubMed DOI PMC
Fleischer LC, Spencer HT, Raikar SS. Targeting T Cell Malignancies Using CAR-Based Immunotherapy: Challenges and Potential Solutions. J Hematol Oncol (2019) 12(1):141. doi: 10.1186/s13045-019-0801-y PubMed DOI PMC
Alcantara M, Tesio M, June CH, Houot R. CAR T-Cells for T-Cell Malignancies: Challenges in Distinguishing Between Therapeutic, Normal, and Neoplastic T-Cells. Leukemia (2018) 32(11):2307–15. doi: 10.1038/s41375-018-0285-8 PubMed DOI PMC
Hill LC, Rouce RH, Smith TS, Yang L, Srinivasan M, Zhang H, et al. . Safety and Anti-Tumor Activity of CD5 CAR T-Cells in Patients With Relapsed/Refractory T-Cell Malignancies. Blood (2019) 134(Supplement_1):199. doi: 10.1182/blood-2019-129559 PubMed DOI
Yang J, Zhang X, Liu Y, Yang X, Wang H, Wang L, et al. . High Effectiveness and Safety of Anti-CD7 CAR T-Cell Therapy in Treating Relapsed or Refractory (R/R) T-Cell Acute Lymphoblastic Leukemia (T-ALL). Blood (2021) 138(Supplement 1):473. doi: 10.1182/blood-2021-147667 DOI
Zhang X, Zhang G, Li W, Qiu L, Wang D, Yang J, et al. . Evolution and Proliferation of CD7 CAR-T Cells Compared to CD19 CAR-T Cells Therapies for Acute Leukemia. Blood (2021) 138:2820. doi: 10.1182/blood-2021-149978 DOI
Zhang M, Fu X, Meng H, Wang M, Wang Y, Pan G, et al. . The Impact of the Immunophenotyping Characteristics of Patients’ Peripheral Blood on the Manufacturing and Clinical Outcome of CD7-Targeted Chimeric Antigen Receptor T Cells. Blood (2021) 138(Supplement 1):3830. doi: 10.1182/blood-2021-147632 DOI
Wang X, Li S, Gao L, Yuan Z, Wu K, Liu L, et al. . Abstract CT052: Clinical Safety and Efficacy Study of TruUCARTM GC027: The First-in-Human, Universal CAR-T Therapy for Adult Relapsed/Refractory T-Cell Acute Lymphoblastic Leukemia (R/R T-ALL). Cancer Res (2020) 80(16_Supplement):CT052–2. doi: 10.1158/1538-7445.AM2020-CT052 DOI
Ramos CA, Ballard B, Zhang H, Dakhova O, Gee AP, Mei Z, et al. . Clinical and Immunological Responses After CD30-Specific Chimeric Antigen Receptor-Redirected Lymphocytes. J Clin Invest (2017) 127(9):3462–71. doi: 10.1172/JCI94306 PubMed DOI PMC
Ramos CA, Grover NS, Beaven AW, Lulla PD, Wu M-F, Ivanova A, et al. . Anti-CD30 CAR-T Cell Therapy in Relapsed and Refractory Hodgkin Lymphoma. J Clin Oncol (2020) 38(32):3794–804. doi: 10.1200/JCO.20.01342 PubMed DOI PMC
Voorhees TJ, Ghosh N, Grover N, Block J, Cheng C, Morrison K, et al. . Long-Term Remission in Multiply Relapsed Enteropathy-Associated T-Cell Lymphoma Following CD30 CAR T-Cell Therapy. Blood Adv (2020) 4(23):5925–8. doi: 10.1182/bloodadvances.2020003218 PubMed DOI PMC
Wang C-M, Wu Z-Q, Wang Y, Guo Y-L, Dai H-R, Wang X-H, et al. . Autologous T Cells Expressing CD30 Chimeric Antigen Receptors for Relapsed or Refractory Hodgkin Lymphoma: An Open-Label Phase I Trial. Clin Cancer Res (2017) 23(5):1156–66. doi: 10.1158/1078-0432.CCR-16-1365 PubMed DOI
Hucks GE, Jr., Savoldo B, Dotti G, Cheng CJA, Babinec C, Kasow KA, et al. . CD30-Directed Chimeric Antigen Receptor (CAR)-T Cells for Treatment of Hodgkin Lymphoma and Non-Hodgkin Lymphoma in Pediatric Patients. Blood (2021) 138(Supplement 1):2829. doi: 10.1182/blood-2021-153968 DOI
Rouce RH, Hill LC, Smith TS, Yang L, Boriskie B, Srinivasan M, et al. . Early Signals of Anti-Tumor Efficacy and Safety With Autologous CD5.CAR T-Cells in Patients With Refractory/Relapsed T-Cell Lymphoma. Blood (2021) 138(Supplement 1):654. doi: 10.1182/blood-2021-154142 DOI
Yang J, Yang X, Liu Y, Wang Q, Wang H, Li J, et al. . A Novel and Successful Patient or Donor-Derived CD7-Targeted CAR T-Cell Therapy for Relapsed or Refractory T-Cell Lymphoblastic Lymphoma (R/R T-LBL). Blood (2021) 138(Supplement 1):652. doi: 10.1182/blood-2021-147754 DOI
Zhang M, Fu X, Meng H, Wang M, Wang Y, Zhang L, et al. . A Single-Arm, Open-Label, Pilot Trial of Autologous CD7-CAR-T Cells for CD7 Positive Relapsed and Refractory T-Lymphoblastic Leukemia/Lymphoma. Blood (2021) 138:3829. doi: 10.1182/blood-2021-149999 DOI
Quach DH, Ganesh HR, Thakkar S, Becerra-Dominguez L, Mehta B, Perconti S, et al. . A Bank of CD30.CAR-Modified, Epstein-Barr Virus-Specific T Cells That Lacks Host Reactivity and Resists Graft Rejection for Patients With CD30-Positive Lymphoma. Blood (2020) 136:16. doi: 10.1182/blood-2020-141491 DOI
Quach DH, Ramos CA, Lulla PD, Sharma S, Ganesh HR, Hadidi YF, et al. . Safety and Efficacy of Off-The-Shelf CD30.CAR-Modified Epstein-Barr Virus-Specific T Cells in Patients With CD30-Positive Lymphoma. Blood (2021) 138(Supplement 1):1763. doi: 10.1182/blood-2021-153421 DOI
Vermeer MH, Dukers DF, ten Berge RL, Bloemena E, Wu L, Vos W, et al. . Differential Expression of Thymus and Activation Regulated Chemokine and Its Receptor CCR4 in Nodal and Cutaneous Anaplastic Large-Cell Lymphomas and Hodgkin’s Disease. Mod Pathol (2002) 15(8):838–44. doi: 10.1097/01.MP.0000021006.53593.B0 PubMed DOI
Grover NS, Ivanova A, Moore DT, Cheng CJA, Babinec C, West J, et al. . CD30-Directed CAR-T Cells Co-Expressing CCR4 in Relapsed/Refractory Hodgkin Lymphoma and CD30+ Cutaneous T Cell Lymphoma. Blood (2021) 138(Supplement 1):742. doi: 10.1182/blood-2021-148102 DOI