Impact Wear of the Protective Cr3C2-Based HVOF-Sprayed Coatings

. 2020 May 04 ; 13 (9) : . [epub] 20200504

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32375424

High velocity oxygen-fuel (HVOF) prepared CrC-based hardmetal coatings are generally known for their superior wear, corrosion, and oxidation resistance. These properties make this coating attractive for application in industry. However, under some loading conditions and in aggressive environments, the most commonly used NiCr matrix is not sufficient. The study is focused on the evaluation of dynamic impact wear of the HVOF-sprayed Cr3C2-25%NiCr and Cr3C2-50%NiCrMoNb coatings. Both coatings were tested by an impact tester with a wide range of impact loads. The Wohler-like dependence was determined for both coatings' materials. It was shown that, due to the different microstructure and higher amount of tough matrix, the impact lifetime of the Cr3C2-50%NiCrMoNb coating was higher than the lifetime of the Cr3C2-25%NiCr coating. Differences in the behavior of the coatings were the most pronounced at high impact loads.

Zobrazit více v PubMed

Pawlowski L. The Science and Engineering of Thermal Spray Coatings. 2nd ed. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2008.

Houdková Š., Česánek Z., Smazalová E., Lukac F. The High-Temperature Wear and Oxidation Behavior of CrC-Based HVOF Coatings. J. Therm. Spray Technol. 2017;27:179–195. doi: 10.1007/s11666-017-0637-3. DOI

Matikainen V., Bolelli G., Koivuluoto H., Sassatelli P., Lusvarghi L., Vuoristo P. Sliding wear behaviour of HVOF and HVAF sprayed Cr 3 C 2 -based coatings. Wear. 2017;2017:57–71. doi: 10.1016/j.wear.2017.04.001. DOI

Berger L.-M. Application of hardmetals as thermal spray coatings. Int. J. Refract. Met. Hard Mater. 2015;49:350–364. doi: 10.1016/j.ijrmhm.2014.09.029. DOI

Berger L.-M. Hardmetals as thermal spray coatings. Powder Met. 2007;50:205–214. doi: 10.1179/174329007X246078. DOI

Hussainova I., Pirso J., Antonov M., Juhani K., Letunovits S. Erosion and abrasion of chromium carbide based cermets produced by different methods. Wear. 2007;263:905–911. doi: 10.1016/j.wear.2006.12.027. DOI

Bolelli G., Berger L.-M., Börner T., Koivuluoto H., Matikainen V., Lusvarghi L., Lyphout C., Markocsan N., Nylén P., Sassatelli P., et al. Sliding and abrasive wear behaviour of HVOF- and HVAF-sprayed Cr3C2–NiCr hardmetal coatings. Wear. 2016:32–50. doi: 10.1016/j.wear.2016.03.034. DOI

Xie M., Lin Y., Ke P., Wang S., Zhang S., Zhen Z., Ge L. Influence of Process Parameters on High Velocity Oxy-Fuel Sprayed Cr3C2-25%NiCr Coatings. Coatings. 2017;7:98. doi: 10.3390/coatings7070098. DOI

Janka L., Norpoth J., Trache R., Thiele S., Berger L.-M. HVOF- and HVAF-Sprayed Cr3C2-NiCr Coatings Deposited from Feedstock Powders of Spherical Morphology: Microstructure Formation and High-Stress Abrasive Wear Resistance Up to 800 °C. J. Therm. Spray Technol. 2017;26:1720–1731. doi: 10.1007/s11666-017-0621-y. DOI

Guilemany J.M., Miguel J., Vizcaíno S., Lorenzana C., Delgado J., Sanchez J. Role of heat treatments in the improvement of the sliding wear properties of Cr3C2–NiCr coatings. Surf. Coat. Technol. 2002;157:207–213. doi: 10.1016/S0257-8972(02)00148-2. DOI

Matthews S., James B., Hyland M. Microstructural influence on erosion behaviour of thermal spray coatings. Mater. Charact. 2007;58:59–64. doi: 10.1016/j.matchar.2006.03.014. DOI

Matthews S., James B., Hyland M. The role of microstructure in the mechanism of high velocity erosion of Cr3C2–NiCr thermal spray coatings: Part 1—As-sprayed coatings. Surf. Coat. Technol. 2009;203:1086–1093. doi: 10.1016/j.surfcoat.2008.10.005. DOI

Matthews S., James B., Hyland M. High temperature erosion of Cr3C2-NiCr thermal spray coatings—The role of phase microstructure. Surf. Coat. Technol. 2009;203:1144–1153. doi: 10.1016/j.surfcoat.2008.10.008. DOI

Matthews S., James B., Hyland M. High temperature erosion–oxidation of Cr3C2–NiCr thermal spray coatings under simulated turbine conditions. Corros. Sci. 2013;70:203–211. doi: 10.1016/j.corsci.2013.01.030. DOI

Tailor S., Vashishtha N., Modi A., Modi S.C. Structural and mechanical properties of HVOF sprayed Cr3C2-25%NiCr coating and subsequent erosion wear resistance. Mater. Res. Express. 2019;6:076435. doi: 10.1088/2053-1591/ab1947. DOI

Zhang H., Dong X., Chen S. Solid particle erosion-wear behaviour of Cr3C2–NiCr coating on Ni-based superalloy. Adv. Mech. Eng. 2017;9:1–9. doi: 10.1177/1687814017694580. DOI

Fantozzi D., Matikainen V., Uusitalo M., Koivuluoto H., Vuoristo P. Effect of Carbide Dissolution on Chlorine Induced High Temperature Corrosion of HVOF and HVAF Sprayed Cr3C2-NiCrMoNb Coatings. J. Therm. Spray Technol. 2017;27:220–231. doi: 10.1007/s11666-017-0645-3. DOI

Liu J., Bai X., Chen T., Yuan C. Effects of Cobalt Content on the Microstructure, Mechanical Properties and Cavitation Erosion Resistance of HVOF Sprayed Coatings. Coatings. 2019;9:534. doi: 10.3390/coatings9090534. DOI

Knotek O., Bosserhoff B., Schrey A., Leyendecker T., Lemmer O., Esser S. A new technique for testing the impact load of thin films: The coating impact test. Surf. Coat. Technol. 1992;54:102–107. doi: 10.1016/0257-8972(92)90147-3. DOI

Sobota J., Grossman J., Buršíková V., Dupák L., Vyskočil J. Evaluation of hardness, tribological behaviour and impact load of carbon-based hard composite coatings exposed to the influence of humidity. Diam. Relat. Mater. 2011;20:596–599. doi: 10.1016/j.diamond.2011.01.011. DOI

Daniel J., Souček P., Grossman J., Zábranský L., Bernátová K., Buršíková V., Fořt T., Vašina P., Sobota J. Adhesion and dynamic impact wear of nanocomposite TiC-based coatings prepared by DCMS and HiPIMS. Int. J. Refract. Met. Hard Mater. 2020;86:105123. doi: 10.1016/j.ijrmhm.2019.105123. DOI

Engel P.A., Yang Q. Impact wear of multiplated electrical contacts. Wear. 1995;181:730–742. doi: 10.1016/0043-1648(94)07105-5. DOI

Bouzakis K.-D., Vidakis N., Leyendecker T., Erkens G., Wenke R. Determination of the fatigue properties of multilayer PVD coatings on various substrates, based on the impact test and its FEM simulation. Thin Solid Films. 1997;308:315–322. doi: 10.1016/S0040-6090(97)00561-0. DOI

Heinke W., Leyland A., Matthews A., Berg G., Friedrich C., Broszeit E. Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests. Thin Solid Films. 1995;270:431–438. doi: 10.1016/0040-6090(95)06934-8. DOI

Bouzakis K.-D., Maliaris G., Makrimallakis S. Strain rate effect on the fatigue failure of thin PVD coatings: An investigation by a novel impact tester with adjustable repetitive force. Int. J. Fatigue. 2012;44:89–97. doi: 10.1016/j.ijfatigue.2012.05.010. DOI

Bobzin K., Zhao L., Öte M., Königstein T., Steeger M. Impact wear of an HVOF-sprayed Cr 3 C 2 -NiCr coating. Int. J. Refract. Met. Hard Mater. 2018;70:191–196. doi: 10.1016/j.ijrmhm.2017.10.011. DOI

David C.N., Athanasiou M.A., Anthymidis K.G., Gotsis P.K., Neu R., Wallin K., Thompson S.R., Dean S.W. Impact Fatigue Failure Investigation of HVOF Coatings. J. ASTM Int. 2008;5:101571. doi: 10.1520/JAI101571. DOI

Kiilakoski J., Langlade C., Koivuluoto H., Vuoristo P. Characterizing the micro-impact fatigue behavior of APS and HVOF-sprayed ceramic coatings. Surf. Coat. Technol. 2019;371:245–254. doi: 10.1016/j.surfcoat.2018.10.097. DOI

Batista J., Godoy C., Matthews A., Godoy G.C. Impact testing of duplex and non-duplex (Ti,Al)N and Cr–N PVD coatings. Surf. Coat. Technol. 2003;163:353–361. doi: 10.1016/S0257-8972(02)00632-1. DOI

Bantle R., Matthews A. Investigation into the impact wear behaviour of ceramic coatings. Surf. Coat. Technol. 1995;74:857–868. doi: 10.1016/0257-8972(95)08314-6. DOI

Voevodin A., Bantle R., Matthews A. Dynamic impact wear of TiCxNy and Ti-DLC composite coatings. Wear. 1995;185:151–157. doi: 10.1016/0043-1648(95)06603-9. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...