• This record comes from PubMed

Effect of the Pore Shape and Size of 3D-Printed Open-Porous ABS Materials on Sound Absorption Performance

. 2020 Oct 09 ; 13 (20) : . [epub] 20201009

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
APVV-19-0550 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
KEGA 007TUKE-4/2018 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
CZ.02.1.01/0.0/0.0/16_019/0000867 The European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems

Noise has a negative impact on our environment and human health. For this reason, it is necessary to eliminate excessive noise levels. This paper is focused on the study of the sound absorption properties of materials with open-porous structures, which were made of acrylonitrile butadiene styrene (ABS) material using additive technology. Four types of structures (Cartesian, octagonal, rhomboid, and Starlit) were evaluated in this work, and every structure was prepared in three different volume ratios of the porosity and three different thicknesses. The sound absorption properties of the investigated ABS specimens were examined utilizing the normal incidence sound absorption and noise reduction coefficients, which were experimentally determined by the transfer function method using a two-microphone acoustic impedance tube. This work deals with various factors that influence the sound absorption performance of four different types of investigated ABS material's structures. It was found, in this study, that the sound absorption performance of the investigated ABS specimens is strongly affected by different factors, specifically by the structure geometry, material volume ratio, excitation frequency of an acoustic wave, material´s thickness, and air space size behind the tested sound-absorbing materials.

See more in PubMed

Amares S., Sujatmika E., Hong T.W., Durairaj R., Hamid H.S.H.B. A Review: Characteristics of Noise Absorption Material. J. Phys. Conf. Ser. 2017;908:012005. doi: 10.1088/1742-6596/908/1/012005. DOI

Lee B.H., Cha S.W., Kang Y.J. Study of Sound Absorption and Transmission Characteristics for MCPs Foaming Rate by Batch Process. Proc. KSPE. 2004:338–342.

Lee W.K., Park B.H., Yoon H.J., Kim J.S., Maeng J.Y. The Optimization of Interior Acoustic Package of Vehicle Using the Sound Absorbing Materials. Korean Soc. Automot. Eng. 2004;2:1212–1217.

Tang S.K. Improving Traffic Noise Transmission Loss of Plenum Windows by Using Sound Scatterer Arrays. J. Acoust. Soc. Am. 2018;143:1715. doi: 10.1121/1.5035587. DOI

Yang M., Chen S., Fu C., Sheng P. Optimal Sound-Absorbing Structures. Mater. Horiz. 2017;4:673. doi: 10.1039/C7MH00129K. DOI

Allard J.F., Atalla N. Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials. 2nd ed. John Wiley & Sons; Chichester, UK: 2009.

Sun X., Jiang F., Wang J. Acoustic Properties of 316L Stainless Steel Lattice Structures Fabricated via Selective Laser Melting. Metals. 2020;10:111. doi: 10.3390/met10010111. DOI

Yoon W.U., Park J.H., Lee J.S., Kim Y.Y. Topology Optimization Design for Total Sound Absorption in Porous Media. Comput. Methods Appl. Mech. Eng. 2020;360:112723. doi: 10.1016/j.cma.2019.112723. DOI

Liu G.-S., Zhou Y., Liu M.-H., Yuan Y., Zou X.-Y., Cheng J.-C. Acoustic Waveguide with Virtual Soft Boundary Based on Metamaterials. Sci. Rep. 2020;10:981–987. doi: 10.1038/s41598-020-57986-9. PubMed DOI PMC

Assouar M.B., Senesi M., Oudich M., Ruzzene M., Hou Z. Broadband Plate-Type Acoustic Metamaterial for Low-Frequency Sound Attenuation. Appl. Phys. Lett. 2012;101:173505. doi: 10.1063/1.4764072. DOI

Mei J., Ma G., Yang M., Yang Z.Y., Wen W., Sheng P. Dark Acoustic Metamaterials as Super Absorbers for Low-Frequency Sound. Nat. Commun. 2012;3:756. doi: 10.1038/ncomms1758. PubMed DOI

Xin F., Ma X., Liu X., Zhang C. A Multiscale Theoretical Approach for the Sound Absorption of Slit-Perforated Double Porosity Materials. Compos. Struct. 2019;223:110919. doi: 10.1016/j.compstruct.2019.110919. DOI

Siano D., Viscardi M., Panza M.A. Automotive Materials: An Experimental Investigation of an Engine Bay Acoustic Performances. Energy Procedia. 2016;101:598–605. doi: 10.1016/j.egypro.2016.11.076. DOI

Vakhitova S.M., Shaehova I.F., Zharin E.I. IOP Conference Series: Materials Science and Engineering. IOP Publishing; Bristol, UK: 2016. Study of Vibro-Acoustic Properties of Composite Materials Based on Polyurethane Injection; p. 012030.

Cai X., Yang J., Hu G., Lu T. Sound Absorption by Acoustic Microlattice with Optimized Pore Configuration. J. Acoust. Soc. Am. 2018;144:EL138–EL143. doi: 10.1121/1.5051526. PubMed DOI

Deshmukh S., Ronge H., Ramamoorthy S. Design of Periodic Foam Structures for Acoustic Applications: Concept, Parametric Study and Experimental Validation. Mater. Des. 2019;175:107830. doi: 10.1016/j.matdes.2019.107830. DOI

Wang D.-W., Wen Z.-H., Glorieux C., Ma L. Sound Absorption of Face-Centered Cubic Sandwich Structure With Micro-Perforations. Mater. Des. 2020;186:108344. doi: 10.1016/j.matdes.2019.108344. DOI

Jiménez N., Romero-García V., Groby J.-P. Perfect Absorption of Sound by Rigidly-Backed Hight-Porous Materials. Acta Acust. Acust. 2018;104:396–409.

Liu J., Chen T., Zhang Y., Wen G., Qing Q., Wang H., Sedaghati R., Xie Y.M. On Sound Insulation of Pyramidal Lattice Sandwich Structure. Compos. Struct. 2019;208:385–394. doi: 10.1016/j.compstruct.2018.10.013. DOI

Pantazopoulos G. A Short Review on Fracture Mechanisms of Mechanical Components Operated under Industrial Process Conditions: Fractographic Analysis and Selected Prevention Strategies. Metals. 2019;9:148. doi: 10.3390/met9020148. DOI

Olny X., Boutin C. Acoustic Wave Propagation in Double Porosity Media. J. Acoust. Soc. Am. 2003;114:73–89. doi: 10.1121/1.1534607. PubMed DOI

Roh H.-S., Yoon S.W. Acoustic Diagnosis for Porous Medium With Circular Cylindrical Pores. J. Acoust. Soc. Am. 2004;115:1114–1124. doi: 10.1121/1.1645247. PubMed DOI

Lagarrigue C., Groby J.P., Tournat V., Dazel O., Umnova O.V. Absorption of Sound by Porous Layers with Embedded Periodic Arrays of Resonant Inclusions. J. Acoust. Soc. Am. 2013;134:4670–4680. doi: 10.1121/1.4824843. PubMed DOI

Groby J.-P., Lagarrigue C., Brouard B., Dazel O., Tournat V., Nennig B. Using Simple Shape Three-Dimensional Rigid Inclusions to Enhance Porous Layer Absorption. J. Acoust. Soc. Am. 2014;136:1139–1148. doi: 10.1121/1.4892760. PubMed DOI

Xu Y., Zhao W., Chen L., Chen H. Distribution Optimization for Acoustic Design of Porous Layer by the Boundary Element Method. Acoust. Aust. 2020;48:1–13. doi: 10.1007/s40857-020-00181-7. DOI

Boulvert J., Cavalieri T., Costa-Baptista J., Schwan L., Romero-García V., Gabard G., Fotsing E., Ross A., Mardjono J., Groby J.-P. Optimally Graded Porous Material for Broadband Perfect Absorption of Sound. J. Appl. Phys. 2019;126:175101. doi: 10.1063/1.5119715. DOI

Krödel S., Palermo A., Daraio C. Acoustic Properties of Porous Microlattices From Effective Medium to Scattering Dominated Regimes. J. Acoust. Soc. Am. 2018;144:319–329. doi: 10.1121/1.5046068. PubMed DOI

Gohari H.D., Zarastvand M., Talebitooti R. Acoustic Performance Prediction of a Multilayered Finite Cylinder Equipped with Porous Foam Media. J. Vib. Control. 2020;26:899–912. doi: 10.1177/1077546319890025. DOI

Jena D.P., Qiu X. Sound Transmission Loss of Porous Materials in Ducts With Embedded Periodic Scatterers. J. Acoust. Soc. Am. 2020;147:978–983. doi: 10.1121/10.0000650. PubMed DOI

Song B.H., Bolton J.S. A Transfer-Matrix Approach for Estimating the Characteristic Impedance and Wave Numbers of Limp and Rigid Porous Materials. J. Acoust. Soc. Am. 2000;107:1131–1152. doi: 10.1121/1.428404. PubMed DOI

Munjal M.L. Acoustics of Ducts and Mufflers. 2nd ed. John Wiley & Sons; New York, NY, USA: 2014.

Kang Y.J., Bolton J.S. A Finite Element Model for Sound Transmission Through Foam-Lined Double-Panel Structures. J. Acoust. Soc. Am. 1996;99:2755. doi: 10.1121/1.414856. DOI

Panneton R. Numerical Prediction of Sound Transmission Through Finite Multilayer Systems with Poroelastic Materials. J. Acoust. Soc. Am. 1996;100:346. doi: 10.1121/1.415956. DOI

Xie S., Yang S., Yang C., Wang D. Sound Absorption Performance of a Filled Honeycomb Composite Structure. Appl. Acoust. 2020;162:107202. doi: 10.1016/j.apacoust.2019.107202. DOI

Christensen J., Romero-García V., Pico R., Cebrecos A., De Abajo F.J.G., Mortensen N.A., Willatzen M., Sánchez-Morcillo V.J. Extraordinary Absorption of Sound in Porous Lamella-Crystals. Sci. Rep. 2014;4:1–5. doi: 10.1038/srep04674. PubMed DOI PMC

Liu Z., Zhan J., Fard M., Liu Z. Acoustic Properties of Multilayer Sound Absorbers With a 3d Printed Micro-Perforated Panel. Appl. Acoust. 2017;121:25–32. doi: 10.1016/j.apacoust.2017.01.032. DOI

Lee J.-C., Hong Y.-S., Nan R.-G., Jang M.-K., Lee C.S., Ahn S.-H., Kang Y.-J. Soundproofing Effect of Nano Particle Reinforced Polymer Composites. J. Mech. Sci. Technol. 2008;22:1468–1474. doi: 10.1007/s12206-008-0419-4. DOI

MacGillivray I. Acoustic Performance of Periodic Composite Materials; Proceedings of the Australian Acoustical Society; Acoustics, Hunter Valley, Australia. 15–18 November 2015.

Stanciu M.D., Curtu I., Lica D. Evaluating the Efficiency of Recycling Composite Panels Made from ABS to Reduce the Traffic Noise; Proceedings of the 5th International Conference “Computational Mechanics and Virtual Engineering—COMEC”; University of Brasov, Brasov, Romania. 24–25 October 2013; pp. 489–492.

Stanciu M.D., Curtu I., Cosereanu C., Lica D. Soundproofing Performance Evaluation of Panels Made of Fibers of Acrylonitrile Butadiene Styrene Copolymer (ABS) Procedia Technol. 2015;19:260–267. doi: 10.1016/j.protcy.2015.02.038. DOI

Lee J.-W., Lee J.-C., Pandey J., Ahn S.-H., Kang Y.J. Mechanical Properties and Sound Insulation Effect of ABS/Carbon-black Composites. J. Compos. Mater. 2010;44:1701–1716. doi: 10.1177/0021998309357673. DOI

Adair L.C., Cook R.L. Acoustic Properties of Rho-C Rubber and ABS in the Frequency Range 100-kHz-2 MHz. J. Acoust. Soc. Am. 1973;54:1763–1765. doi: 10.1121/1.1914484. DOI

Mamalis A.G., Manolakos D.E., Szalay A., Pantazopoulos G. Processing of High-Temperature Superconductors at High Strain Rates. Informa UK Limited; Colechester, UK: 2019. Impact Loading of Solid/Porous Media; p. 94.

Stansbury J.W., Idacavage M.J. 3D Printing With Polymers: Challenges Among Expanding Options and Opportunities. Dent. Mater. 2016;32:54–64. doi: 10.1016/j.dental.2015.09.018. PubMed DOI

Bourell D., Pierre J., Leu M., Levy G., Rosen D., Beese A.M., Clare A. Materials for Additive Manufacturing. CIRP Ann. Manuf. Technol. 2017;66:659–681. doi: 10.1016/j.cirp.2017.05.009. DOI

Challis V., Xu X., Zhang L., Roberts A.P., Grotowski J.F., Sercombe T.B. High Specific Strength and Stiffness Structures Produced Using Selective Laser Melting. Mater. Des. 2014;63:783–788. doi: 10.1016/j.matdes.2014.05.064. DOI

Hanzl P., Zetková I., Kučerová L. Structural Changes and Microstructure of Maraging Steel Lattice Structures using Additive Manufacturing. Manuf. Technol. 2019;19:37–41. doi: 10.21062/ujep/241.2019/a/1213-2489/MT/19/1/37. DOI

Vašina M., Monkova K., Monka P.P., Kozak D., Tkac J. Study of the Sound Absorption Properties of 3D-Printed Open-Porous ABS Material Structures. Polymers. 2020;12:1062. doi: 10.3390/polym12051062. PubMed DOI PMC

Monkova K., Monka P., Tkac J., Torok J., Suba O., Zaludek M. Research of Young’s Modulus of the Simple Lattice Structures Made from Plastics; Proceedings of the 2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE); Institute of Electrical and Electronics Engineers (IEEE), Brussels, Belgium. 22–25 July 2019; pp. 555–558.

Pantazopoulos G. Basic Principles: Some Fundamental Concepts. J. Fail. Anal. Prev. 2015;15:335–336. doi: 10.1007/s11668-015-9952-5. DOI

Sgard F., Castel F., Atalla N. Use of a Hybrid Adaptive Finite Element/Modal Approach to Assess the Sound Absorption of Porous Materials With Meso-Heterogeneities. Appl. Acoust. 2011;72:157–168. doi: 10.1016/j.apacoust.2010.10.011. DOI

Doutres O., Atalla N., Dong K. Effect of the Microstructure Closed Pore Content on the Acoustic Behavior of Polyurethane Foams. J. Appl. Phys. 2011;110:064901. doi: 10.1063/1.3631021. DOI

Chen S., Jiang Y., Chen J., Wang D. The Effects of Various Additive Components on the Sound Absorption Performances of Polyurethane Foams. Adv. Mater. Sci. Eng. 2015;2015:1–9. doi: 10.1155/2015/317561. DOI

Buratti C. Indoor Noise Reduction Index with an Open Window (Part II) Appl. Acoust. 2006;67:383–401. doi: 10.1016/j.apacoust.2005.07.006. DOI

Okudaira Y., Kurihara Y., Ando H., Satoh M., Miyanami K. Sound Absorption Measurements for Evaluating Dynamic Physical Properties of a Powder Bed. Powder Technol. 1993;77:39–48. doi: 10.1016/0032-5910(93)85005-T. DOI

International Organization for Standardization . ISO 10534-2, Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes-Part 2: Transfer-Function Method. CEN, European Committee for Standardization; Brussels, Belgium: 1998. pp. 10534–10542. ISO/TC 43/SC2 Building Acoustics.

Han F.S., Seiffert G., Zhao Y.Y., Gibbs B. Acoustic Absorption Behaviour of an Open-Celled Alluminium Foam. J. Phys. D. Appl. Phys. 2003;36:294–302. doi: 10.1088/0022-3727/36/3/312. DOI

Yilmaz N.D., Powell N.B., Banks-Lee P., Michielsen S., Yilmaz N.D. Hemp-Fiber Based Nonwoven Composites: Effects of Alkalization on Sound Absorption Performance. Fibers Polym. 2012;13:915–922. doi: 10.1007/s12221-012-0915-0. DOI

Schiavi A., Guglielmone C., Miglietta P. Effect and Importance of Static-Load on Airflow Resistivity Determination and Its Consequences on Dynamic Stiffness. Appl. Acoust. 2011;72:705–710. doi: 10.1016/j.apacoust.2011.03.009. DOI

Tarnow V. Measured Anisotropic Air Flow Resistivity and Sound Attenuation of Glass Wool. J. Acoust. Soc. Am. 2002;111:2735–2739. doi: 10.1121/1.1476686. PubMed DOI

McRae J.D., Naguib H.E., Atalla N. Mechanical and Acoustic Performance of Compression-Molded Open-Cell Polypropylene Foams. J. Appl. Polym. Sci. 2009;116:1106–1115. doi: 10.1002/app.31581. DOI

Tiuc A.E., Vasile O., Usca A.D., Gabor T., Vermesan H. The Analysis of Factors That Influence the Sound Absorption Coefficient of Porous Materials. Rom. J. Acoust. Vib. 2014;11:105–108.

Zhu W.B., Chen S.M., Wang Y.B., Zhu T.T., Jiang Y. Sound Absorption Behavior of Polyurethane Foam Composites with Different Ethylene Propylene Diene Monomer Particles. Arch. Acoust. 2018;43:403–411.

Ayrilmis N., Kariz M., Kwon J.H., Manja K. Effect of Printing Layer Thickness on Water Absorption and Mechanical Properties of 3d-Printed Wood/PLA Composite Materials. Int. J. Adv. Manuf. Technol. 2019;102:2195–2200. doi: 10.1007/s00170-019-03299-9. DOI

Domínguez-Rodríguez G., Ku-Herrera J.J., Hernández-Pérez A. An Assessment of the Effect of Printing Orientation, Density, and Filler Pattern on the Compressive Performance of 3d Printed ABS Structures by Fuse Deposition. Int. J. Adv. Manuf. Technol. 2017;95:1685–1695. doi: 10.1007/s00170-017-1314-x. DOI

Baich L., Manogharan G., Marie H. Study of Infill Print Design on Production Cost-Time of 3d Printed ABS Parts. Int. J. Rapid Manuf. 2015;5:308. doi: 10.1504/IJRAPIDM.2015.074809. DOI

Everest F.A. Master Handbook of Acoustics. 4th ed. McGraw-Hill; New York, NY, USA: 2001. Absorption of Sound; pp. 179–233.

Nor M.J.M., Jamaludin N., Tamiri F.M. A Preliminary Study of Sound Absorption Using Multi-Layer Coconut Coir Fibers. Electron. J. Tech. Acoust. 2004;3:1–8.

Hua Q., Yang E.H. Effect of Thickness, Density and Cavity Depth on the Sound Absorption Properties of Wool Boards. Autex Res. J. 2018;18:203–208.

Lim Z., Putra A., Nor M., Yaakob M. Sound Absorption Performance of Natural Kenaf Fibres. Appl. Acoust. 2018;130:107–114. doi: 10.1016/j.apacoust.2017.09.012. DOI

Ismail L., Ghazali M.I., Mahzan S., Zaidi A.M.A. Sound Absorption of Arenga Pinnata Natural Fiber. World Acad. Sci. Eng. Technol. 2010;43:804–806.

Gliscinska E., Michalak M., Krucinska I. Sound Absorption Property of Nonwowen Based Composites. Autex Res. J. 2013;13:150–155. doi: 10.2478/v10304-012-0036-2. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...