Effect of the Pore Shape and Size of 3D-Printed Open-Porous ABS Materials on Sound Absorption Performance
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
APVV-19-0550
Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
KEGA 007TUKE-4/2018
Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
CZ.02.1.01/0.0/0.0/16_019/0000867
The European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems
PubMed
33050297
PubMed Central
PMC7600319
DOI
10.3390/ma13204474
PII: ma13204474
Knihovny.cz E-resources
- Keywords
- 3D printing technique, acoustic impedance tube, acrylonitrile butadiene styrene, air space size, excitation frequency of acoustic wave, material thickness, sound absorption coefficient, volume ratio,
- Publication type
- Journal Article MeSH
Noise has a negative impact on our environment and human health. For this reason, it is necessary to eliminate excessive noise levels. This paper is focused on the study of the sound absorption properties of materials with open-porous structures, which were made of acrylonitrile butadiene styrene (ABS) material using additive technology. Four types of structures (Cartesian, octagonal, rhomboid, and Starlit) were evaluated in this work, and every structure was prepared in three different volume ratios of the porosity and three different thicknesses. The sound absorption properties of the investigated ABS specimens were examined utilizing the normal incidence sound absorption and noise reduction coefficients, which were experimentally determined by the transfer function method using a two-microphone acoustic impedance tube. This work deals with various factors that influence the sound absorption performance of four different types of investigated ABS material's structures. It was found, in this study, that the sound absorption performance of the investigated ABS specimens is strongly affected by different factors, specifically by the structure geometry, material volume ratio, excitation frequency of an acoustic wave, material´s thickness, and air space size behind the tested sound-absorbing materials.
See more in PubMed
Amares S., Sujatmika E., Hong T.W., Durairaj R., Hamid H.S.H.B. A Review: Characteristics of Noise Absorption Material. J. Phys. Conf. Ser. 2017;908:012005. doi: 10.1088/1742-6596/908/1/012005. DOI
Lee B.H., Cha S.W., Kang Y.J. Study of Sound Absorption and Transmission Characteristics for MCPs Foaming Rate by Batch Process. Proc. KSPE. 2004:338–342.
Lee W.K., Park B.H., Yoon H.J., Kim J.S., Maeng J.Y. The Optimization of Interior Acoustic Package of Vehicle Using the Sound Absorbing Materials. Korean Soc. Automot. Eng. 2004;2:1212–1217.
Tang S.K. Improving Traffic Noise Transmission Loss of Plenum Windows by Using Sound Scatterer Arrays. J. Acoust. Soc. Am. 2018;143:1715. doi: 10.1121/1.5035587. DOI
Yang M., Chen S., Fu C., Sheng P. Optimal Sound-Absorbing Structures. Mater. Horiz. 2017;4:673. doi: 10.1039/C7MH00129K. DOI
Allard J.F., Atalla N. Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials. 2nd ed. John Wiley & Sons; Chichester, UK: 2009.
Sun X., Jiang F., Wang J. Acoustic Properties of 316L Stainless Steel Lattice Structures Fabricated via Selective Laser Melting. Metals. 2020;10:111. doi: 10.3390/met10010111. DOI
Yoon W.U., Park J.H., Lee J.S., Kim Y.Y. Topology Optimization Design for Total Sound Absorption in Porous Media. Comput. Methods Appl. Mech. Eng. 2020;360:112723. doi: 10.1016/j.cma.2019.112723. DOI
Liu G.-S., Zhou Y., Liu M.-H., Yuan Y., Zou X.-Y., Cheng J.-C. Acoustic Waveguide with Virtual Soft Boundary Based on Metamaterials. Sci. Rep. 2020;10:981–987. doi: 10.1038/s41598-020-57986-9. PubMed DOI PMC
Assouar M.B., Senesi M., Oudich M., Ruzzene M., Hou Z. Broadband Plate-Type Acoustic Metamaterial for Low-Frequency Sound Attenuation. Appl. Phys. Lett. 2012;101:173505. doi: 10.1063/1.4764072. DOI
Mei J., Ma G., Yang M., Yang Z.Y., Wen W., Sheng P. Dark Acoustic Metamaterials as Super Absorbers for Low-Frequency Sound. Nat. Commun. 2012;3:756. doi: 10.1038/ncomms1758. PubMed DOI
Xin F., Ma X., Liu X., Zhang C. A Multiscale Theoretical Approach for the Sound Absorption of Slit-Perforated Double Porosity Materials. Compos. Struct. 2019;223:110919. doi: 10.1016/j.compstruct.2019.110919. DOI
Siano D., Viscardi M., Panza M.A. Automotive Materials: An Experimental Investigation of an Engine Bay Acoustic Performances. Energy Procedia. 2016;101:598–605. doi: 10.1016/j.egypro.2016.11.076. DOI
Vakhitova S.M., Shaehova I.F., Zharin E.I. IOP Conference Series: Materials Science and Engineering. IOP Publishing; Bristol, UK: 2016. Study of Vibro-Acoustic Properties of Composite Materials Based on Polyurethane Injection; p. 012030.
Cai X., Yang J., Hu G., Lu T. Sound Absorption by Acoustic Microlattice with Optimized Pore Configuration. J. Acoust. Soc. Am. 2018;144:EL138–EL143. doi: 10.1121/1.5051526. PubMed DOI
Deshmukh S., Ronge H., Ramamoorthy S. Design of Periodic Foam Structures for Acoustic Applications: Concept, Parametric Study and Experimental Validation. Mater. Des. 2019;175:107830. doi: 10.1016/j.matdes.2019.107830. DOI
Wang D.-W., Wen Z.-H., Glorieux C., Ma L. Sound Absorption of Face-Centered Cubic Sandwich Structure With Micro-Perforations. Mater. Des. 2020;186:108344. doi: 10.1016/j.matdes.2019.108344. DOI
Jiménez N., Romero-García V., Groby J.-P. Perfect Absorption of Sound by Rigidly-Backed Hight-Porous Materials. Acta Acust. Acust. 2018;104:396–409.
Liu J., Chen T., Zhang Y., Wen G., Qing Q., Wang H., Sedaghati R., Xie Y.M. On Sound Insulation of Pyramidal Lattice Sandwich Structure. Compos. Struct. 2019;208:385–394. doi: 10.1016/j.compstruct.2018.10.013. DOI
Pantazopoulos G. A Short Review on Fracture Mechanisms of Mechanical Components Operated under Industrial Process Conditions: Fractographic Analysis and Selected Prevention Strategies. Metals. 2019;9:148. doi: 10.3390/met9020148. DOI
Olny X., Boutin C. Acoustic Wave Propagation in Double Porosity Media. J. Acoust. Soc. Am. 2003;114:73–89. doi: 10.1121/1.1534607. PubMed DOI
Roh H.-S., Yoon S.W. Acoustic Diagnosis for Porous Medium With Circular Cylindrical Pores. J. Acoust. Soc. Am. 2004;115:1114–1124. doi: 10.1121/1.1645247. PubMed DOI
Lagarrigue C., Groby J.P., Tournat V., Dazel O., Umnova O.V. Absorption of Sound by Porous Layers with Embedded Periodic Arrays of Resonant Inclusions. J. Acoust. Soc. Am. 2013;134:4670–4680. doi: 10.1121/1.4824843. PubMed DOI
Groby J.-P., Lagarrigue C., Brouard B., Dazel O., Tournat V., Nennig B. Using Simple Shape Three-Dimensional Rigid Inclusions to Enhance Porous Layer Absorption. J. Acoust. Soc. Am. 2014;136:1139–1148. doi: 10.1121/1.4892760. PubMed DOI
Xu Y., Zhao W., Chen L., Chen H. Distribution Optimization for Acoustic Design of Porous Layer by the Boundary Element Method. Acoust. Aust. 2020;48:1–13. doi: 10.1007/s40857-020-00181-7. DOI
Boulvert J., Cavalieri T., Costa-Baptista J., Schwan L., Romero-García V., Gabard G., Fotsing E., Ross A., Mardjono J., Groby J.-P. Optimally Graded Porous Material for Broadband Perfect Absorption of Sound. J. Appl. Phys. 2019;126:175101. doi: 10.1063/1.5119715. DOI
Krödel S., Palermo A., Daraio C. Acoustic Properties of Porous Microlattices From Effective Medium to Scattering Dominated Regimes. J. Acoust. Soc. Am. 2018;144:319–329. doi: 10.1121/1.5046068. PubMed DOI
Gohari H.D., Zarastvand M., Talebitooti R. Acoustic Performance Prediction of a Multilayered Finite Cylinder Equipped with Porous Foam Media. J. Vib. Control. 2020;26:899–912. doi: 10.1177/1077546319890025. DOI
Jena D.P., Qiu X. Sound Transmission Loss of Porous Materials in Ducts With Embedded Periodic Scatterers. J. Acoust. Soc. Am. 2020;147:978–983. doi: 10.1121/10.0000650. PubMed DOI
Song B.H., Bolton J.S. A Transfer-Matrix Approach for Estimating the Characteristic Impedance and Wave Numbers of Limp and Rigid Porous Materials. J. Acoust. Soc. Am. 2000;107:1131–1152. doi: 10.1121/1.428404. PubMed DOI
Munjal M.L. Acoustics of Ducts and Mufflers. 2nd ed. John Wiley & Sons; New York, NY, USA: 2014.
Kang Y.J., Bolton J.S. A Finite Element Model for Sound Transmission Through Foam-Lined Double-Panel Structures. J. Acoust. Soc. Am. 1996;99:2755. doi: 10.1121/1.414856. DOI
Panneton R. Numerical Prediction of Sound Transmission Through Finite Multilayer Systems with Poroelastic Materials. J. Acoust. Soc. Am. 1996;100:346. doi: 10.1121/1.415956. DOI
Xie S., Yang S., Yang C., Wang D. Sound Absorption Performance of a Filled Honeycomb Composite Structure. Appl. Acoust. 2020;162:107202. doi: 10.1016/j.apacoust.2019.107202. DOI
Christensen J., Romero-García V., Pico R., Cebrecos A., De Abajo F.J.G., Mortensen N.A., Willatzen M., Sánchez-Morcillo V.J. Extraordinary Absorption of Sound in Porous Lamella-Crystals. Sci. Rep. 2014;4:1–5. doi: 10.1038/srep04674. PubMed DOI PMC
Liu Z., Zhan J., Fard M., Liu Z. Acoustic Properties of Multilayer Sound Absorbers With a 3d Printed Micro-Perforated Panel. Appl. Acoust. 2017;121:25–32. doi: 10.1016/j.apacoust.2017.01.032. DOI
Lee J.-C., Hong Y.-S., Nan R.-G., Jang M.-K., Lee C.S., Ahn S.-H., Kang Y.-J. Soundproofing Effect of Nano Particle Reinforced Polymer Composites. J. Mech. Sci. Technol. 2008;22:1468–1474. doi: 10.1007/s12206-008-0419-4. DOI
MacGillivray I. Acoustic Performance of Periodic Composite Materials; Proceedings of the Australian Acoustical Society; Acoustics, Hunter Valley, Australia. 15–18 November 2015.
Stanciu M.D., Curtu I., Lica D. Evaluating the Efficiency of Recycling Composite Panels Made from ABS to Reduce the Traffic Noise; Proceedings of the 5th International Conference “Computational Mechanics and Virtual Engineering—COMEC”; University of Brasov, Brasov, Romania. 24–25 October 2013; pp. 489–492.
Stanciu M.D., Curtu I., Cosereanu C., Lica D. Soundproofing Performance Evaluation of Panels Made of Fibers of Acrylonitrile Butadiene Styrene Copolymer (ABS) Procedia Technol. 2015;19:260–267. doi: 10.1016/j.protcy.2015.02.038. DOI
Lee J.-W., Lee J.-C., Pandey J., Ahn S.-H., Kang Y.J. Mechanical Properties and Sound Insulation Effect of ABS/Carbon-black Composites. J. Compos. Mater. 2010;44:1701–1716. doi: 10.1177/0021998309357673. DOI
Adair L.C., Cook R.L. Acoustic Properties of Rho-C Rubber and ABS in the Frequency Range 100-kHz-2 MHz. J. Acoust. Soc. Am. 1973;54:1763–1765. doi: 10.1121/1.1914484. DOI
Mamalis A.G., Manolakos D.E., Szalay A., Pantazopoulos G. Processing of High-Temperature Superconductors at High Strain Rates. Informa UK Limited; Colechester, UK: 2019. Impact Loading of Solid/Porous Media; p. 94.
Stansbury J.W., Idacavage M.J. 3D Printing With Polymers: Challenges Among Expanding Options and Opportunities. Dent. Mater. 2016;32:54–64. doi: 10.1016/j.dental.2015.09.018. PubMed DOI
Bourell D., Pierre J., Leu M., Levy G., Rosen D., Beese A.M., Clare A. Materials for Additive Manufacturing. CIRP Ann. Manuf. Technol. 2017;66:659–681. doi: 10.1016/j.cirp.2017.05.009. DOI
Challis V., Xu X., Zhang L., Roberts A.P., Grotowski J.F., Sercombe T.B. High Specific Strength and Stiffness Structures Produced Using Selective Laser Melting. Mater. Des. 2014;63:783–788. doi: 10.1016/j.matdes.2014.05.064. DOI
Hanzl P., Zetková I., Kučerová L. Structural Changes and Microstructure of Maraging Steel Lattice Structures using Additive Manufacturing. Manuf. Technol. 2019;19:37–41. doi: 10.21062/ujep/241.2019/a/1213-2489/MT/19/1/37. DOI
Vašina M., Monkova K., Monka P.P., Kozak D., Tkac J. Study of the Sound Absorption Properties of 3D-Printed Open-Porous ABS Material Structures. Polymers. 2020;12:1062. doi: 10.3390/polym12051062. PubMed DOI PMC
Monkova K., Monka P., Tkac J., Torok J., Suba O., Zaludek M. Research of Young’s Modulus of the Simple Lattice Structures Made from Plastics; Proceedings of the 2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE); Institute of Electrical and Electronics Engineers (IEEE), Brussels, Belgium. 22–25 July 2019; pp. 555–558.
Pantazopoulos G. Basic Principles: Some Fundamental Concepts. J. Fail. Anal. Prev. 2015;15:335–336. doi: 10.1007/s11668-015-9952-5. DOI
Sgard F., Castel F., Atalla N. Use of a Hybrid Adaptive Finite Element/Modal Approach to Assess the Sound Absorption of Porous Materials With Meso-Heterogeneities. Appl. Acoust. 2011;72:157–168. doi: 10.1016/j.apacoust.2010.10.011. DOI
Doutres O., Atalla N., Dong K. Effect of the Microstructure Closed Pore Content on the Acoustic Behavior of Polyurethane Foams. J. Appl. Phys. 2011;110:064901. doi: 10.1063/1.3631021. DOI
Chen S., Jiang Y., Chen J., Wang D. The Effects of Various Additive Components on the Sound Absorption Performances of Polyurethane Foams. Adv. Mater. Sci. Eng. 2015;2015:1–9. doi: 10.1155/2015/317561. DOI
Buratti C. Indoor Noise Reduction Index with an Open Window (Part II) Appl. Acoust. 2006;67:383–401. doi: 10.1016/j.apacoust.2005.07.006. DOI
Okudaira Y., Kurihara Y., Ando H., Satoh M., Miyanami K. Sound Absorption Measurements for Evaluating Dynamic Physical Properties of a Powder Bed. Powder Technol. 1993;77:39–48. doi: 10.1016/0032-5910(93)85005-T. DOI
International Organization for Standardization . ISO 10534-2, Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes-Part 2: Transfer-Function Method. CEN, European Committee for Standardization; Brussels, Belgium: 1998. pp. 10534–10542. ISO/TC 43/SC2 Building Acoustics.
Han F.S., Seiffert G., Zhao Y.Y., Gibbs B. Acoustic Absorption Behaviour of an Open-Celled Alluminium Foam. J. Phys. D. Appl. Phys. 2003;36:294–302. doi: 10.1088/0022-3727/36/3/312. DOI
Yilmaz N.D., Powell N.B., Banks-Lee P., Michielsen S., Yilmaz N.D. Hemp-Fiber Based Nonwoven Composites: Effects of Alkalization on Sound Absorption Performance. Fibers Polym. 2012;13:915–922. doi: 10.1007/s12221-012-0915-0. DOI
Schiavi A., Guglielmone C., Miglietta P. Effect and Importance of Static-Load on Airflow Resistivity Determination and Its Consequences on Dynamic Stiffness. Appl. Acoust. 2011;72:705–710. doi: 10.1016/j.apacoust.2011.03.009. DOI
Tarnow V. Measured Anisotropic Air Flow Resistivity and Sound Attenuation of Glass Wool. J. Acoust. Soc. Am. 2002;111:2735–2739. doi: 10.1121/1.1476686. PubMed DOI
McRae J.D., Naguib H.E., Atalla N. Mechanical and Acoustic Performance of Compression-Molded Open-Cell Polypropylene Foams. J. Appl. Polym. Sci. 2009;116:1106–1115. doi: 10.1002/app.31581. DOI
Tiuc A.E., Vasile O., Usca A.D., Gabor T., Vermesan H. The Analysis of Factors That Influence the Sound Absorption Coefficient of Porous Materials. Rom. J. Acoust. Vib. 2014;11:105–108.
Zhu W.B., Chen S.M., Wang Y.B., Zhu T.T., Jiang Y. Sound Absorption Behavior of Polyurethane Foam Composites with Different Ethylene Propylene Diene Monomer Particles. Arch. Acoust. 2018;43:403–411.
Ayrilmis N., Kariz M., Kwon J.H., Manja K. Effect of Printing Layer Thickness on Water Absorption and Mechanical Properties of 3d-Printed Wood/PLA Composite Materials. Int. J. Adv. Manuf. Technol. 2019;102:2195–2200. doi: 10.1007/s00170-019-03299-9. DOI
Domínguez-Rodríguez G., Ku-Herrera J.J., Hernández-Pérez A. An Assessment of the Effect of Printing Orientation, Density, and Filler Pattern on the Compressive Performance of 3d Printed ABS Structures by Fuse Deposition. Int. J. Adv. Manuf. Technol. 2017;95:1685–1695. doi: 10.1007/s00170-017-1314-x. DOI
Baich L., Manogharan G., Marie H. Study of Infill Print Design on Production Cost-Time of 3d Printed ABS Parts. Int. J. Rapid Manuf. 2015;5:308. doi: 10.1504/IJRAPIDM.2015.074809. DOI
Everest F.A. Master Handbook of Acoustics. 4th ed. McGraw-Hill; New York, NY, USA: 2001. Absorption of Sound; pp. 179–233.
Nor M.J.M., Jamaludin N., Tamiri F.M. A Preliminary Study of Sound Absorption Using Multi-Layer Coconut Coir Fibers. Electron. J. Tech. Acoust. 2004;3:1–8.
Hua Q., Yang E.H. Effect of Thickness, Density and Cavity Depth on the Sound Absorption Properties of Wool Boards. Autex Res. J. 2018;18:203–208.
Lim Z., Putra A., Nor M., Yaakob M. Sound Absorption Performance of Natural Kenaf Fibres. Appl. Acoust. 2018;130:107–114. doi: 10.1016/j.apacoust.2017.09.012. DOI
Ismail L., Ghazali M.I., Mahzan S., Zaidi A.M.A. Sound Absorption of Arenga Pinnata Natural Fiber. World Acad. Sci. Eng. Technol. 2010;43:804–806.
Gliscinska E., Michalak M., Krucinska I. Sound Absorption Property of Nonwowen Based Composites. Autex Res. J. 2013;13:150–155. doi: 10.2478/v10304-012-0036-2. DOI
Investigation of Physical Properties of Polymer Composites Filled with Sheep Wool
Advanced Materials Structures for Sound and Vibration Damping