Repurposing Tyrosine Kinase Inhibitors to Overcome Multidrug Resistance in Cancer: A Focus on Transporters and Lysosomal Sequestration
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
17-33104A
Ministry of Healthcare of the Czech Republic
LQ1605
National Program of Sustainability II (MEYS CR)
Brno Ph.D. Talent 2017
JCMM
PubMed
32365759
PubMed Central
PMC7247577
DOI
10.3390/ijms21093157
PII: ijms21093157
Knihovny.cz E-zdroje
- Klíčová slova
- ABC transporter, SLC transporter, cancer, lysosomal sequestration, multidrug resistance, tyrosine kinase inhibitor,
- MeSH
- ABC transportéry genetika metabolismus MeSH
- biologický transport MeSH
- chemorezistence účinky léků MeSH
- inhibitory proteinkinas farmakologie terapeutické užití MeSH
- klinické zkoušky jako téma MeSH
- lidé MeSH
- lyzozomy účinky léků metabolismus MeSH
- membránové transportní proteiny genetika metabolismus MeSH
- mnohočetná léková rezistence účinky léků MeSH
- nádory farmakoterapie genetika metabolismus MeSH
- přehodnocení terapeutických indikací léčivého přípravku * MeSH
- SLC transportéry genetika metabolismus MeSH
- výsledek terapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- ABC transportéry MeSH
- inhibitory proteinkinas MeSH
- membránové transportní proteiny MeSH
- SLC transportéry MeSH
Tyrosine kinase inhibitors (TKIs) are being increasingly used to treat various malignancies. Although they were designed to target aberrant tyrosine kinases, they are also intimately linked with the mechanisms of multidrug resistance (MDR) in cancer cells. MDR-related solute carrier (SLC) and ATB-binding cassette (ABC) transporters are responsible for TKI uptake and efflux, respectively. However, the role of TKIs appears to be dual because they can act as substrates and/or inhibitors of these transporters. In addition, several TKIs have been identified to be sequestered into lysosomes either due to their physiochemical properties or via ABC transporters expressed on the lysosomal membrane. Since the development of MDR represents a great concern in anticancer treatment, it is important to elucidate the interactions of TKIs with MDR-related transporters as well as to improve the properties that would prevent TKIs from diffusing into lysosomes. These findings not only help to avoid MDR, but also help to define the possible impact of combining TKIs with other anticancer drugs, leading to more efficient therapy and fewer adverse effects in patients.
Zobrazit více v PubMed
Louvet C., Szot G.L., Lang J., Lee M.R., Martinier N., Bollag G., Zhu S., Weiss A., Bluestone J.A. Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic mice. Proc. Natl. Acad. Sci. USA. 2008;105:18895–18900. doi: 10.1073/pnas.0810246105. PubMed DOI PMC
Weinblatt M.E., Kavanaugh A., Genovese M.C., Musser T.K., Grossbard E.B., Magilavy D.B. An Oral Spleen Tyrosine Kinase (Syk) Inhibitor for Rheumatoid Arthritis. N. Engl. J. Med. 2010;363:1303–1312. doi: 10.1056/NEJMoa1000500. PubMed DOI
Emami H., Vucic E., Subramanian S., Abdelbaky A., Fayad Z.A., Du S., Roth E., Ballantyne C.M., Mohler E.R., Farkouh M.E., et al. The effect of BMS-582949, a P38 mitogen-activated protein kinase (P38 MAPK) inhibitor on arterial inflammation: A multicenter FDG-PET trial. Atherosclerosis. 2015;240:490–496. doi: 10.1016/j.atherosclerosis.2015.03.039. PubMed DOI
Wu C.-P., Hsieh C.-H., Wu Y.-S. The Emergence of Drug Transporter-Mediated Multidrug Resistance to Cancer Chemotherapy. Mol. Pharm. 2011;8:1996–2011. doi: 10.1021/mp200261n. PubMed DOI
Miller D.S. Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol. Sci. 2010;31:246–254. doi: 10.1016/j.tips.2010.03.003. PubMed DOI PMC
Russo A., Saide A., Smaldone S., Faraonio R., Russo G. Role of uL3 in multidrug resistance in p53-mutated lung cancer cells. Int. J. Mol. Sci. 2017;18:1–16. doi: 10.3390/ijms18030547. PubMed DOI PMC
Hupfeld T., Chapuy B., Schrader V., Beutler M., Veltkamp C., Koch R., Cameron S., Aung T., Haase D., LaRosee P., et al. Tyrosinekinase inhibition facilitates cooperation of transcription factor SALL4 and ABC transporter A3 towards intrinsic CML cell drug resistance. Br. J. Haematol. 2013;161:204–213. doi: 10.1111/bjh.12246. PubMed DOI
Hu S., Franke R.M., Filipski K.K., Hu C., Orwick S.J., de Bruijn E.A., Burger H., Baker S.D., Sparreboom A. Interaction of Imatinib with Human Organic Ion Carriers. Clin. Cancer Res. 2008;14:3034–3038. doi: 10.1158/1078-0432.CCR-07-4913. PubMed DOI
Li W., Sparidans R.W., Wang Y., Lebre M.C., Beijnen J.H., Schinkel A.H. P-glycoprotein and breast cancer resistance protein restrict brigatinib brain accumulation and toxicity, and, alongside CYP3A, limit its oral availability. Pharmacol. Res. 2018;137:47–55. doi: 10.1016/j.phrs.2018.09.020. PubMed DOI
Eadie L.N., Dang P., Goyne J.M., Hughes T.P., White D.L. ABCC6 plays a significant role in the transport of nilotinib and dasatinib, and contributes to TKI resistance in vitro, in both cell lines and primary patient mononuclear cells. PLoS ONE. 2018;13:e0192180. doi: 10.1371/journal.pone.0192180. PubMed DOI PMC
Zhao H., Huang Y., Shi J., Dai Y., Wu L., Zhou H. ABCC10 plays a significant role in the transport of gefitinib and contributes to acquired resistance to gefitinib in NSCLC. Front. Pharmacol. 2018;9:1312. doi: 10.3389/fphar.2018.01312. PubMed DOI PMC
Huang W.-C., Chen Y.-J., Li L.-Y., Wei Y.-L., Hsu S.-C., Tsai S.-L., Chiu P.-C., Huang W.-P., Wang Y.-N., Chen C.-H., et al. Nuclear Translocation of Epidermal Growth Factor Receptor by Akt-dependent Phosphorylation Enhances Breast Cancer-resistant Protein Expression in Gefitinib-resistant Cells. J. Biol. Chem. 2011;286:20558–20568. doi: 10.1074/jbc.M111.240796. PubMed DOI PMC
Zhang H., Kathawala R.J., Wang Y.-J., Zhang Y.-K., Patel A., Shukla S., Robey R.W., Talele T.T., Ashby C.R., Ambudkar S.V., et al. Linsitinib (OSI-906) antagonizes ATP-binding cassette subfamily G member 2 and subfamily C member 10-mediated drug resistance. Int. J. Biochem. Cell Biol. 2014;51:111–119. doi: 10.1016/j.biocel.2014.03.026. PubMed DOI PMC
Kitazaki T., Oka M., Nakamura Y., Tsurutani J., Doi S., Yasunaga M., Takemura M., Yabuuchi H., Soda H., Kohno S. Gefitinib, an EGFR tyrosine kinase inhibitor, directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung Cancer. 2005;49:337–343. doi: 10.1016/j.lungcan.2005.03.035. PubMed DOI
Zhang G.-N., Zhang Y.-K., Wang Y.-J., Barbuti A.M., Zhu X.-J., Yu X.-Y., Wen A.-W., Wurpel J.N.D., Chen Z.-S. Modulating the function of ATP-binding cassette subfamily G member 2 (ABCG2) with inhibitor cabozantinib. Pharmacol. Res. 2017;119:89–98. doi: 10.1016/j.phrs.2017.01.024. PubMed DOI PMC
Kuang Y.-H., Shen T., Chen X., Sodani K., Hopper-Borge E., Tiwari A.K., Lee J.W.K.K., Fu L.-W., Chen Z.-S. Lapatinib and erlotinib are potent reversal agents for MRP7 (ABCC10)-mediated multidrug resistance. Biochem. Pharmacol. 2010;79:154–161. doi: 10.1016/j.bcp.2009.08.021. PubMed DOI PMC
Mi Y.-J., Liang Y.-J., Huang H.-B., Zhao H.-Y., Wu C.-P., Wang F., Tao L.-Y., Zhang C.-Z., Dai C.-L., Tiwari A.K., et al. Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATP-binding cassette transporters. Cancer Res. 2010;70:7981–7991. doi: 10.1158/0008-5472.CAN-10-0111. PubMed DOI PMC
Nakanishi T., Shiozawa K., Hassel B.A., Ross D.D. Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood. 2006;108:678–684. doi: 10.1182/blood-2005-10-4020. PubMed DOI
Sen R., Natarajan K., Bhullar J., Shukla S., Fang H.-B., Cai L., Chen Z.-S., Ambudkar S.V., Baer M.R. The novel BCR-ABL and FLT3 inhibitor ponatinib is a potent inhibitor of the MDR-associated ATP-binding cassette transporter ABCG2. Mol. Cancer Ther. 2012;11:2033–2044. doi: 10.1158/1535-7163.MCT-12-0302. PubMed DOI PMC
Tiwari A.K., Sodani K., Dai C.-L., Abuznait A.H., Singh S., Xiao Z.-J., Patel A., Talele T.T., Fu L., Kaddoumi A., et al. Nilotinib potentiates anticancer drug sensitivity in murine ABCB1-, ABCG2-, and ABCC10-multidrug resistance xenograft models. Cancer Lett. 2013;328:307–317. doi: 10.1016/j.canlet.2012.10.001. PubMed DOI PMC
Shukla S., Robey R.W., Bates S.E., Ambudkar S.V. Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab. Dispos. 2009;37:359–365. doi: 10.1124/dmd.108.024612. PubMed DOI PMC
Englinger B., Lötsch D., Pirker C., Mohr T., van Schoonhoven S., Boidol B., Lardeau C.-H., Spitzwieser M., Szabó P., Heffeter P., et al. Acquired nintedanib resistance in FGFR1-driven small cell lung cancer: Role of endothelin-A receptor-activated ABCB1 expression. Oncotarget. 2016;7:50161–50179. doi: 10.18632/oncotarget.10324. PubMed DOI PMC
Ellegaard A.-M., Groth-Pedersen L., Oorschot V., Klumperman J., Kirkegaard T., Nylandsted J., Jaattela M. Sunitinib and SU11652 Inhibit Acid Sphingomyelinase, Destabilize Lysosomes, and Inhibit Multidrug Resistance. Mol. Cancer Ther. 2013;12:2018–2020. doi: 10.1158/1535-7163.MCT-13-0084. PubMed DOI
Hu S., Chen Z., Franke R., Orwick S., Zhao M., Rudek M.A., Sparreboom A., Baker S.D. Interaction of the Multikinase Inhibitors Sorafenib and Sunitinib with Solute Carriers and ATP-Binding Cassette Transporters. Clin. Cancer Res. 2009;15:6062–6069. doi: 10.1158/1078-0432.CCR-09-0048. PubMed DOI PMC
Sodani K., Patel A., Anreddy N., Singh S., Yang D.-H., Kathawala R.J., Kumar P., Talele T.T., Chen Z.-S. Telatinib reverses chemotherapeutic multidrug resistance mediated by ABCG2 efflux transporter in vitro and in vivo. Biochem. Pharmacol. 2014;89:52–61. doi: 10.1016/j.bcp.2014.02.012. PubMed DOI PMC
Vispute S.G., Chen J.-J., Sun Y.-L., Sodani K.S., Singh S., Pan Y., Talele T., Ashby C.R., Chen Z.-S. Vemurafenib (PLX4032, Zelboraf®), a BRAF Inhibitor, Modulates ABCB1-, ABCG2-, and ABCC10-Mediated Multidrug Resistance. J. Can. Res. Updates. 2013;2:306–317.
Zhang H., Patel A., Wang Y.-J., Zhang Y.-K., Kathawala R.J., Qiu L.-H., Patel B.A., Huang L.-H., Shukla S., Yang D.-H., et al. The BTK Inhibitor Ibrutinib (PCI-32765) Overcomes Paclitaxel Resistance in ABCB1- and ABCC10-Overexpressing Cells and Tumors. Mol. Cancer Ther. 2017;16:1021–1030. doi: 10.1158/1535-7163.MCT-16-0511. PubMed DOI PMC
Hiwase D.K., White D., Zrim S., Saunders V., Melo J.V., Hughes T.P. Nilotinib-mediated inhibition of ABCB1 increases intracellular concentration of dasatinib in CML cells: Implications for combination TKI therapy. Leukemia. 2010;24:658–660. doi: 10.1038/leu.2009.242. PubMed DOI
Zhao X., Xie J., Chen X., Sim H.M., Zhang X., Liang Y., Singh S., Talele T.T., Sun Y., Ambudkar S.V., et al. Neratinib Reverses ATP-Binding Cassette B1-Mediated Chemotherapeutic Drug Resistance In Vitro, In Vivo, and Ex Vivo. Mol. Pharmacol. 2012;82:47–58. doi: 10.1124/mol.111.076299. PubMed DOI PMC
Kathawala R.J., Sodani K., Chen K., Patel A., Abuznait A.H., Anreddy N., Sun Y.-L., Kaddoumi A., Ashby C.R., Chen Z.-S. Masitinib Antagonizes ATP-Binding Cassette Subfamily C Member 10-Mediated Paclitaxel Resistance: A Preclinical Study. Mol. Cancer Ther. 2014;13:714–723. doi: 10.1158/1535-7163.MCT-13-0743. PubMed DOI PMC
Minocha M., Khurana V., Qin B., Pal D., Mitra A.K. Enhanced brain accumulation of pazopanib by modulating P-gp and Bcrp1 mediated efflux with canertinib or erlotinib. Int. J. Pharm. 2012;436:127–134. doi: 10.1016/j.ijpharm.2012.05.038. PubMed DOI PMC
van Hoppe S., Sparidans R.W., Wagenaar E., Beijnen J.H., Schinkel A.H. Breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-gp/ABCB1) transport afatinib and restrict its oral availability and brain accumulation. Pharmacol. Res. 2017;120:43–50. doi: 10.1016/j.phrs.2017.01.035. PubMed DOI
Yang K., Chen Y., To K.K.W., Wang F., Li D., Chen L., Fu L. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo. Exp. Mol. Med. 2017;49:e303. doi: 10.1038/emm.2016.168. PubMed DOI PMC
D’Cunha R., Bae S., Murry D.J., An G. TKI combination therapy: Strategy to enhance dasatinib uptake by inhibiting Pgp- and BCRP-mediated efflux. Biopharm. Drug Dispos. 2016;37:397–408. doi: 10.1002/bdd.2022. PubMed DOI
Chuan Tang S., Nguyen L.N., Sparidans R.W., Wagenaar E., Beijnen J.H., Schinkel A.H. Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Int. J. Cancer. 2014;134:1484–1494. doi: 10.1002/ijc.28475. PubMed DOI
Xiang Q., Zhang D., Wang J., Zhang H., Zheng Z., Yu D., Li Y., Xu J., Chen Y., Shang C. Cabozantinib reverses multidrug resistance of human hepatoma HepG2/adr cells by modulating the function of P-glycoprotein. Liver Int. 2015;35:1010–1023. doi: 10.1111/liv.12524. PubMed DOI
Tao L., Liang Y., Wang F., Chen L., Yan Y., Dai C., Fu L. Cediranib (recentin, AZD2171) reverses ABCB1- and ABCC1-mediated multidrug resistance by inhibition of their transport function. Cancer Chemother. Pharmacol. 2009;64:961–969. doi: 10.1007/s00280-009-0949-1. PubMed DOI
Hu J., Zhang X., Wang F., Wang X., Yang K., Xu M., To K.K.W., Li Q., Fu L. Effect of ceritinib (LDK378) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo. Oncotarget. 2015;6:44643–44659. doi: 10.18632/oncotarget.5989. PubMed DOI PMC
Wang Y.-J., Kathawala R.J., Zhang Y.-K., Patel A., Kumar P., Shukla S., Fung K.L., Ambudkar S.V., Talele T.T., Chen Z.-S. Motesanib (AMG706), a potent multikinase inhibitor, antagonizes multidrug resistance by inhibiting the efflux activity of the ABCB1. Biochem. Pharmacol. 2014;90:367–378. doi: 10.1016/j.bcp.2014.06.006. PubMed DOI PMC
Chen Z., Chen Y., Xu M., Chen L., Zhang X., To K.K.W., Zhao H., Wang F., Xia Z., Chen X., et al. Osimertinib (AZD9291) Enhanced the Efficacy of Chemotherapeutic Agents in ABCB1- and ABCG2-Overexpressing Cells In Vitro, In Vivo, and Ex Vivo. Mol. Cancer Ther. 2016;15:1845–1858. doi: 10.1158/1535-7163.MCT-15-0939. PubMed DOI
Liu K.-J., He J.-H., Su X.-D., Sim H.-M., Xie J.-D., Chen X.-G., Wang F., Liang Y.-J., Singh S., Sodani K., et al. Saracatinib (AZD0530) is a potent modulator of ABCB1-mediated multidrug resistance in vitro and in vivo. Int. J. Cancer. 2013;132:224–235. doi: 10.1002/ijc.27649. PubMed DOI PMC
Zheng L., Wang F., Li Y., Zhang X., Chen L., Liang Y., Dai C., Yan Y., Tao L., Mi Y., et al. Vandetanib (Zactima, ZD6474) Antagonizes ABCC1- and ABCG2-Mediated Multidrug Resistance by Inhibition of Their Transport Function. PLoS ONE. 2009;4:e5172. doi: 10.1371/journal.pone.0005172. PubMed DOI PMC
To K.K.W., Poon D.C., Wei Y., Wang F., Lin G., Fu L. Vatalanib sensitizes ABCB1 and ABCG2-overexpressing multidrug resistant colon cancer cells to chemotherapy under hypoxia. Biochem. Pharmacol. 2015;97:27–37. doi: 10.1016/j.bcp.2015.06.034. PubMed DOI
Zhang Y., Wang C., Duan Y., Huo X., Meng Q., Liu Z., Sun H., Ma X., Liu K. Afatinib Decreases P-Glycoprotein Expression to Promote Adriamycin Toxicity of A549T Cells. J. Cell. Biochem. 2018;119:414–423. doi: 10.1002/jcb.26194. PubMed DOI
Hegedűs C., Özvegy-Laczka C., Apáti Á., Magócsi M., Német K., Őrfi L., Kéri G., Katona M., Takáts Z., Váradi A., et al. Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: Implications for altered anti-cancer effects and pharmacological properties. Br. J. Pharmacol. 2009;158:1153–1164. doi: 10.1111/j.1476-5381.2009.00383.x. PubMed DOI PMC
Shukla S., Sauna Z.E., Ambudkar S.V. Evidence for the interaction of imatinib at the transport-substrate site(s) of the multidrug-resistance-linked ABC drug transporters ABCB1 (P-glycoprotein) and ABCG2. Leukemia. 2008;22:445–447. doi: 10.1038/sj.leu.2404897. PubMed DOI
Dai C.-L., Tiwari A.K., Wu C.-P., Su X., Wang S.-R., Liu D., Ashby C.R., Huang Y., Robey R.W., Liang Y.-J., et al. Lapatinib (Tykerb, GW572016) Reverses Multidrug Resistance in Cancer Cells by Inhibiting the Activity of ATP-Binding Cassette Subfamily B Member 1 and G Member 2. Cancer Res. 2008;68:7905–7914. doi: 10.1158/0008-5472.CAN-08-0499. PubMed DOI PMC
Radic-Sarikas B., Halasz M., Huber K.V.M., Winter G.E., Tsafou K.P., Papamarkou T., Brunak S., Kolch W., Superti-Furga G. Lapatinib potentiates cytotoxicity of YM155 in neuroblastoma via inhibition of the ABCB1 efflux transporter. Sci. Rep. 2017;7:1–8. doi: 10.1038/s41598-017-03129-6. PubMed DOI PMC
Zhang H., Patel A., Ma S.L., Li X.J., Zhang Y.K., Yang P.Q., Kathawala R.J., Wang Y.J., Anreddy N., Fu L.W., et al. In vitro, in vivo and ex vivo characterization of ibrutinib: A potent inhibitor of the efflux function of the transporter MRP1. Br. J. Pharmacol. 2014;171:5845–5857. doi: 10.1111/bph.12889. PubMed DOI PMC
Shibayama Y., Nakano K., Maeda H., Taguchi M., Ikeda R., Sugawara M., Iseki K., Takeda Y., Yamada K. Multidrug resistance protein 2 implicates anticancer drug-resistance to sorafenib. Biol. Pharm. Bull. 2011;34:433–435. doi: 10.1248/bpb.34.433. PubMed DOI
Gay C., Toulet D., Le Corre P. Pharmacokinetic drug-drug interactions of tyrosine kinase inhibitors: A focus on cytochrome P450, transporters, and acid suppression therapy. Hematol. Oncol. 2017;35:259–280. doi: 10.1002/hon.2335. PubMed DOI
Radich J.P., Dai H., Mao M., Oehler V., Schelter J., Druker B., Sawyers C., Shah N., Stock W., Willman C.L., et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc. Natl. Acad. Sci. USA. 2006;103:2794–2799. doi: 10.1073/pnas.0510423103. PubMed DOI PMC
Tomonari T., Takeishi S., Taniguchi T., Tanaka T., Tanaka H., Fujimoto S., Kimura T., Okamoto K., Miyamoto H., Muguruma N., et al. MRP3 as a novel resistance factor for sorafenib in hepatocellular carcinoma. Oncotarget. 2016;7:7207–7215. doi: 10.18632/oncotarget.6889. PubMed DOI PMC
Cheung L., Yu D.M.T., Neiron Z., Failes T.W., Arndt G.M., Fletcher J.I. Identification of new MRP4 inhibitors from a library of FDA approved drugs using a high-throughput bioluminescence screen. Biochem. Pharmacol. 2015;93:380–388. doi: 10.1016/j.bcp.2014.11.006. PubMed DOI
Macias R.I.R., Sánchez-Martín A., Rodríguez-Macías G., Sánchez-Abarca L.I., Lozano E., Herraez E., Odero M.D., Díez-Martín J.L., Marin J.J.G., Briz O. Role of drug transporters in the sensitivity of acute myeloid leukemia to sorafenib. Oncotarget. 2018;9:28474–28485. doi: 10.18632/oncotarget.25494. PubMed DOI PMC
Shen T., Kuang Y.-H., Ashby C.R., Lei Y., Chen A., Zhou Y., Chen X., Tiwari A.K., Hopper-Borge E., Ouyang J., et al. Imatinib and Nilotinib Reverse Multidrug Resistance in Cancer Cells by Inhibiting the Efflux Activity of the MRP7 (ABCC10) PLoS ONE. 2009;4:e7520. doi: 10.1371/annotation/e57b4610-9029-48db-9d57-5cc0fa35b8ac. PubMed DOI PMC
Sun Y.-L., Kumar P., Sodani K., Patel A., Pan Y., Baer M.R., Chen Z.-S., Jiang W.-Q., Pan Y., Pan Y., et al. Ponatinib enhances anticancer drug sensitivity in MRP7-overexpressing cells. Oncol. Rep. 2014;31:1605–1612. doi: 10.3892/or.2014.3002. PubMed DOI PMC
Chen Y.-J., Huang W.-C., Wei Y.-L., Hsu S.-C., Yuan P., Lin H.Y., Wistuba I.I., Lee J.J., Yen C.-J., Su W.-C., et al. Elevated BCRP/ABCG2 Expression Confers Acquired Resistance to Gefitinib in Wild-Type EGFR-Expressing Cells. PLoS ONE. 2011;6:e21428. doi: 10.1371/journal.pone.0021428. PubMed DOI PMC
Wang D.-S., Patel A., Shukla S., Zhang Y.-K., Wang Y.-J., Kathawala R.J., Robey R.W., Zhang L., Yang D.-H., Talele T.T., et al. Icotinib antagonizes ABCG2-mediated multidrug resistance, but not the pemetrexed resistance mediated by thymidylate synthase and ABCG2. Oncotarget. 2014;5:4529–4542. doi: 10.18632/oncotarget.2102. PubMed DOI PMC
Kathawala R.J., Chen J.-J., Zhang Y.-K., Wang Y.-J., Patel A., Wang D.-S., Talele T.T., Ashby C.R., Chen Z.-S. Masitinib antagonizes ATP-binding cassette subfamily G member 2-mediated multidrug resistance. Int. J. Oncol. 2014;44:1634–1642. doi: 10.3892/ijo.2014.2341. PubMed DOI PMC
Li J., Kumar P., Anreddy N., Zhang Y.-K., Wang Y.-J., Chen Y., Talele T.T., Gupta K., Trombetta L.D., Chen Z.-S. Quizartinib (AC220) reverses ABCG2-mediated multidrug resistance: In vitro and in vivo studies. Oncotarget. 2017;8:93785–93799. doi: 10.18632/oncotarget.21078. PubMed DOI PMC
Lin L., Yee S.W., Kim R.B., Giacomini K.M. SLC transporters as therapeutic targets: Emerging opportunities. Nat. Rev. Drug Discov. 2015;14:543–560. doi: 10.1038/nrd4626. PubMed DOI PMC
Engler J.R., Frede A., Saunders V.A., Zannettino A.C.W., Hughes T.P., White D.L. Chronic Myeloid Leukemia CD34 cells have reduced uptake of imatinib due to low OCT-1 Activity. Leukemia. 2010;24:765–770. doi: 10.1038/leu.2010.16. PubMed DOI
White D.L., Dang P., Engler J., Frede A., Zrim S., Osborn M., Saunders V.A., Manley P.W., Hughes T.P. Functional activity of the OCT-1 protein is predictive of long-term outcome in patients with chronic-phase chronic myeloid leukemia treated with imatinib. J. Clin. Oncol. 2010;28:2761–2767. doi: 10.1200/JCO.2009.26.5819. PubMed DOI
Minematsu T., Giacomini K.M. Interactions of Tyrosine Kinase Inhibitors with Organic Cation Transporters and Multidrug and Toxic Compound Extrusion Proteins. Mol. Cancer Ther. 2011;10:531–539. doi: 10.1158/1535-7163.MCT-10-0731. PubMed DOI PMC
Davies A., Jordanides N.E., Giannoudis A., Lucas C.M., Hatziieremia S., Harris R.J., Jørgensen H.G., Holyoake T.L., Pirmohamed M., Clark R.E., et al. Nilotinib concentration in cell lines and primary CD34+ chronic myeloid leukemia cells is not mediated by active uptake or efflux by major drug transporters. Leukemia. 2009;23:1999–2006. doi: 10.1038/leu.2009.166. PubMed DOI
Elmeliegy M.A., Carcaboso A.M., Tagen M., Bai F., Stewart C.F. Role of ATP-Binding Cassette and Solute Carrier Transporters in Erlotinib CNS Penetration and Intracellular Accumulation. Clin. Cancer Res. 2011;17:89–99. doi: 10.1158/1078-0432.CCR-10-1934. PubMed DOI PMC
Arakawa H., Omote S., Tamai I. Inhibitory Effect of Crizotinib on Creatinine Uptake by Renal Secretory Transporter OCT2. J. Pharm. Sci. 2017;106:2899–2903. doi: 10.1016/j.xphs.2017.03.013. PubMed DOI
Morrow C.J., Ghattas M., Smith C., Bönisch H., Bryce R.A., Hickinson D.M., Green T.P., Dive C. Src family kinase inhibitor Saracatinib (AZD0530) impairs oxaliplatin uptake in colorectal cancer cells and blocks organic cation transporters. Cancer Res. 2010;70:5931–5941. doi: 10.1158/0008-5472.CAN-10-0694. PubMed DOI PMC
Zimmerman E.I., Gibson A.A., Hu S., Vasilyeva A., Orwick S.J., Du G., Mascara G.P., Ong S.S., Chen T., Vogel P., et al. Therapeutics, Targets, and Chemical Biology Multikinase Inhibitors Induce Cutaneous Toxicity through OAT6-Mediated Uptake and MAP3K7-Driven Cell Death. Cancer Res. 2016;76:117–126. doi: 10.1158/0008-5472.CAN-15-0694. PubMed DOI PMC
Hu S., Mathijssen R.H.J., de Bruijn P., Baker S.D., Sparreboom A. Inhibition of OATP1B1 by tyrosine kinase inhibitors: In vitro–in vivo correlations. Br. J. Cancer. 2014;110:894–898. doi: 10.1038/bjc.2013.811. PubMed DOI PMC
Bauer M., Matsuda A., Wulkersdorfer B., Philippe C., Traxl A., Özvegy-Laczka C., Stanek J., Nics L., Klebermass E.-M., Poschner S., et al. Influence of OATPs on Hepatic Disposition of Erlotinib Measured With Positron Emission Tomography. Clin. Pharmacol. Ther. 2018;104:139–147. doi: 10.1002/cpt.888. PubMed DOI PMC
Thomas J., Wang L., Clark R.E., Pirmohamed M., Reiffers J., Goldman J.M., Melo J.V. Active transport of imatinib into and out of cells: Implications for drug resistance. Blood. 2004;104:3739–3745. doi: 10.1182/blood-2003-12-4276. PubMed DOI
White D.L., Saunders V.A., Dang P., Engler J., Zannettino A.C.W., Cambareri A.C., Quinn S.R., Manley P.W., Hughes T.P. OCT-1–mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): Reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood. 2006;108:697–704. doi: 10.1182/blood-2005-11-4687. PubMed DOI
De Duve C., De Barsy T., Poole B., Trouet A., Tulkens P., van Hoof F. Lysosomotropic agents. Biochem. Pharmacol. 1974;23:2495–2531. doi: 10.1016/0006-2952(74)90174-9. PubMed DOI
Kazmi F., Hensley T., Pope C., Funk R.S., Loewen G.J., Buckley D.B., Parkinson A. Lysosomal Sequestration (Trapping) of Lipophilic Amine (Cationic Amphiphilic) Drugs in Immortalized Human Hepatocytes (Fa2N-4 Cells) Drug Metab. Dispos. 2013;41:897–905. doi: 10.1124/dmd.112.050054. PubMed DOI PMC
Gotink K.J., Broxterman H.J., Labots M., De Haas R.R., Dekker H., Honeywell R.J., Rudek M.A., Beerepoot L.V., Musters R.J., Jansen G., et al. Lysosomal sequestration of sunitinib: A novel mechanism of drug resistance. Clin. Cancer Res. 2011;17:7337–7346. doi: 10.1158/1078-0432.CCR-11-1667. PubMed DOI PMC
Wilson J.N., Liu W., Brown A.S., Landgraf R. Binding-induced, turn-on fluorescence of the EGFR/ERBB kinase inhibitor, lapatinib. Org. Biomol. Chem. 2015;13:5006–5011. doi: 10.1039/C5OB00239G. PubMed DOI PMC
Burger H., den Dekker A.T., Segeletz S., Boersma A.W.M., de Bruijn P., Debiec-Rychter M., Taguchi T., Sleijfer S., Sparreboom A., Mathijssen R.H.J., et al. Lysosomal Sequestration Determines Intracellular Imatinib Levels. Mol. Pharmacol. 2015;88:477–487. doi: 10.1124/mol.114.097451. PubMed DOI
Fu D., Zhou J., Zhu W.S., Manley P.W., Wang Y.K., Hood T., Wylie A., Xie X.S. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat. Chem. 2014;6:614–622. doi: 10.1038/nchem.1961. PubMed DOI PMC
Englinger B., Kallus S., Senkiv J., Heilos D., Gabler L., van Schoonhoven S., Terenzi A., Moser P., Pirker C., Timelthaler G., et al. Intrinsic fluorescence of the clinically approved multikinase inhibitor nintedanib reveals lysosomal sequestration as resistance mechanism in FGFR-driven lung cancer. J. Exp. Clin. Cancer Res. 2017;36:122. doi: 10.1186/s13046-017-0592-3. PubMed DOI PMC
Nadanaciva S., Lu S., Gebhard D.F., Jessen B.A., Pennie W.D., Will Y. A high content screening assay for identifying lysosomotropic compounds. Toxicol. Vitr. 2011;25:715–723. doi: 10.1016/j.tiv.2010.12.010. PubMed DOI
Colombo F., Trombetta E., Cetrangolo P., Maggioni M., Razini P., De Santis F., Torrente Y., Prati D., Torresani E., Porretti L. Giant Lysosomes as a Chemotherapy Resistance Mechanism in Hepatocellular Carcinoma Cells. PLoS ONE. 2014;9:e114787. doi: 10.1371/journal.pone.0114787. PubMed DOI PMC
Gotink K.J., Rovithi M., de Haas R.R., Honeywell R.J., Dekker H., Poel D., Azijli K., Peters G.J., Broxterman H.J., Verheul H.M.W. Cross-resistance to clinically used tyrosine kinase inhibitors sunitinib, sorafenib and pazopanib. Cell. Oncol. 2015;38:119–129. doi: 10.1007/s13402-015-0218-8. PubMed DOI PMC
Ferrao P., Sincock P., Cole S., Ashman L. Intracellular P-gp contributes to functional drug efflux and resistance in acute myeloid leukaemia. Leuk. Res. 2001;25:395–405. doi: 10.1016/S0145-2126(00)00156-9. PubMed DOI
Molinari A., Calcabrini A., Meschini S., Stringaro A., Crateri P., Toccacieli L., Marra M., Colone M., Cianfriglia M., Arancia G. Subcellular Detection and Localization of the Drug Transporter P-Glycoprotein in Cultured Tumor Cells. Curr. Protein Pept. Sci. 2002;3:653–670. doi: 10.2174/1389203023380413. PubMed DOI
Chapuy B., Panse M., Radunski U., Koch R., Wenzel D., Inagaki N., Haase D., Truemper L., Wulf G.G. ABC transporter A3 facilitates lysosomal sequestration of imatinib and modulates susceptibility of chronic myeloid leukemia cell lines to this drug. Haematologica. 2009;94:1528–1536. doi: 10.3324/haematol.2009.008631. PubMed DOI PMC
Al-Akra L., Bae D.-H., Sahni S., Huang M.L.H., Park K.C., Lane D.J.R., Jansson P.J., Richardson D.R. Tumor stressors induce two mechanisms of intracellular P-glycoprotein-mediated resistance that are overcome by lysosomal-targeted thiosemicarbazones. J. Biol. Chem. 2018;293:3562–3587. doi: 10.1074/jbc.M116.772699. PubMed DOI PMC
Yamagishi T., Sahni S., Sharp D.M., Arvind A., Jansson P.J., Richardson D.R. P-glycoprotein mediates drug resistance via a novel mechanism involving lysosomal sequestration. J. Biol. Chem. 2013;288:31761–31771. doi: 10.1074/jbc.M113.514091. PubMed DOI PMC
Zama I.N., Hutson T.E., Elson P., Cleary J.M., Choueiri T.K., Heng D.Y.C., Ramaiya N., Michaelson M.D., Garcia J.A., Knox J.J., et al. Sunitinib rechallenge in metastatic renal cell carcinoma patients. Cancer. 2010;116:5400–5406. doi: 10.1002/cncr.25583. PubMed DOI
Gotink K.J., Broxterman H.J., Honeywell R.J., Dekker H., de Haas R.R., Miles K.M., Adelaiye R., Griffioen A.W., Peters G.J., Pili R., et al. Acquired tumor cell resistance to sunitinib causes resistance in a HT-29 human colon cancer xenograft mouse model without affecting sunitinib biodistribution or the tumor microvasculature. Oncoscience. 2014;1:844–853. doi: 10.18632/oncoscience.106. PubMed DOI PMC
McAfee Q., Zhang Z., Samanta A., Levi S.M., Ma X.-H., Piao S., Lynch J.P., Uehara T., Sepulveda A.R., Davis L.E., et al. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc. Natl. Acad. Sci. USA. 2012;109:8253–8258. doi: 10.1073/pnas.1118193109. PubMed DOI PMC
Rosenfeld M.R., Ye X., Supko J.G., Desideri S., Grossman S.A., Brem S., Mikkelson T., Wang D., Chang Y.C., Hu J., et al. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy. 2014;10:1359–1368. doi: 10.4161/auto.28984. PubMed DOI PMC
Rangwala R., Chang Y.C., Hu J., Algazy K.M., Evans T.L., Fecher L.A., Schuchter L.M., Torigian D.A., Panosian J.T., Troxel A.B., et al. Combined MTOR and autophagy inhibition: Phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy. 2014;10:1391–1402. doi: 10.4161/auto.29119. PubMed DOI PMC
Nowak-Sliwinska P., Weiss A., van Beijnum J.R., Wong T.J., Kilarski W.W., Szewczyk G., Verheul H.M.W., Sarna T., van den Bergh H., Griffioen A.W. Photoactivation of lysosomally sequestered sunitinib after angiostatic treatment causes vascular occlusion and enhances tumor growth inhibition. Cell Death Dis. 2015;6:e1641. doi: 10.1038/cddis.2015.4. PubMed DOI PMC
Jansson P.J., Yamagishi T., Arvind A., Seebacher N., Gutierrez E., Stacy A., Maleki S., Sharp D., Sahni S., Richardson D.R. Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug resistance by a novel mechanism involving the hijacking of lysosomal P-glycoprotein (Pgp) J. Biol. Chem. 2015;290:9588–9603. doi: 10.1074/jbc.M114.631283. PubMed DOI PMC
Lan C.-Y., Wang Y., Xiong Y., Li J.-D., Shen J.-X., Li Y.-F., Zheng M., Zhang Y.-N., Feng Y.-L., Liu Q., et al. Apatinib combined with oral etoposide in patients with platinum-resistant or platinum-refractory ovarian cancer (AEROC): A phase 2, single-arm, prospective study. Lancet Oncol. 2018;19:1239–1246. doi: 10.1016/S1470-2045(18)30349-8. PubMed DOI
Wang L., Liang L., Yang T., Qiao Y., Xia Y., Liu L., Li C., Lu P., Jiang X. A pilot clinical study of apatinib plus irinotecan in patients with recurrent high-grade glioma: Clinical Trial/Experimental Study. Medicine (Baltimore) 2017;96:e9053. doi: 10.1097/MD.0000000000009053. PubMed DOI PMC
Symonds R.P., Gourley C., Davidson S., Carty K., McCartney E., Rai D., Banerjee S., Jackson D., Lord R., McCormack M., et al. Cediranib combined with carboplatin and paclitaxel in patients with metastatic or recurrent cervical cancer (CIRCCa): A randomised, double-blind, placebo-controlled phase 2 trial. Lancet Oncol. 2015;16:1515–1524. doi: 10.1016/S1470-2045(15)00220-X. PubMed DOI PMC
Valle J.W., Wasan H., Lopes A., Backen A.C., Palmer D.H., Morris K., Duggan M., Cunningham D., Anthoney D.A., Corrie P., et al. Cediranib or placebo in combination with cisplatin and gemcitabine chemotherapy for patients with advanced biliary tract cancer (ABC-03): A randomised phase 2 trial. Lancet Oncol. 2015;16:967–978. doi: 10.1016/S1470-2045(15)00139-4. PubMed DOI PMC
Ahn H.K., Han B., Lee S.J., Lim T., Sun J.-M., Ahn J.S., Ahn M.-J., Park K. ALK inhibitor crizotinib combined with intrathecal methotrexate treatment for non-small cell lung cancer with leptomeningeal carcinomatosis. Lung Cancer. 2012;76:253–254. doi: 10.1016/j.lungcan.2012.02.003. PubMed DOI
Neal J.W., Dahlberg S.E., Wakelee H.A., Aisner S.C., Bowden M., Huang Y., Carbone D.P., Gerstner G.J., Lerner R.E., Rubin J.L., et al. Erlotinib, cabozantinib, or erlotinib plus cabozantinib as second-line or third-line treatment of patients with EGFR wild-type advanced non-small-cell lung cancer (ECOG-ACRIN 1512): A randomised, controlled, open-label, multicentre, phase 2 trial. Lancet Oncol. 2016;17:1661–1671. doi: 10.1016/S1470-2045(16)30561-7. PubMed DOI PMC
Hirte H., Oza A., Swenerton K., Ellard S.L., Grimshaw R., Fisher B., Tsao M., Seymour L. A phase II study of erlotinib (OSI-774) given in combination with carboplatin in patients with recurrent epithelial ovarian cancer (NCIC CTG IND.149) Gynecol. Oncol. 2010;118:308–312. doi: 10.1016/j.ygyno.2010.05.005. PubMed DOI
Massarelli E., Lin H., Ginsberg L.E., Tran H.T., Lee J.J., Canales J.R., Williams M.D., Blumenschein G.R., Lu C., Heymach J.V., et al. Phase II trial of everolimus and erlotinib in patients with platinum-resistant recurrent and/or metastatic head and neck squamous cell carcinoma. Ann. Oncol. 2015;26:1476–1480. doi: 10.1093/annonc/mdv194. PubMed DOI PMC
Yang Z.Y., Yuan J.Q., Di M.Y., Zheng D.Y., Chen J.Z., Ding H., Wu X.Y., Huang Y.F., Mao C., Tang J.L. Gemcitabine Plus Erlotinib for Advanced Pancreatic Cancer: A Systematic Review with Meta-Analysis. PLoS ONE. 2013;8:e57528. doi: 10.1371/journal.pone.0057528. PubMed DOI PMC
Lim S.H., Yun J., Lee M.-Y., Kim H.J., Kim K.H., Kim S.H., Lee S.-C., Bae S.B., Kim C.K., Lee N., et al. A randomized phase II clinical trial of gemcitabine, oxaliplatin, erlotinib combination chemotherapy versus gemcitabine and erlotinib in previously untreated patients with locally advanced or metastatic pancreatic cancer. J. Clin. Oncol. 2018;36:344. doi: 10.1200/JCO.2018.36.4_suppl.344. DOI
Stewart C.F., Tagen M., Schwartzberg L.S., Blakely L.J., Tauer K.W., Smiley L.M. Phase I dosage finding and pharmacokinetic study of intravenous topotecan and oral erlotinib in adults with refractory solid tumors. Cancer Chemother. Pharmacol. 2014;73:561–568. doi: 10.1007/s00280-014-2385-0. PubMed DOI PMC
Hosomi Y., Morita S., Sugawara S., Kato T., Fukuhara T., Gemma A., Takahashi K., Fujita Y., Harada T., Minato K., et al. Gefitinib Alone Versus Gefitinib Plus Chemotherapy for Non-Small-Cell Lung Cancer With Mutated Epidermal Growth Factor Receptor: NEJ009 Study. J. Clin. Oncol. 2020;38:115–123. doi: 10.1200/JCO.19.01488. PubMed DOI
Cetin B., Benekli M., Turker I., Koral L., Ulas A., Dane F., Oksuzoglu B., Kaplan M.A., Koca D., Boruban C., et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer: A multicentre study of Anatolian Society of Medical Oncology (ASMO) J. Chemother. 2014;26:300–305. doi: 10.1179/1973947813Y.0000000147. PubMed DOI
Di Leo A., Gomez H.L., Aziz Z., Zvirbule Z., Bines J., Arbushites M.C., Guerrera S.F., Koehler M., Oliva C., Stein S.H., et al. Phase III, double-blind, randomized study comparing lapatinib plus paclitaxel with placebo plus paclitaxel as first-line treatment for metastatic breast cancer. J. Clin. Oncol. 2008;26:5544–5552. doi: 10.1200/JCO.2008.16.2578. PubMed DOI PMC
Saura C., Garcia-saenz J.A., Xu B., Harb W., Moroose R., Pluard T., Cortés J., Kiger C., Germa C., Wang K., et al. Safety and Efficacy of Neratinib in Combination With Capecitabine in Patients With Metastatic Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer. J. Clin. Oncol. 2014;32:1–9. doi: 10.1200/JCO.2014.56.3809. PubMed DOI
Chow L., Xu B., Gupta S., Freyman A., Zhao Y., Abbas R., Van M.V., Bondarenko I. Combination neratinib ( HKI-272 ) and paclitaxel therapy in patients with HER2-positive metastatic breast cancer. Br. J. Cancer. 2013;108:1985–1993. doi: 10.1038/bjc.2013.178. PubMed DOI PMC
Kim D.-Y., Joo Y.-D., Lim S.-N., Kim S.-D., Lee J.-H., Lee J.-H., Kim D.H., Kim K., Jung C.W., Kim I., et al. Nilotinib combined with multiagent chemotherapy for newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Blood. 2015;126:746–756. doi: 10.1182/blood-2015-03-636548. PubMed DOI
Reck M., Kaiser R., Mellemgaard A., Douillard J.-Y., Orlov S., Krzakowski M., von Pawel J., Gottfried M., Bondarenko I., Liao M., et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): A phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014;15:143–155. doi: 10.1016/S1470-2045(13)70586-2. PubMed DOI
Serve H., Brunnberg U., Ottmann O., Brandts C., Steffen B., Krug U., Wagner R., Müller-Tidow C., Berdel W.E., Cristina Sauerland M., et al. Sorafenib in combination with intensive chemotherapy in elderly patients with acute myeloid leukemia: Results from a randomized, placebo-controlled trial. J. Clin. Oncol. 2013;31:3110–3118. doi: 10.1200/JCO.2012.46.4990. PubMed DOI
Abou-Alfa G.K., Shi Q., Knox J.J., Kaubisch A., Niedzwiecki D., Posey J., Tan B.R., Kavan P., Goel R., Lammers P.E., et al. Assessment of Treatment With Sorafenib Plus Doxorubicin vs Sorafenib Alone in Patients With Advanced Hepatocellular Carcinoma. JAMA Oncol. 2019;5:1582. doi: 10.1001/jamaoncol.2019.2792. PubMed DOI PMC
Sheng X., Cao D., Yuan J., Zhou F., Wei Q., Xie X., Cui C., Chi Z., Si L., Li S., et al. Sorafenib in combination with gemcitabine plus cisplatin chemotherapy in metastatic renal collecting duct carcinoma: A prospective, multicentre, single-arm, phase 2 study. Eur. J. Cancer. 2018;100:1–7. doi: 10.1016/j.ejca.2018.04.007. PubMed DOI
Crown J.P., Diéras V., Staroslawska E., Yardley D.A., Bachelot T., Davidson N., Wildiers H., Fasching P.A., Capitain O., Ramos M., et al. Phase III trial of sunitinib in combination with capecitabine versus capecitabine monotherapy for the treatment of patients with pretreated metastatic breast cancer. J. Clin. Oncol. 2013;31:2870–2878. doi: 10.1200/JCO.2012.43.3391. PubMed DOI
Bergh J., Bondarenko I.M., Lichinitser M.R., Liljegren A., Greil R., Voytko N.L., Makhson A.N., Cortes J., Lortholary A., Bischoff J., et al. First-line treatment of advanced breast cancer with sunitinib in combination with docetaxel versus docetaxel alone: Results of a prospective, randomized phase III study. J. Clin. Oncol. 2012;30:921–929. doi: 10.1200/JCO.2011.35.7376. PubMed DOI
Yi J.H., Lee J., Lee J., Park S.H., Park J.O., Yim D.-S., Park Y.S., Lim H.Y., Kang W.K. Randomised phase II trial of docetaxel and sunitinib in patients with metastatic gastric cancer who were previously treated with fluoropyrimidine and platinum. Br. J. Cancer. 2012;106:1469–1474. doi: 10.1038/bjc.2012.100. PubMed DOI PMC
Choueiri T.K., Ross R.W., Jacobus S., Vaishampayan U., Yu E.Y., Quinn D.I., Hahn N.M., Hutson T.E., Sonpavde G., Morrissey S.C., et al. Double-blind, randomized trial of docetaxel plus vandetanib versus docetaxel plus placebo in platinum-pretreated metastatic urothelial cancer. J. Clin. Oncol. 2012;30:507–512. doi: 10.1200/JCO.2011.37.7002. PubMed DOI PMC
Yang C., Gottfried M., Chan V., Raats J., De Marinis F., Abratt R.P., Read J., Vansteenkiste J.F. Vandetanib Plus Pemetrexed for the Second-Line Treatment of Advanced Non-Small-Cell Lung Cancer: A Randomized, Double-Blind Phase III Trial. J. Clin. Oncol. 2011;29:1067–1074. PubMed
Beretta G.L., Benedetti V., Cossa G., Assaraf Y.G.A., Bram E., Gatti L., Corna E., Carenini N., Colangelo D., Howell S.B., et al. Increased levels and defective glycosylation of MRPs in ovarian carcinoma cells resistant to oxaliplatin. Biochem. Pharmacol. 2010;79:1108–1117. PubMed
Rudin D., Li L., Niu N., Kalari K.R., Gilbert J.A., Ames M.M., Wang L. Gemcitabine Cytotoxicity: Interaction of Efflux and Deamination. J. Drug Metab. Toxicol. 2011;2:1–10. doi: 10.4172/2157-7609.1000107. PubMed DOI PMC
Adamska A., Falasca M. ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward? World J. Gastroenterol. 2018;24:3222–3238. doi: 10.3748/wjg.v24.i29.3222. PubMed DOI PMC
Kemp J.A., Shim M.S., Heo C.Y., Kwon Y.J. “Combo” nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv. Drug Deliv. Rev. 2016;98:3–18. PubMed
Zhou Z., Kennell C., Jafari M., Lee J.Y., Ruiz-Torres S.J., Waltz S.E., Lee J.H. Sequential delivery of erlotinib and doxorubicin for enhanced triple negative Breast cancer treatment using polymeric nanoparticle. Int. J. Pharm. 2017;530:300–307. doi: 10.1016/j.ijpharm.2017.07.085. PubMed DOI PMC
Tumour Microenvironment Stress Promotes the Development of Drug Resistance