Purine de novo purine synthesis involves 10 reactions catalysed by six enzymes, including phosphoribosylformyglycinamidine synthase (PFAS). To date, genetic defects of three of these enzymes, namely ATIC, ADSL and PAICS, have been characterised in humans. Here, we report for the first time two individuals with PFAS deficiency. Probands were identified through metabolic and genetic screening of neurologically impaired individuals. The pathogenicity of the variants was established by structural and functional studies. Probands C1 and C2 presented with prematurity, short stature, recurrent seizures and mild neurological impairment. C1 had elevated urinary levels of formylglycineamide riboside (FGAr) and bi-allelic PFAS variants encoding the NP_036525.1:p.Arg811Trp substitution and the NP_036525.1:p.Glu228_Ser230 in-frame deletion. C2 is a 20-year-old female with a homozygous NP_036525.1:p.Asn264Lys substitution. These amino acid changes are predicted to affect the structural stability of PFAS. Accordingly, C1 skin fibroblasts showed decreased PFAS content and activity, with impaired purinosome formation that was restored by transfection with pTagBFP_PFAS_wt. The enzymatic activities of the corresponding recombinant mutant PFAS proteins were also reduced, and none of them, after transfection, corrected the elevated FGAR/r levels in PFAS-deficient HeLa cells. While genetic defects in purine de novo synthesis are typically considered in patients with severe neurological impairment, these disorders, especially PFAS deficiency, should also be considered in milder phenotypes.
- MeSH
- Humans MeSH
- Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor * genetics deficiency metabolism MeSH
- Young Adult MeSH
- Mutation MeSH
- Purine-Pyrimidine Metabolism, Inborn Errors * genetics MeSH
- Child, Preschool MeSH
- Purines * biosynthesis MeSH
- Check Tag
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
Cytotoxicity of de novo purine synthesis (DNPS) metabolites is critical to the pathogenesis of three known and one putative autosomal recessive disorder affecting DNPS. These rare disorders are caused by biallelic mutations in the DNPS genes phosphoribosylformylglycineamidine synthase (PFAS), phosphoribosylaminoimidazolecarboxylase/phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS), adenylosuccinate lyase (ADSL), and aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) and are clinically characterized by developmental abnormalities, psychomotor retardation, and nonspecific neurological impairment. At a biochemical level, loss of function of specific mutated enzymes results in elevated levels of DNPS ribosides in body fluids. The main pathogenic effect is attributed to the accumulation of DNPS ribosides, which are postulated to be toxic to the organism. Therefore, we decided to characterize the uptake and flux of several DNPS metabolites in HeLa cells and the impact of DNPS metabolites to viability of cancer cell lines and primary skin fibroblasts. We treated cells with DNPS metabolites and followed their flux in purine synthesis and degradation. In this study, we show for the first time the transport of formylglycinamide ribotide (FGAR), aminoimidazole ribotide (AIR), succinylaminoimidazolecarboxamide ribotide (SAICAR), and aminoimidazolecarboxamide ribotide (AICAR) into cells and their flux in DNPS and the degradation pathway. We found diminished cell viability mostly in the presence of FGAR and AIR. Our results suggest that direct cellular toxicity of DNPS metabolites may not be the primary pathogenetic mechanism in these disorders.
- Publication type
- Journal Article MeSH
Three genetically determined enzyme defects of purine de novo synthesis (PDNS) have been identified so far in humans: adenylosuccinate lyase (ADSL) deficiency, 5-amino-4-imidazole carboxamide-ribosiduria (AICA-ribosiduria), and deficiency in bifunctional enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS). Clinical signs of these defects are mainly neurological, such as seizures, psychomotor retardation, epilepsy, autistic features, etc. This work aims to describe the metabolic changes of CRISPR-Cas9 genome-edited HeLa cells deficient in the individual steps of PDNS to better understand known and potential defects of the pathway in humans. High-performance liquid chromatography coupled with mass spectrometry was used for both targeted and untargeted metabolomic analyses. The statistically significant features from the untargeted study were identified by fragmentation analysis. Data from the targeted analysis were processed in Cytoscape software to visualize the most affected metabolic pathways. Statistical significance of PDNS intermediates preceding deficient enzymes was the highest (p-values 10 × 10-7-10 × 10-15) in comparison with the metabolites from other pathways (p-values of up to 10 × 10-7). Disturbed PDNS resulted in an altered pool of adenine and guanine nucleotides. However, the adenylate energy charge was not different from controls. Different profiles of acylcarnitines observed among deficient cell lines might be associated with a specific enzyme deficiency rather than global changes related to the PDNS pathway. Changes detected in one-carbon metabolism might reduce the methylation activity of the deficient cells, thus affecting the modification state of DNA, RNA, and proteins.
- Publication type
- Journal Article MeSH
Adenylosuccinate lyase (ADSL) functions in de novo purine synthesis (DNPS) and the purine nucleotide cycle. ADSL deficiency (ADSLD) causes numerous neurodevelopmental pathologies, including microcephaly and autism spectrum disorder. ADSLD patients have normal serum purine nucleotide levels but exhibit accumulation of dephosphorylated ADSL substrates, S-Ado, and SAICAr, the latter being implicated in neurotoxic effects through unknown mechanisms. We examined the phenotypic effects of ADSL depletion in human cells and their relation to phenotypic outcomes. Using specific interventions to compensate for reduced purine levels or modulate SAICAr accumulation, we found that diminished AMP levels resulted in increased DNA damage signaling and cell cycle delays, while primary ciliogenesis was impaired specifically by loss of ADSL or administration of SAICAr. ADSL-deficient chicken and zebrafish embryos displayed impaired neurogenesis and microcephaly. Neuroprogenitor attrition in zebrafish embryos was rescued by pharmacological inhibition of DNPS, but not increased nucleotide concentration. Zebrafish also displayed phenotypes commonly linked to ciliopathies. Our results suggest that both reduced purine levels and impaired DNPS contribute to neurodevelopmental pathology in ADSLD and that defective ciliogenesis may influence the ADSLD phenotypic spectrum.
- MeSH
- Adenylosuccinate Lyase deficiency metabolism MeSH
- Aminoimidazole Carboxamide analogs & derivatives metabolism MeSH
- Autistic Disorder metabolism MeSH
- Cell Line MeSH
- Cell Cycle MeSH
- Ciliopathies metabolism MeSH
- Zebrafish metabolism MeSH
- Phenotype MeSH
- Phosphoproteins metabolism MeSH
- Chickens metabolism MeSH
- Humans MeSH
- Microcephaly metabolism MeSH
- Neurogenesis * MeSH
- Autism Spectrum Disorder metabolism MeSH
- Purine-Pyrimidine Metabolism, Inborn Errors metabolism MeSH
- DNA Damage MeSH
- Microtubule-Associated Proteins metabolism MeSH
- Cell Cycle Proteins metabolism MeSH
- Purines metabolism MeSH
- Ribonucleotides metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Intramural MeSH
Folate deficiency in the critical developmental period has been repeatedly associated with an increased risk of Autism spectrum disorders (ASD), but the key pathophysiological mechanism has not yet been identified. In this work, we focused on identifying genes whose defect has similar consequences to folate depletion in the metabolic network. Within the Flux Balance Analysis (FBA) framework, we developed a method of blocked metabolites that allowed us to define the metabolic consequences of various gene defects and folate depletion. We identified six genes (GART, PFAS, PPAT, PAICS, ATIC, and ADSL) whose blocking results in nearly the same effect in the metabolic network as folate depletion. All of these genes form the purine biosynthetic pathway. We found that, just like folate depletion, the blockade of any of the six genes mentioned above results in a blockage of purine metabolism. We hypothesize that this can lead to decreased adenosine triphosphate (ATP) and subsequently, an S-adenosyl methionine (SAM) pool in neurons in the case of rapid cell division. Based on our results, we consider the methylation defect to be a potential cause of ASD, due to the depletion of purine, and consequently S-adenosyl methionine (SAM), biosynthesis.
- Publication type
- Journal Article MeSH
Protein hydroxylation affects protein stability, activity, and interactome, therefore contributing to various diseases including cancers. However, the transiency of the hydroxylation reaction hinders the identification of hydroxylase substrates. By developing an enzyme-substrate trapping strategy coupled with TAP-TAG or orthogonal GST- purification followed by mass spectrometry, we identify adenylosuccinate lyase (ADSL) as an EglN2 hydroxylase substrate in triple negative breast cancer (TNBC). ADSL expression is higher in TNBC than other breast cancer subtypes or normal breast tissues. ADSL knockout impairs TNBC cell proliferation and invasiveness in vitro and in vivo. An integrated transcriptomics and metabolomics analysis reveals that ADSL activates the oncogenic cMYC pathway by regulating cMYC protein level via a mechanism requiring ADSL proline 24 hydroxylation. Hydroxylation-proficient ADSL, by affecting adenosine levels, represses the expression of the long non-coding RNA MIR22HG, thus upregulating cMYC protein level. Our findings highlight the role of ADSL hydroxylation in controlling cMYC and TNBC tumorigenesis.
- MeSH
- Adenosine metabolism MeSH
- Adenylosuccinate Lyase genetics metabolism MeSH
- Carcinogenesis MeSH
- Humans MeSH
- MicroRNAs genetics metabolism MeSH
- Cell Line, Tumor MeSH
- Cell Proliferation MeSH
- Hypoxia-Inducible Factor-Proline Dioxygenases genetics metabolism MeSH
- Proto-Oncogene Proteins c-myc genetics metabolism MeSH
- Triple Negative Breast Neoplasms enzymology genetics physiopathology MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Adenylosuccinate lyase (ADSL) catalyzes two steps in de novo purine synthesis (DNPS). Mutations in ADSL can result in inborn errors of metabolism characterized by developmental delay and disorder phenotypes, with no effective treatment options. Recently, SAICAR, a metabolic substrate of ADSL, has been found to have alternative roles in the cell, complicating the role of ADSL. crADSL, a CRISPR KO of ADSL in HeLa cells, was constructed to investigate DNPS and ADSL in a human cell line. Here we employ this cell line in an RNA-seq analysis to initially investigate the effect of DNPS and ADSL deficiency on the transcriptome as a first step in establishing a cellular model of ADSL deficiency. We report transcriptome changes in genes relevant to development, vascular development, muscle, and cancer biology, which provide interesting avenues for future research.
- Publication type
- Journal Article MeSH
OBJECTIVES: Stable isotope dilution coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) is the sensitive method for screening for various inherited metabolic disorders using dried blood spots (DBSs). We present a method for LC-MS/MS determination of succinyladenosine (SAdo) and succinylaminoimidazole carboxamide riboside (SAICAr), biomarkers for adenylosuccinate lyase deficiency (dADSL), in DBS. DESIGN AND METHODS: SAICAr and SAdo were separated on a Symmetry-C18 column and detected using positive electrospray ionisation in selected reaction monitoring mode. The quantification was performed using the isotopically labelled internal standards SAdo-(13)C4 and SAICAr-(13)C4, which were prepared via ADSL-catalysed reactions of fumarate-(13)C4 with adenosine monophosphate and aminoimidazole carboxamide ribotide, respectively, and subsequent alkaline phosphatase-catalysed dephosphorylation of the resulting products. RESULTS: The detection of SAICAr and SAdo in DBS was linear over the range of 0-25μmol/L. The respective intra-assay and inter-assay imprecision values were less than 10.7% and 15.2% for SAICAr and 4.7% and 5.7% for SAdo. The recoveries from DBS spiked with different concentrations of SAICAr and SAdo were between 94% and 117%. The concentrations of SAICAr and SAdo were higher in the archived DBS from dADSL patients (SAICAr, 0.03-4.7μmol/L; SAdo, 1.5-21.3μmol/L; n=5) compared to those of the control subjects (SAICAr, 0-0.026μmol/L; SAdo, 0.06-0.14μmol/L; n=31), even after DBSs from dADSL patients were stored for 2-23years. CONCLUSIONS: We developed and validated a method of succinylpurine analysis in DBS that improves selective screening for dADSL in the paediatric population and may be used for retrospective diagnosis to aid the genetic counselling of affected families.
- MeSH
- Adenosine analogs & derivatives blood MeSH
- Adenylosuccinate Lyase blood deficiency MeSH
- Aminoimidazole Carboxamide analogs & derivatives blood MeSH
- Chromatography, Liquid MeSH
- Carbon Isotopes MeSH
- Humans MeSH
- Limit of Detection MeSH
- Infant, Newborn MeSH
- Purine-Pyrimidine Metabolism, Inborn Errors blood diagnosis MeSH
- Reference Standards MeSH
- Ribonucleosides blood MeSH
- Tandem Mass Spectrometry methods MeSH
- Dried Blood Spot Testing methods MeSH
- Check Tag
- Humans MeSH
- Infant, Newborn MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
... automatický\" AT-příkazy Synchronní přenos ISDN Basic Rate Základní pásmo a telefonní (hlasové) pásmo ADSL ...
5., aktualiz. vyd. 488 s. : il. ; 23 cm
Chcete si konečně udělat jasno a pořádek ve všech důležitých síťových protokolech? Poznejte, jak počítače komunikují na té nejnižší úrovni – od fyzické vrstvy drátů a konektorů přes směrování až k aplikovaným protokolům a zabezpečení. Publikace zohledňuje nejen nové trendy v oblasti protokolů, ale i hojné dotazy a komentáře čtenářů předchozích dílů, a to včetně skladby jednotlivých kapitol. Výukovou i referenční příručku od odborníků ocení nejen ostřílení síťoví administrátoři, ale také začátečníci, kteří by rádi pochopili základní filozofii protokolů TCP/IP a systému DNS.
- Conspectus
- Počítačové sítě
- NML Publication type
- příručky
The purinosome is a multienzyme complex composed by the enzymes active in de novo purine synthesis (DNPS) that cells transiently assemble in their cytosol upon depletion or increased demand of purines. The process of purinosome formation has thus far been demonstrated and studied only in human epithelial cervical cancer cells (HeLa) and human liver carcinoma cells (C3A) transiently expressing recombinant fluorescently labeled DNPS proteins. Using parallel immunolabeling of various DNPS enzymes and confocal fluorescent microscopy, we proved purinosome assembly in HeLa, human hepatocellular liver carcinoma cell line (HepG2), sarcoma osteogenic cells (Saos-2), human embryonic kidney cells (HEK293), human skin fibroblasts (SF) and primary human keratinocytes (KC) cultured in purine-depleted media. Using the identical approach, we proved in cultured skin fibroblasts from patients with AICA-ribosiduria and ADSL deficiency that various mutations of ATIC and ADSL destabilize to various degrees of purinosome assembly and found that the ability to form purinosomes correlates with clinical phenotypes of individual ADSL patients. Our results thus shown that the assembly of functional purinosomes is fully dependent on the presence of structurally unaffected ATIC and ADSL complexes and presumably also on the presence of all the other DNPS proteins. The results also corroborate the hypothesis that the phenotypic severity of ADSL deficiency is mainly determined by structural stability and residual catalytic capacity of the corresponding mutant ADSL protein complexes, as this is prerequisite for the formation and stability of the purinosome and at least partial channeling of succinylaminoimidazolecarboxamide riboside-ADSL enzyme substrates-through the DNPS pathway.
- MeSH
- Adenylosuccinate Lyase deficiency genetics MeSH
- Nucleotide Deaminases analysis genetics MeSH
- Fibroblasts enzymology MeSH
- HeLa Cells MeSH
- Hydroxymethyl and Formyl Transferases analysis genetics MeSH
- Keratinocytes enzymology MeSH
- Cells, Cultured MeSH
- Skin cytology MeSH
- Humans MeSH
- Multienzyme Complexes analysis genetics MeSH
- Mutation MeSH
- Cell Line, Tumor MeSH
- Purine-Pyrimidine Metabolism, Inborn Errors enzymology genetics MeSH
- Purines metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH