Study of the Sound Absorption Properties of 3D-Printed Open-Porous ABS Material Structures

. 2020 May 06 ; 12 (5) : . [epub] 20200506

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32384668

Grantová podpora
KEGA 007TUKE-4/2018; APVV-19-0550 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
CZ.02.1.01/0.0/0.0/16_019/0000867 European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems within the Operational Programme Research, Development and Education

Noise pollution is a negative factor that affects our environment. It is, therefore, necessary to take appropriate measures to minimize it. This article deals with the sound absorption properties of open-porous Acrylonitrile Butadiene Styrene (ABS) material structures that were produced using 3D printing technology. The material's ability to damp sound was evaluated based on the normal incidence sound absorption coefficient and the noise reduction coefficient, which were experimentally measured by the transfer function method using an acoustic impedance tube. The different factors that affect the sound absorption behavior of the studied ABS specimens are presented in this work. In this study, it was discovered that the sound absorption properties of the tested ABS samples are significantly influenced by many factors, namely by the type of 3D-printed, open-porous material structure, the excitation frequency, the sample thickness, and the air gap size behind the sound-absorbing materials inside the acoustic impedance tube.

Zobrazit více v PubMed

Yang W.D., Li Y. Sound absorption performance of natural fibers and their composites. Sci. China Technol. Sci. 2012;55:2278–2283. doi: 10.1007/s11431-012-4943-1. DOI

Gan W.S., Kuo S.M. An integrated audio and active noise control headsets. IEEE Trans. Consum. Electron. 2002;48:242–247. doi: 10.1109/TCE.2002.1010128. DOI

Luo L., Sun J.W., Huang B.Y. A novel feedback active noise control for broadband chaotic noise and random noise. Appl. Acoust. 2017;116:229–237. doi: 10.1016/j.apacoust.2016.09.029. DOI

Chang C.Y. Simple Approaches to Improve the Performance of Noise Cancellation. JVC/J. Vib. Control. 2009;15:1875–1883. doi: 10.1177/1077546309105336. DOI

Kuo S.M., Mitra S., Gan W.S. Active Noise control System for Headphone Applications. IEEE Trans. Control Syst. Technol. 2006;14:331–335. doi: 10.1109/TCST.2005.863667. DOI

Chang C.Y. Efficient active noise controller using a fixed-point DSP. Signal Process. 2009;89:843–850. doi: 10.1016/j.sigpro.2008.10.025. DOI

Utsuno H., Tanaka T., Fujikawa T., Seibert A.F. Transfer-function method for measuring characteristic impedance and propagation constant of porous materials. J. Acoust. Soc. Am. 1989;86:637–643. doi: 10.1121/1.398241. DOI

Fakrul M., Che S., Putra A., Kassim D.H., Alkahari M.R. 3D-printed lattice structure as sound absorber. Proc. Mech. Eng. Res. Day. 2019;2019:287–288.

Sim S., Kwon O.M., Ahn K.H., Lee H.R., Kang Y.J., Cho E.B. Preparation of polycarbonate/poly(acrylonitrile-butadiene-styrene)/mesoporous silica nanocomposite films and its rheological, mechanical, and sound absorption properties. J. Appl. Polym. Sci. 2018;135:1–14. doi: 10.1002/app.45777. DOI

Wang Y., Zhang L., Daynes S., Zhang H., Feih S., Wang M.Y. Design of graded lattice structure with optimized mesostructures for additive manufacturing. Mater. Des. 2018;142:114–123. doi: 10.1016/j.matdes.2018.01.011. DOI

Cao L., Fu Q., Si Y., Ding B., Yu J. Porous materials for sound absorption. Compos. Commun. 2018;10:25–35. doi: 10.1016/j.coco.2018.05.001. DOI

Gulia P., Gupta A. Sound attenuation in triple panel using locally resonant sonic crystal and porous material. Appl. Acoust. 2019;156:113–119. doi: 10.1016/j.apacoust.2019.07.012. DOI

Yoon W.U., Park J.H., Lee J.S., Kim Y.Y. Topology optimization design for total sound absorption in porous media. Comput. Methods Appl. Mech. Eng. 2020;360:112723. doi: 10.1016/j.cma.2019.112723. DOI

Rosli N.A., Hasan R., Alkahari M.R., Tokoroyama T. Effect of process parameters on the geometrical quality of ABS polymer lattice structure. Proc. SAKURA Symp. Mech. Sci. Eng. 2017;2017:3–5.

Kim B.S., Kwon S., Jeong S., Park J. Semi-active control of smart porous structure for sound absorption enhancement. J. Intell. Mater. Syst. Struct. 2019;30:2575–2580. doi: 10.1177/1045389X19862371. DOI

Jimbo K., Tateno T. Design of isotropic-tensile-strength lattice structure fabricated by AMAMによる製作を想定した引張強度に関して等方性を有する格子構造の設計. Trans. JSME. 2019;85:18-00098. (In Japanese)

Salomons E.M., Lohman W.J.A., Zhou H. Simulation of sound waves using the lattice Boltzmann method for fluid flow: Benchmark cases for outdoor sound propagation. PLoS ONE. 2016;11:e0147206. doi: 10.1371/journal.pone.0147206. PubMed DOI PMC

Zvolensky P., Grencik J., Kasiar L., Stuchly V. Simulation of sound transmission through the porous material, determining the parameters of acoustic absorption and sound reduction. MATEC Web Conf. 2018;157:2058. doi: 10.1051/matecconf/201815702058. DOI

Chen M., Jiang H., Zhang H., Li D., Wang Y. Design of an acoustic superlens using single-phase metamaterials with a star-shaped lattice structure. Sci. Rep. 2018;8:2–9. doi: 10.1038/s41598-018-19374-2. PubMed DOI PMC

Stansbury J.W., Idacavage M.J. 3D printing with polymers: Challenges among expanding options and opportunities. Dent. Mater. 2016;32:54. doi: 10.1016/j.dental.2015.09.018. PubMed DOI

Bourell D., Pierre J., Leu M., Levy G., Rosen D., Beese A.M., Clare A. Materials for additive manufacturing. CIRP Ann. 2017;66:659–681. doi: 10.1016/j.cirp.2017.05.009. DOI

Pantazopoulos G.A. A Short Review on Fracture Mechanisms of Mechanical Components Operated under Industrial Process Conditions: Fractographic Analysis and Selected Prevention Strategies. Metals. 2019;9:148. doi: 10.3390/met9020148. DOI

Brenne F., Niendorf T., Maier H.J. Additively manufactured cellular structures: Impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load. J. Mater. Process. Technol. 2013;213:1558–1564. doi: 10.1016/j.jmatprotec.2013.03.013. DOI

Koizumi T., Tsujiuchi N., Adachi A. The development of sound absorbing materials using natural bamboo fibers. High Perform. Struct. Mater. 2002;4:157–166.

Borlea A., Rusu T., Ionescu S., Cretu M., Innescu A. Acoustical materials—Sound absoring materials made of pine sawdust. Rom. J. Acoust. Vib. 2011;8:95–98.

Tiwari W., Shukla A., Bose A. Acoustic properties of cenosphere reinforced cement and asphalt concrete. Appl. Acoust. 2004;65:263–275. doi: 10.1016/j.apacoust.2003.09.002. DOI

Buratti C. Indoor noise reduction index with an open window (Part II) Appl. Acoust. 2006;67:383–401. doi: 10.1016/j.apacoust.2005.07.006. DOI

International Organization for Standardization . ISO 10534-2, Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes-Part 2: Transfer-Function Method. CEN, European Committee for Standardization; Brussels, Belgium: 1998. pp. 10534–10542. ISO/TC 43/SC2 Building Acoustics.

Han F.S., Seiffert G., Zhao Y.Y., Gibbs B. Acoustic absorption behaviour of an open-celled alluminium foam. J. Phys. D Appl. Phys. 2003;36:294–302. doi: 10.1088/0022-3727/36/3/312. DOI

Cheerier O., Pommier-Budinger V., Simon F. Panel of resonators with variable resonance frequency for noise control. Appl. Acoust. 2012;73:781–790. doi: 10.1016/j.apacoust.2012.02.011. DOI

Doutres O., Atalla N., Dong K. Effect of the microstructure closed pore content on the acoustic behavior of polyurethane foams. J. Appl. Phys. 2011;110:064901. doi: 10.1063/1.3631021. DOI

Zhai W., Yu X., Song X., Ang L.Y.L., Cui F., Lee H.P., Li T. Microstructure-based experimental and numerical investigations on the sound absorption property of open-cell metallic foams manufactured by a template replication technique. Mater. Des. 2018;137:108–116. doi: 10.1016/j.matdes.2017.10.016. DOI

Baich L., Monogharan G., Marie H. Study of infill print design on production cost-time of 3D printed ABS parts. Int. J. Rapid Manuf. 2015;5:308–319. doi: 10.1504/IJRAPIDM.2015.074809. DOI

Derossi A., Caporizzi R., Azzollini D., Severini C. Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. J. Food Eng. 2018;220:65–75. doi: 10.1016/j.jfoodeng.2017.05.015. DOI

Everest F.A. Master Handbook of Acoustics. 4th ed. McGraw-Hill; New York, NY, USA: 2001. Absorption of sound; pp. 179–233.

Lim Z.Y., Putra A., Nor M.J.M., Yaakob M.Y. Sound absorption performance of natural kenaf fibres. Appl. Acoust. 2018;130:107–114. doi: 10.1016/j.apacoust.2017.09.012. DOI

Putra A., Or K.H., Selamat M.Z., Nor M.J.M., Hassan M.H., Prasetiyo I. Sound absorption of extracted pineapple-leaf fibres. Appl. Acoust. 2018;136:9–15. doi: 10.1016/j.apacoust.2018.01.029. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Polymer Processing and Surfaces

. 2021 Feb 11 ; 13 (4) : . [epub] 20210211

Effect of the Pore Shape and Size of 3D-Printed Open-Porous ABS Materials on Sound Absorption Performance

. 2020 Oct 09 ; 13 (20) : . [epub] 20201009

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...