Enzymatically produced piggyBac transposon vectors for efficient non-viral manufacturing of CD19-specific CAR T cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34631931
PubMed Central
PMC8482285
DOI
10.1016/j.omtm.2021.08.006
PII: S2329-0501(21)00132-7
Knihovny.cz E-zdroje
- Klíčová slova
- CD19, T cells, chimeric antigenic receptor, electroporation, piggyBac transposon,
- Publikační typ
- časopisecké články MeSH
The piggyBac transposon system provides a non-viral alternative for cost-efficient and simple chimeric antigen receptor (CAR) T cell production. The generation of clinical-grade CAR T cells requires strict adherence to current good manufacturing practice (cGMP) standards. Unfortunately, the high costs of commonly used lentiviral or retroviral vectors limit the manufacturing of clinical-grade CAR T cells in many non-commercial academic institutions. Here, we present a manufacturing platform for highly efficient generation of CD19-specific CAR T cells (CAR19 T cells) based on co-electroporation of linear DNA transposon and mRNA encoding the piggyBac transposase. The transposon is prepared enzymatically in vitro by PCR and contains the CAR transgene flanked by piggyBac 3' and 5' arms. The mRNA is similarly prepared via in vitro transcription. CAR19 T cells are expanded in the combination of cytokines interleukin (IL)-4, IL-7, and IL-21 to prevent terminal differentiation of CAR T cells. The accurate control of vector copy number (VCN) is achieved by decreasing the concentration of the transposon DNA, and the procedure yields up to 1 × 108 CAR19 T cells per one electroporation of 1 × 107 peripheral blood mononuclear cells (PBMCs) after 21 days of in vitro culture. Produced cells contain >60% CAR+ cells with VCN < 3. In summary, the described manufacturing platform enables a straightforward cGMP certification, since the transposon and transposase are produced abiotically in vitro via enzymatic synthesis. It is suitable for the cost-effective production of highly experimental, early-phase CAR T cell products.
Faculty of Natural Sciences Charles University 128 00 Prague Czechia
Institute of Hematology and Blood Transfusion 128 00 Prague Czechia
Zobrazit více v PubMed
Shi H., Sun M., Liu L., Wang Z. Chimeric antigen receptor for adoptive immunotherapy of cancer: latest research and future prospects. Mol. Cancer. 2014;13:219. PubMed PMC
Li Y., Huo Y., Yu L., Wang J. Quality Control and Nonclinical Research on CAR-T Cell Products: General Principles and Key Issues. Engineering (Beijing) 2019;5:122–131.
Ausubel L.J., Hall C., Sharma A., Shakeley R., Lopez P., Quezada V., Couture S., Laderman K., McMahon R., Huang P. Production of CGMP-grade lentiviral vectors. Bioprocess Int. 2012;10:32–43. PubMed PMC
Singh H., Manuri P.R., Olivares S., Dara N., Dawson M.J., Huls H., Hackett P.B., Kohn D.B., Shpall E.J., Champlin R.E., Cooper L.J. Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system. Cancer Res. 2008;68:2961–2971. PubMed PMC
Manuri P.V.R., Wilson M.H., Maiti S.N., Mi T., Singh H., Olivares S., Dawson M.J., Huls H., Lee D.A., Rao P.H. piggyBac transposon/transposase system to generate CD19-specific T cells for the treatment of B-lineage malignancies. Hum. Gene Ther. 2010;21:427–437. PubMed PMC
Stadtmauer E.A., Fraietta J.A., Davis M.M., Cohen A.D., Weber K.L., Lancaster E., Mangan P.A., Kulikovskaya I., Gupta M., Chen F. CRISPR-engineered T cells in patients with refractory cancer. Science. 2020;367:eaba7365. PubMed PMC
Huang X., Guo H., Tammana S., Jung Y.C., Mellgren E., Bassi P., Cao Q., Tu Z.J., Kim Y.C., Ekker S.C. Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty, Tol2, and piggyBac transposons in human primary T cells. Mol. Ther. 2010;18:1803–1813. PubMed PMC
Jin Z., Maiti S., Huls H., Singh H., Olivares S., Mátés L., Izsvák Z., Ivics Z., Lee D.A., Champlin R.E., Cooper L.J. The hyperactive Sleeping Beauty transposase SB100X improves the genetic modification of T cells to express a chimeric antigen receptor. Gene Ther. 2011;18:849–856. PubMed PMC
Deniger D.C., Yu J., Huls M.H., Figliola M.J., Mi T., Maiti S.N., Widhopf G.F., 2nd, Hurton L.V., Thokala R., Singh H. Sleeping Beauty transposition of chimeric antigen receptors targeting receptor tyrosine kinase-like orphan receptor-1 (ROR1) into diverse memory T-cell populations. PLoS ONE. 2015;10:e0128151. PubMed PMC
Yusa K., Zhou L., Li M.A., Bradley A., Craig N.L. A hyperactive piggyBac transposase for mammalian applications. Proc. Natl. Acad. Sci. USA. 2011;108:1531–1536. PubMed PMC
Ptáčková P., Musil J., Štach M., Lesný P., Němečková Š., Král V., Fábry M., Otáhal P. A new approach to CAR T-cell gene engineering and cultivation using piggyBac transposon in the presence of IL-4, IL-7 and IL-21. Cytotherapy. 2018;20:507–520. PubMed
Poorebrahim M., Sadeghi S., Fakhr E., Abazari M.F., Poortahmasebi V., Kheirollahi A., Askari H., Rajabzadeh A., Rastegarpanah M., Linē A., Cid-Arregui A. Production of CAR T-cells by GMP-grade lentiviral vectors: latest advances and future prospects. Crit. Rev. Clin. Lab. Sci. 2019;56:393–419. PubMed
Wiesinger M., März J., Kummer M., Schuler G., Dörrie J., Schuler-Thurner B., Schaft N. Clinical-Scale Production of CAR-T Cells for the Treatment of Melanoma Patients by mRNA Transfection of a CSPG4-Specific CAR under Full GMP Compliance. Cancers (Basel) 2019;11:1198. PubMed PMC
Štach M., Ptáčková P., Mucha M., Musil J., Klener P., Otáhal P. Inducible secretion of IL-21 augments anti-tumor activity of piggyBac-manufactured chimeric antigen receptor T cells. Cytotherapy. 2020;22:744–754. PubMed
Bishop D.C., Caproni L., Gowrishankar K., Legiewicz M., Karbowniczek K., Tite J., Gottlieb D.J., Micklethwaite K.P. CAR T Cell Generation by piggyBac Transposition from Linear Doggybone DNA Vectors Requires Transposon DNA-Flanking Regions. Mol. Ther. Methods Clin. Dev. 2020;17:359–368. PubMed PMC
Eyquem J., Mansilla-Soto J., Giavridis T., van der Stegen S.J.C., Hamieh M., Cunanan K.M., Odak A., Gönen M., Sadelain M. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543:113–117. PubMed PMC
Basar R., Daher M., Uprety N., Gokdemir E., Alsuliman A., Ensley E., Ozcan G., Mendt M., Hernandez Sanabria M., Kerbauy L.N. Large-scale GMP-compliant CRISPR-Cas9-mediated deletion of the glucocorticoid receptor in multivirus-specific T cells. Blood Adv. 2020;4:3357–3367. PubMed PMC
van der Velden V.H.J., Cazzaniga G., Schrauder A., Hancock J., Bader P., Panzer-Grumayer E.R., Flohr T., Sutton R., Cave H., Madsen H.O., European Study Group on MRD detection in ALL (ESG-MRD-ALL) Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 2007;21:604–611. PubMed