The Key Role of Purine Metabolism in the Folate-Dependent Phenotype of Autism Spectrum Disorders: An In Silico Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018132
Ministry of Education, Youth and Science
00064203/6003
Institutional Support
PubMed
32384607
PubMed Central
PMC7281253
DOI
10.3390/metabo10050184
PII: metabo10050184
Knihovny.cz E-zdroje
- Klíčová slova
- ADSL, ASD, ATIC, Flux Balance Analysis (FBA), GART, PAICS, PFAS, PPAT, autism, blocked metabolite, cerebral folate deficiency, folate, metabolic modeling, purine,
- Publikační typ
- časopisecké články MeSH
Folate deficiency in the critical developmental period has been repeatedly associated with an increased risk of Autism spectrum disorders (ASD), but the key pathophysiological mechanism has not yet been identified. In this work, we focused on identifying genes whose defect has similar consequences to folate depletion in the metabolic network. Within the Flux Balance Analysis (FBA) framework, we developed a method of blocked metabolites that allowed us to define the metabolic consequences of various gene defects and folate depletion. We identified six genes (GART, PFAS, PPAT, PAICS, ATIC, and ADSL) whose blocking results in nearly the same effect in the metabolic network as folate depletion. All of these genes form the purine biosynthetic pathway. We found that, just like folate depletion, the blockade of any of the six genes mentioned above results in a blockage of purine metabolism. We hypothesize that this can lead to decreased adenosine triphosphate (ATP) and subsequently, an S-adenosyl methionine (SAM) pool in neurons in the case of rapid cell division. Based on our results, we consider the methylation defect to be a potential cause of ASD, due to the depletion of purine, and consequently S-adenosyl methionine (SAM), biosynthesis.
Zobrazit více v PubMed
Chaaya M., Saab D., Maalouf F.T., Boustany R.M. Prevalence of Autism Spectrum Disorder in Nurseries in Lebanon: A Cross Sectional Study. J. Autism Dev. Disord. 2016;46:514–522. doi: 10.1007/s10803-015-2590-7. PubMed DOI
Pérez-Crespo L., Prats-Uribe A., Tobias A., Duran-Tauleria E., Coronado R., Hervás A., Guxens M. Temporal and Geographical Variability of Prevalence and Incidence of Autism Spectrum Disorder Diagnoses in Children in Catalonia, Spain. Autism Res. 2019;12:1693–1705. doi: 10.1002/aur.2172. PubMed DOI PMC
Baio J. Prevalence of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill. Summ. 2014;63:1–21. PubMed
Diallo F.B., Fombonne É., Kisely S., Rochette L., Vasiliadis H.M., Vanasse A., Noiseux M., Pelletier É., Renaud J., St-Laurent D., et al. Prevalence and Correlates of Autism Spectrum Disorders in Quebec: Prévalence et corrélats des troubles du spectre de l’autisme au Québec. Can. J. Psychiatry. 2018;63:231–239. doi: 10.1177/0706743717737031. PubMed DOI PMC
Barrett B. Substantial lifelong cost of autism spectrum disorder. J. Pediatr. 2014;165:1068–1069. doi: 10.1016/j.jpeds.2014.08.016. PubMed DOI
Heath A.K., Ganz J.B., Parker R., Burke M., Ninci J. A Meta-analytic Review of Functional Communication Training Across Mode of Communication, Age, and Disability. Rev. J. Autism Dev. Disord. 2015;2:155–166. doi: 10.1007/s40489-014-0044-3. DOI
Richman D.M., Barnard-Brak L., Grubb L., Bosch A., Abby L. Meta-analysis of noncontingent reinforcement effects on problem behavior. J. Appl. Behav. Anal. 2015;48:131–152. doi: 10.1002/jaba.189. PubMed DOI
Kurtz P.F., Chin M.D., Huete J.M., Tarbox R.S.F., O’Connor J.T., Paclawskyj T.R., Rush K.S. Functional analysus and treatment of self-injurious behavior in young children: A summary of 30 cases. J. Appl. Behav. Anal. 2003;36:205–219. doi: 10.1901/jaba.2003.36-205. PubMed DOI PMC
Vissers L.E.L.M., Gilissen C., Veltman J.A. Genetic studies in intellectual disability and related disorders. Nat. Rev. Genet. 2016;17:9–18. doi: 10.1038/nrg3999. PubMed DOI
Ramaekers V.T., Sequeira J.M., Blau N., Quadros E.V. A milk-free diet downregulates folate receptor autoimmunity in cerebral folate deficiency syndrome. Dev. Med. Child. Neurol. 2008;50:346–352. doi: 10.1111/j.1469-8749.2008.02053.x. PubMed DOI PMC
Modabbernia A., Velthorst E., Reichenberg A. Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses. Mol. Autism. 2017;8:13. doi: 10.1186/s13229-017-0121-4. PubMed DOI PMC
Rossignol D.A., Genuis S.J., Frye R.E. Environmental toxicants and autism spectrum disorders: A systematic review. Transl. Psychiatry. 2014;4:e360. doi: 10.1038/tp.2014.4. PubMed DOI PMC
Wang M., Li K., Zhao D., Li L. The association between maternal use of folic acid supplements during pregnancy and risk of autism spectrum disorders in children: A meta-analysis. Mol. Autism. 2017;8:51. doi: 10.1186/s13229-017-0170-8. PubMed DOI PMC
Surén P., Roth C., Bresnahan M., Haugen M., Hornig M., Hirtz D., Lie K.K., Lipkin W.I., Magnus P., Reichborn-Kjennerud T., et al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA. 2013;309:570–577. doi: 10.1001/jama.2012.155925. PubMed DOI PMC
Ramaekers V.T., Sequeira J.M., Quadros E.V. The basis for folinic acid treatment in neuro-psychiatric disorders. Biochimie. 2016;126:79–90. doi: 10.1016/j.biochi.2016.04.005. PubMed DOI
Pu D., Shen Y., Wu J. Association between MTHFR gene polymorphisms and the risk of autism spectrum disorders: A meta-analysis. Autism Res. 2013;6:384–392. doi: 10.1002/aur.1300. PubMed DOI
Cario H., Smith D.E.C., Blom H., Blau N., Bode H., Holzmann K., Pannicke U., Hopfner K.P., Rump E.M., Ayric Z., et al. Dihydrofolate reductase deficiency due to a homozygous DHFR mutation causes megaloblastic anemia and cerebral folate deficiency leading to severe neurologic disease. Am. J. Hum. Genet. 2011;88:226–231. doi: 10.1016/j.ajhg.2011.01.007. PubMed DOI PMC
Al-Farsi Y.M., Waly M.I., Deth R.C., Al-Sharbati M.M., Al-Shafaee M., Al-Farsi O., Al-Khaduri M.M., Gupta I., Ali A., Al-Khalili M., et al. Low folate and vitamin B12 nourishment is common in Omani children with newly diagnosed autism. Nutrition. 2013;29:537–541. doi: 10.1016/j.nut.2012.09.014. PubMed DOI
Zhao R., Visentin M., Suadicani S.O., Goldman I.D. Inhibition of the proton-coupled folate transporter (PCFT-SLC46A1) by bicarbonate and other anions. Mol. Pharmacol. 2013;84:95–103. doi: 10.1124/mol.113.085605. PubMed DOI PMC
Ramaekers V.T.T., Segers K., Sequeira J.M.M., Koenig M., Van Maldergem L., Bours V., Kornak U., Quadros E.V.V. Genetic assessment and folate receptor autoantibodies in infantile-onset cerebral folate deficiency (CFD) syndrome. Mol. Genet. Metab. 2018;124:87–93. doi: 10.1016/j.ymgme.2018.03.001. PubMed DOI
Frye R.E., Delhey L., Slattery J., Tippett M., Wynne R., Rose S., Kahler S.G., Bennuri S.C., Melnyk S., Sequeira J.M., et al. Blocking and Binding Folate Receptor Alpha Autoantibodies Identify Novel Autism Spectrum Disorder Subgroups. Front. Neurosci. 2016;10:80. doi: 10.3389/fnins.2016.00080. PubMed DOI PMC
Frye R.E., Sequeira J.M., Quadros E.V., James S.J., Rossignol D.A. Cerebral folate receptor autoantibodies in autism spectrum disorder. Mol. Psychiatry. 2013;18:369–381. doi: 10.1038/mp.2011.175. PubMed DOI PMC
Nagarajan R.P., Hogart A.R., Gwye Y., Martin M.R., LaSalle J.M. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics. 2006;1:e1–e11. doi: 10.4161/epi.1.4.3514. PubMed DOI PMC
Alex A.M., Saradalekshmi K.R., Shilen N., Suresh P.A., Banerjee M. Genetic association of DNMT variants can play a critical role in defining the methylation patterns in autism. IUBMB Life. 2019;71:901–907. doi: 10.1002/iub.2021. PubMed DOI
Sanders S.J., He X., Willsey A.J., Ercan-Sencicek A.G., Samocha K.E., Cicek A.E., Murtha M.T., Bal V.H., Bishop S.L., Dong S., et al. Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron. 2015;87:1215–1233. doi: 10.1016/j.neuron.2015.09.016. PubMed DOI PMC
Yi P., Melnyk S., Pogribna M., Pogribny I.P., Hine R.J., James S.J. Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J. Biol. Chem. 2000;275:29318–29323. doi: 10.1074/jbc.M002725200. PubMed DOI
James S.J., Cutler P., Melnyk S., Jernigan S., Janak L., Gaylor D.W., Neubrander J.A. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am. J. Clin. Nutr. 2004;80:1611–1617. doi: 10.1093/ajcn/80.6.1611. PubMed DOI
Schaevitz L.R., Berger-Sweeney J.E. Gene-environment interactions and epigenetic pathways in autism: The importance of one-carbon metabolism. ILAR J. 2012;53:322–340. doi: 10.1093/ilar.53.3-4.322. PubMed DOI
Hamlin J.C., Pauly M., Melnyk S., Pavliv O., Starrett W., Crook T.A., James S.J. Dietary intake and plasma levels of choline and betaine in children with autism spectrum disorders. Autism Res. Treat. 2013;2013:578429. doi: 10.1155/2013/578429. PubMed DOI PMC
Tanaka M., Sato A., Kasai S., Hagino Y., Kotajima-Murakami H., Kashii H., Takamatsu Y., Nishito Y., Inagaki M., Mizuguchi M., et al. Brain hyperserotonemia causes autism-relevant social deficits in mice. Mol. Autism. 2018;9:1–14. doi: 10.1186/s13229-018-0243-3. PubMed DOI PMC
Rossignol D.A., Frye R.E. Melatonin in autism spectrum disorders: A systematic review and meta-analysis. Dev. Med. Child. Neurol. 2011;53:783–792. doi: 10.1111/j.1469-8749.2011.03980.x. PubMed DOI
Esmaiel N.N., Ashaat E.A., Mosaad R., Fayez A., Ibrahim M., Abdallah Z.Y., Issa M.Y., Salem S., Ramadan A., El Wakeel M.A., et al. The potential impact of COMT gene variants on dopamine regulation and phenotypic traits of ASD patients. Behav. Brain Res. 2020;378:112272. doi: 10.1016/j.bbr.2019.112272. PubMed DOI
Frye R.E., DeLatorre R., Taylor H.B., Slattery J., Melnyk S., Chowdhury N., James S.J. Metabolic effects of sapropterin treatment in autism spectrum disorder: A preliminary study. Transl. Psychiatry. 2013;3:e237. doi: 10.1038/tp.2013.14. PubMed DOI PMC
Naviaux R.K. Antipurinergic therapy for autism-An in-depth review. Mitochondrion. 2018;43:1–15. doi: 10.1016/j.mito.2017.12.007. PubMed DOI
Naviaux J.C., Wang L., Li K., Bright A., Alaynick W.A., Williams K.R., Powell S.B., Naviaux R.K. Antipurinergic therapy corrects the autism-like features in the Fragile X (Fmr1 knockout) mouse model. Mol. Autism. 2015;6:1. doi: 10.1186/2040-2392-6-1. PubMed DOI PMC
Naviaux J.C., Schuchbauer M.A., Li K., Wang L., Risbrough V.B., Powell S.B., Naviaux R.K. Reversal of autism-like behaviors and metabolism in adult mice with single-dose antipurinergic therapy. Transl. Psychiatry. 2014;4:e400. doi: 10.1038/tp.2014.33. PubMed DOI PMC
Howsmon D.P., Kruger U., Melnyk S., James S.J., Hahn J. Classification and adaptive behavior prediction of children with autism spectrum disorder based upon multivariate data analysis of markers of oxidative stress and DNA methylation. PLoS Comput. Biol. 2017;13:e1005385. doi: 10.1371/journal.pcbi.1005385. PubMed DOI PMC
Li G., Lee O., Rabitz H. High efficiency classification of children with autism spectrum disorder. PLoS ONE. 2018;13:e0192867. doi: 10.1371/journal.pone.0192867. PubMed DOI PMC
Hollowood K., Melnyk S., Pavliv O., Evans T., Sides A., Schmidt R.J., Hertz-Picciotto I., Elms W., Guerrero E., Kruger U., et al. Maternal metabolic profile predicts high or low risk of an autism pregnancy outcome. Res. Autism Spectr. Disord. 2018;56:72–82. doi: 10.1016/j.rasd.2018.09.003. PubMed DOI PMC
Vargason T., Kruger U., Roth E., Delhey L.M., Tippett M., Rose S., Bennuri S.C., Slattery J.C., Melnyk S., James S.J., et al. Comparison of Three Clinical Trial Treatments for Autism Spectrum Disorder Through Multivariate Analysis of Changes in Metabolic Profiles and Adaptive Behavior. Front. Cell. Neurosci. 2018;12:503. doi: 10.3389/fncel.2018.00503. PubMed DOI PMC
Vargason T., Howsmon D.P., Melnyk S., James S.J., Hahn J. Mathematical modeling of the methionine cycle and transsulfuration pathway in individuals with autism spectrum disorder. J. Theor. Biol. 2017;416:28–37. doi: 10.1016/j.jtbi.2016.12.021. PubMed DOI PMC
Raman K., Chandra N. Flux balance analysis of biological systems: Applications and challenges. Brief. Bioinform. 2009;10:435–449. doi: 10.1093/bib/bbp011. PubMed DOI
Edwards J.S., Covert M., Palsson B. Metabolic modelling of microbes: The flux-balance approach. Environ. Microbiol. 2002;4:133–140. doi: 10.1046/j.1462-2920.2002.00282.x. PubMed DOI
Lee J.M., Gianchandani E.P., Papin J.A. Flux balance analysis in the era of metabolomics. Brief. Bioinform. 2006;7:140–150. doi: 10.1093/bib/bbl007. PubMed DOI
Drozdov-Tikhomirov L.N., Scurida G.I., Davidov A.V., Alexandrov A.A., Zvyagilskaya R.A. Mathematical modeling of living cell metabolism using the method of steady-state stoichiometric flux balance. J. Bioinform. Comput. Biol. 2006;4:865–885. doi: 10.1142/S0219720006002247. PubMed DOI
Sahoo S., Franzson L., Jonsson J.J., Thiele I. A compendium of inborn errors of metabolism mapped onto the human metabolic network. Mol. Biosyst. 2012;8:2545–2558. doi: 10.1039/c2mb25075f. PubMed DOI
Karlstädt A., Fliegner D., Kararigas G., Ruderisch H.S., Regitz-Zagrosek V., Holzhütter H.G. CardioNet: A human metabolic network suited for the study of cardiomyocyte metabolism. BMC Syst. Biol. 2012;6:114. doi: 10.1186/1752-0509-6-114. PubMed DOI PMC
Gudmundsson S., Thiele I. Computationally efficient flux variability analysis. BMC Bioinform. 2010;11:489. doi: 10.1186/1471-2105-11-489. PubMed DOI PMC
Massaiu I., Pasotti L., Sonnenschein N., Rama E., Cavaletti M., Magni P., Calvio C., Herrgård M.J. Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains. Microb. Cell Fact. 2019;18:3. doi: 10.1186/s12934-018-1052-2. PubMed DOI PMC
Krsička D., Geryk J., Vlčková M., Havlovicová M., Macek M., Pourová R. Identification of likely associations between cerebral folate deficiency and complex genetic- and metabolic pathogenesis of autism spectrum disorders by utilization of a pilot interaction modeling approach. Autism Res. 2017;10:1424–1435. doi: 10.1002/aur.1780. PubMed DOI
Swainston N., Smallbone K., Hefzi H., Dobson P.D., Brewer J., Hanscho M., Zielinski D.C., Ang K.S., Gardiner N.J., Gutierrez J.M., et al. Recon 2.2: From reconstruction to model of human metabolism. Metabolomics. 2016;12:109. doi: 10.1007/s11306-016-1051-4. PubMed DOI PMC
Smart A.G., Amaral L.A.N., Ottino J.M. Cascading failure and robustness in metabolic networks. Proc. Natl. Acad. Sci. USA. 2008;105:13223–13228. doi: 10.1073/pnas.0803571105. PubMed DOI PMC
Zikanova M., Skopova V., Hnizda A., Krijt J., Kmoch S. Biochemical and structural analysis of 14 mutant ADSL enzyme complexes and correlation to phenotypic heterogeneity of adenylosuccinate lyase deficiency. Hum. Mutat. 2010;31:445–455. doi: 10.1002/humu.21212. PubMed DOI
Marie S., Heron B., Bitoun P., Timmerman T., Van Den Berghe G., Vincent M.F. AICA-ribosiduria: A novel, neurologically devastating inborn error of purine biosynthesis caused by mutation of ATIC. Am. J. Hum. Genet. 2004;74:1276–1281. doi: 10.1086/421475. PubMed DOI PMC
Blau N., Ichinose H., Nagatsu T., Heizmann C.W., Zacchello F., Burlina A.B. A missense mutation in a patient with guanosine triphosphate cyclohydrolase I deficiency missed in the newborn screening program. J. Pediatr. 1995;126:401–405. doi: 10.1016/S0022-3476(95)70458-2. PubMed DOI
Chien Y.H., Chiang S.C., Huang A., Lin J.M., Chiu Y.N., Chou S.P., Chu S.Y., Wang T.R., Hwu W.L. Treatment and outcome of Taiwanese patients with 6-pyruvoyltetrahydropterin synthase gene mutations. J. Inherit. Metab. Dis. 2001;24:815–823. doi: 10.1023/A:1013984022994. PubMed DOI
Verbeek M.M., Willemsen M.A.A.P., Wevers R.A., Lagerwerf A.J., Abeling N.G.G.M., Blau N., Thöny B., Vargiami E., Zafeiriou D.I. Two Greek siblings with sepiapterin reductase deficiency. Mol. Genet. Metab. 2008;94:403–409. doi: 10.1016/j.ymgme.2008.04.003. PubMed DOI
Keil K.P., Lein P.J. DNA methylation: A mechanism linking environmental chemical exposures to risk of autism spectrum disorders? Environ. Epigenetics. 2016;2:dvv012. doi: 10.1093/eep/dvv012. PubMed DOI PMC
Melnyk S., Fuchs G.J., Schulz E., Lopez M., Kahler S.G., Fussell J.J., Bellando J., Pavliv O., Rose S., Seidel L., et al. Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism. J. Autism Dev. Disord. 2012;42:367–377. doi: 10.1007/s10803-011-1260-7. PubMed DOI PMC
Jurecka A., Zikanova M., Kmoch S., Tylki-Szymańska A. Adenylosuccinate lyase deficiency. J. Inherit. Metab. Dis. 2015;38:231–242. doi: 10.1007/s10545-014-9755-y. PubMed DOI PMC
Chung B.K.S., Lee D.Y. Flux-sum analysis: A metabolite-centric approach for understanding the metabolic network. BMC Syst. Biol. 2009;3:117. doi: 10.1186/1752-0509-3-117. PubMed DOI PMC
Maddocks O.D.K., Labuschagne C.F., Adams P.D., Vousden K.H. Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells. Mol. Cell. 2016;61:210–221. doi: 10.1016/j.molcel.2015.12.014. PubMed DOI PMC
Schellenberger J., Que R., Fleming R.M.T., Thiele I., Orth J.D., Feist A.M., Zielinski D.C., Bordbar A., Lewis N.E., Rahmanian S., et al. Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox v2.0. Nat. Protoc. 2011;6:1290–1307. doi: 10.1038/nprot.2011.308. PubMed DOI PMC
Krsička D., Vlčková M., Havlovicová M. The Significance of Cerebral Folate Deficiency for the Development and Treatment of Autism Spectrum Disorders. Int. J. Biomed. Healthc. 2014;2
Schultz A., Qutub A.A. Reconstruction of Tissue-Specific Metabolic Networks Using CORDA. PLoS Comput. Biol. 2016;12:e1004808. doi: 10.1371/journal.pcbi.1004808. PubMed DOI PMC