Investigation of Physical Properties of Polymer Composites Filled with Sheep Wool
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
grant number IGA/FT/2024/002
Tomas Bata University in Zlín
CZ.10.03.01/00/22_003/
European Union
PubMed
38475373
PubMed Central
PMC10935195
DOI
10.3390/polym16050690
PII: polym16050690
Knihovny.cz E-resources
- Keywords
- Wdls 5.0 software, electrical conductivity, light transmission, mechanical vibration, polymer composites, sheep wool, sound absorption,
- Publication type
- Journal Article MeSH
Sheep farmers are currently facing an oversupply of wool and a lack of willing buyers. Due to low prices, sheep wool is often either dumped, burned, or sent to landfills, which are unsustainable and environmentally unfriendly practices. One potential solution is the utilization of sheep wool fibers in polymer composites. This paper focuses on the study of mechanical vibration damping properties, sound absorption, light transmission, electrical conductivity of epoxy (EP), polyurethane (PU), and polyester (PES) resins, each filled with three different concentrations of sheep wool (i.e., 0%, 3%, and 5% by weight). It can be concluded that the sheep wool content in the polymer composites significantly influenced their physical properties. The impact of light transmission through the tested sheep wool fiber-filled polymer composites on the quality of daylight in a reference room was also mathematically simulated using Wdls 5.0 software.
See more in PubMed
Parlato M.C.M., Valenti F., Midolo G., Porto S.M.C. Livestock Wastes Sustainable Use and Management: Assessment of Raw Sheep Wool Reuse and Valorization. Energies. 2022;15:3008. doi: 10.3390/en15093008. DOI
Parlato M.C.M., Cuomo M., Porto S.M.C. Natural Fibers Reinforcement for Earthen Building Components: Mechanical Performances of a Low Quality Sheep Wool (“Valle Del Belice” Sheep) Constr. Build. Mater. 2022;326:126855. doi: 10.1016/j.conbuildmat.2022.126855. DOI
Thomas S., Jose S. Wool Fiber Reinforced Polymer Composites; The Textile Institute Book Series. 1st ed. Elsevier Science Publishing Co., Inc.; Cambridge, MA, USA: 2022. pp. 49–71.
Kulkarni M.B., Gavande V., Mahanwar P.A., Shah A.R., Shuib R.K., Khare A.M., Radhakrishnan S. Review on Biomass Sheep Wool–Based Polymer Composites. Biomass Convers. Biorefin. 2023. pp. 1–22. in press .
Altin M., Yildirim G. Investigation of Usability of Boron Doped Sheep Wool as Insulation Material and Comparison with Existing Insulation Materials. Constr. Build. Mater. 2022;331:127303. doi: 10.1016/j.conbuildmat.2022.127303. DOI
Korjenic A., Klarić S., Hadžić A., Korjenic S. Sheep Wool as a Construction Material for Energy Efficiency Improvement. Energies. 2015;8:5765–5781. doi: 10.3390/en8065765. DOI
Hegyi A., Bulacu C., Szilagyi H., Lăzărescu A.-V., Meită V., Vizureanu P., Mihaela Sandu M. Improving Indoor Air Quality by Using Sheep Wool Thermal Insulation. Materials. 2021;14:2443. doi: 10.3390/ma14092443. PubMed DOI PMC
Wani I.A., Kumar R.U.R. Experimental Investigation on Using Sheep Wool as Fiber Reinforcement in Concrete Giving Increment in Overall Strength. Mater. Today Proc. 2021;45:4405–4409. doi: 10.1016/j.matpr.2020.11.938. DOI
Braniša J., Jomová K., Lapčík Ľ., Porubská M. Testing of Electron Beam Irradiated Sheep Wool for Adsorption of Cr(III) and Co(II) of Higher Concentrations. Polym. Test. 2021;99:107191. doi: 10.1016/j.polymertesting.2021.107191. DOI
Hetimy S., Megahed N., Eleinen O.A., Elgheznawy D. Exploring the Potential of Sheep Wool as an Eco-Friendly Insulation Material: A Comprehensive Review and Analytical Ranking. Sustain. Mater. Technol. 2024;39:e00812. doi: 10.1016/j.susmat.2023.e00812. DOI
Tiuc A.E., Nemeş O., Vermeşan H., Vasile O. Innovative Use of Sheep Wool for Obtaining Materials with Improved Sound-Absorbing Properties. Materials. 2020;13:694. PubMed PMC
Tabbaa M.J., Al-Azzawi W.A., Campbell D. Variation in Fleece Characteristics of Awassi Sheep at Different Ages. Small Rumin. Res. 2001;41:95–100. doi: 10.1016/S0921-4488(01)00203-6. PubMed DOI
Kicinska- Jakubowska A., Morales Villavicencio A., Zimniewska M., Przybylska P., Kwiatkowska E. Evaluation of Wool Quality Parameters of Polish Sheep Breeds. J. Nat. Fibers. 2021;18:5880–5887. doi: 10.1080/15440478.2021.1902895. DOI
Senthilkumar N., Chowdhury S., Sanpui P. Extraction of Keratin from Keratinous Wastes: Current Status and Future Directions. J. Mater. Cycles Waste Manag. 2023;25:1–16. doi: 10.1007/s10163-022-01492-9. DOI
Chereji B.D., Munteanu F.D. The Impact of Sheep Wool Waste on the Environment. Sci. Pap. Ser. E—Land Reclam. Earth Obs. Surv. Environ. Eng. 2022;11:458–463.
Petek B., Logar R.M. Management of Waste Sheep Wool as Valuable Organic Substrate in European Union Countries. J. Mater. Cycles Waste Manag. 1234;23:44–54. doi: 10.1007/s10163-020-01121-3. DOI
Rajabinejad H., Bucişcanu I.-I., Maier S.S. Current Approaches for Raw Wool Waste Management and Unconventional Valorization: A review. Environ. Eng. Manag. J. 2019;18:1439–1456.
Fiore V., Di Bella G., Valenza A. Effect of Sheep Wool Fibers on Thermal Insulation and Mechanical Properties of Cement-Based Composites. J. Nat. Fibers. 2019;17:1532–1543. doi: 10.1080/15440478.2019.1584075. DOI
Alyousef R., Alabduljabbar H., Mohammadhosseini H., Mohamed A.M., Siddika A., Alrshoudi F., Alaskar A. Utilization of Sheep Wool as Potential Fibrous Materials in the Production of Concrete Composites. J. Build. Eng. 2020;30:101216. doi: 10.1016/j.jobe.2020.101216. DOI
Mounir S., Khabbazi A., Khaldoun A., Maaloufa Y., El Hamdouni Y. Thermal Inertia and Thermal Properties of the CompoSite Material Clay-Wool. Sustain. Cities Soc. 2015;19:191–199. doi: 10.1016/j.scs.2015.07.018. DOI
Fantilli A.P., Jóźwiak-Niedźwiedzka D., Denis P. Bio-Fibres as a Reinforcement of Gypsum Composites. Materials. 2021;14:4830. doi: 10.3390/ma14174830. PubMed DOI PMC
Atbir A., Khabbazi A., Cherkaoui M., Ibaaz K., El Wardi F.Z., Chebli S. Improvement of Thermomechanical Properties of Porous Plaster Reinforced with a Network of Morocco Sheep Wool Skeletons for Energy Efficiency. Build. Environ. 2023;234:110171. doi: 10.1016/j.buildenv.2023.110171. DOI
Maia Pederneiras C., Veiga R., de Brito J. Rendering Mortars Reinforced with Natural Sheep’s Wool Fibers. Materials. 2019;12:3648. doi: 10.3390/ma12223648. PubMed DOI PMC
Dénes T.-O., Tămaş-Gavrea D.-R. Mechanical Properties of Lime Based Composites. Procedia Manuf. 2020;46:19–26. doi: 10.1016/j.promfg.2020.03.004. DOI
Sharma Y.K., Meena A., Sahu M., Dalai A. Experimental Investigation on Mechanical and Thermal Characteristics of Waste Sheep Wool Fiber-Filled Epoxy Composites. Mater. Today Proc. p. 2023. in press .
Semitekolos D., Pardou K., Georgiou P., Koutsouli P., Bizelis I., Zoumpoulakis L. Investigation of Mechanical and Thermal Insulating Properties of Wool Fibres in Epoxy Composites. Polym. Polym. Compos. 2021;29:1412–1421. doi: 10.1177/0967391120971387. DOI
Bharath K.N., Pasha M., Nizamuddin B.A. Characterization of Natural Fiber (Sheep Wool)-Reinforced Polymer-Matrix Composites at Different Operating Conditions. J. Ind. Text. 2016;45:730–751. doi: 10.1177/1528083714540698. DOI
Jose S., Thomas S., Jibin K.P., Sisanth K.S., Kadam V., Shakyawar D.B. Surface Modification of Wool Fabric Using Sodium Lignosulfonate and Subsequent Improvement in the Interfacial Adhesion of Natural Rubber Latex in the Wool/Rubber Composites. Ind. Crops Prod. 2022;177:114489. doi: 10.1016/j.indcrop.2021.114489. DOI
Pawlak F., Aldas M., Parres F., López-Martínez J., Arrieta M.P. Silane-Functionalized Sheep Wool Fibers from Dairy Industry Waste for the Development of Plasticized PLA Composites with Maleinized Linseed Oil for Injection-Molded Parts. Polymers. 2020;12:2523. doi: 10.3390/polym12112523. PubMed DOI PMC
Mangat A.S., Singh S., Gupta M., Sharma R. Experimental investigations on natural fiber embedded additive manufacturing-based biodegradable structures for biomedical applications. Rapid Prototyp. J. 2018;24:1221–1234. doi: 10.1108/RPJ-08-2017-0162. DOI
Manivannan J., Rajesh S., Mayandi K., Rajini N., Ismail S.O., Mohammad F., Kuzman M.K., Al-Lohedan H.A. Animal fiber characterization and fiber loading effect on mechanical behaviors of sheep wool fiber reinforced polyester composites. J. Nat. Fibers. 2020;19:4007–4023. doi: 10.1080/15440478.2020.1848743. DOI
Tusnim J., Jenifar N.S., Hasan M. Properties of jute and sheep wool fiber reinforced hybrid polypropylene composites. IOP Conf. Ser. Mater. Sci. Eng. 2018;438:012029. doi: 10.1088/1757-899X/438/1/012029. DOI
Tămaş-Gavrea D.R., Dénes T.O., Iştoan R., Tiuc A.E., Manea D.L., Vasile O. A Novel Acoustic Sandwich Panel Based on Sheep Wool. Coatings. 2020;10:148. doi: 10.3390/coatings10020148. DOI
Dénes T.O., Iştoan R., Tǎmaş-Gavrea D.R., Manea D.L., Hegyi A., Popa F., Vasile O. Analysis of sheep wool-based composites for building insulation. Polymers. 2022;14:2109. doi: 10.3390/polym14102109. PubMed DOI PMC
Urdanpilleta M., Leceta I., Guerrero P., de la Caba K. Sustainable sheep wool/soy protein biocomposites for sound absorption. Polymers. 2022;14:5231. doi: 10.3390/polym14235231. PubMed DOI PMC
Bharath K.N., Binoj J.S., Mansingh B.B., Manjunath G.B., Raghu G.V., Siengchin S., Sanjay M.R. Effect of stacking sequence and interfacial analysis of biomass sheep wool/glass fiber reinforced epoxy biocomposites. Biomass Convers. Biorefinery. 2023:1–10. doi: 10.1007/s13399-023-03918-2. DOI
Pina A.C., Tancredi N., Baldan M., Marcuzzo J.S., Amaya A. CO2 Capture and Biomethane Obtention Using Activated Carbon Filter of Animal Origin. MRS Adv. 2018;3:3589–3600. doi: 10.1557/adv.2018.588. DOI
Rafikov A., Mirzayev N., Alimkhanova S. Multilayer Nonwoven Lining Materials Made of Wool and Cotton for Clothing and Footwear. J. Ind. Text. 2022;51:6173S–6194S. doi: 10.1177/15280837211060881. DOI
Rao S.S. Mechanical Vibrations. 5th ed. Pearson Education, Inc.; Upper Saddle River, NJ, USA: 2011. pp. 281–287.
Latif N.A., Rus A.Z.M. Vibration Transmissibility Study of High Density Solid Waste Biopolymer Foam; Proceedings of the International Conference on Mechanical Engineering Research; High Tatras, Slovakia. 28–31 May 2012; pp. 426–429.
Stephen N. On Energy Harvesting from Ambient Vibration. J. Sound Vib. 2006;293:409–425. doi: 10.1016/j.jsv.2005.10.003. DOI
Lv Q., Yao Z. Analysis of the Effects of Nonlinear Viscous Damping on Vibration Isolator. Nonlinear Dyn. 2015;79:2325–2332. doi: 10.1007/s11071-014-1814-2. DOI
Ho C., Lang Z., Billings S.A. The Benefits of Nonlinear Cubic Viscous Damping of the Force Transmissibility of a Duffing-Type Vibration Isolator; Proceedings of the UKACC International Conference on Control; Cardiff, UK. 3–5 September 2012; pp. 479–484.
Sgard F., Castel F., Atalla N. Use of a Hybrid Adaptive Finite Element/Modal Approach to Assess the Sound Absorption of Porous Materials with Meso-Heterogeneities. Appl. Acoust. 2011;72:157–168. doi: 10.1016/j.apacoust.2010.10.011. DOI
International Organization for Standardization. Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes-Part 2: Transfer-Function Method; ISO/TC 43/SC2 Building Acoustics. CEN, European Committee for Standardization; Brussels, Belgium: 1998. pp. 10534–10542.
Han F.S., Seiffert G., Zhao Y.Y., Gibbs B. Acoustic Absorption Behaviour of an Open-Celled Alluminium Foam. J. Phys. D. Appl. Phys. 2003;36:294–302. doi: 10.1088/0022-3727/36/3/312. DOI
Song W.J., Cha D.J. Determination of an Acoustic Reflection Coefficient at the Inlet of a Model Gas Turbine Combustor for Power Generation. IOP Conf. Ser. Mater. Sci. Eng. 2017;164:012010. doi: 10.1088/1757-899X/164/1/012010. DOI
Zhang Y.H., Wang W., Zhang F., Dai K., Li C.B., Fan Y., Chen G.M., Zheng Q.B. Soft Organic Thermoelectric Materials: Principles, Current State of the Art and Applications. Small. 2022;18:2104922. doi: 10.1002/smll.202104922. PubMed DOI
Taherian R. Development of an Equation to Model Electrical Conductivity of Polymer-Based Carbon Nanocomposites. ECS J. Solid State Sci. Technol. 2014;3:26–38. doi: 10.1149/2.023406jss. DOI
Wiersma D.S., Bartolini P., Lagendijk A., Righini R. Localization of Light in a Disordered Medium. Nature. 1997;390:671–673. doi: 10.1038/37757. DOI
Lighting Measurement in Interiére-Part 2: Daylighting Measurement. Prague, Czech Office for Standards, Metrology and Testing; Prague, Czech Republic: 2006.
Dolnikova E., Katunsky D., Vertal M., Zozulak M. Influence of Roof Windows Area Changes on the Classroom Indoor Climate in the Attic Space: A Case Study. Sustainability. 2020;12:5046. doi: 10.3390/su12125046. DOI
Kalauni K., Pawar S.J. A Review on the Taxonomy, Factors Associated with Sound Absorption and Theoretical Modeling of Porous Sound Absorbing Materials. J. Porous Mater. 2019;26:1795–1819. doi: 10.1007/s10934-019-00774-2. DOI
Cao L., Fu Q., Si Y., Ding B., Yu J. Porous Materials for Sound Absorption. Compos. Commun. 2018;10:25–35. doi: 10.1016/j.coco.2018.05.001. DOI
Everest F.A. Master Handbook of Acoustics. 4th ed. McGraw-Hill; New York, NY, USA: 2001. Absorption of sound; pp. 179–233.
Monkova K., Vasina M., Monka P.P., Kozak D., Vanca J. Effect of the Pore Shape and Size of 3D-Printed Open-Porous ABS Materials on Sound Absorption Performance. Materials. 2020;13:4474. doi: 10.3390/ma13204474. PubMed DOI PMC
Peña-García A., Gil-Martín L.M., Hernández-Montes E. Use of Sunlight in Road Tunnels: An Approach to the Improvement of Light-Pipes’ Efficacy through Heliostats. Tunn. Undergr. Space Technol. 2016;60:135–140. doi: 10.1016/j.tust.2016.08.008. DOI
Murillo M., Sánchez A., Gil A., Araya-Letelier G., Burbano C., Silva Y.F. Use of animal fiber-reinforcement in construction materials: A review. Case Stud. Constr. Mater. 2023;20:e02812. doi: 10.1016/j.cscm.2023.e02812. DOI
Starkova O., Sabalina A., Voikiva V., Osite A. Environmental Effects on Strength and Failure Strain Distributions of Sheep Wool Fibers. Polymers. 2022;14:2651. doi: 10.3390/polym14132651. PubMed DOI PMC
Cheung H., Ho M., Lau K., Cardona F., Hui D. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos. Part B Eng. 2009;40:655–663. doi: 10.1016/j.compositesb.2009.04.014. DOI
Parlato M.C.M., Porto S.M.C. Organized framework of main possible applications of sheep wool fibres in building components. Sustainability. 2020;12:761. doi: 10.3390/su12030761. DOI
Singha K. A short review on basalt fiber. Int. J. Text. Sci. 2012;1:19–28.
Thapliyal D., Verma S., Sen P., Kumar R., Thakur A., Tiwari A.K., Singh D., Verros G.D., Arya R.K. Natural Fibers Composites: Origin, Importance, Consumption Pattern, and Challenges. J. Compos. Sci. 2023;7:506. doi: 10.3390/jcs7120506. DOI
Thomas J., Patil R.S., John J., Patil M. A Comprehensive Outlook of Scope within Exterior Automotive Plastic Substrates and Its Coatings. Coatings. 2023;13:1569. doi: 10.3390/coatings13091569. DOI
Muthalagu R., Murugesan J., Sathees Kumar S., Sridhar Babu B. Tensile attributes and material analysis of kevlar and date palm fibers reinforced epoxy composites for automotive bumper applications. Mater. Today Proc. 2021;46:433–438. doi: 10.1016/j.matpr.2020.09.777. DOI