• This record comes from PubMed

Investigation of Physical Properties of Polymer Composites Filled with Sheep Wool

. 2024 Mar 02 ; 16 (5) : . [epub] 20240302

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
grant number IGA/FT/2024/002 Tomas Bata University in Zlín
CZ.10.03.01/00/22_003/ European Union

Sheep farmers are currently facing an oversupply of wool and a lack of willing buyers. Due to low prices, sheep wool is often either dumped, burned, or sent to landfills, which are unsustainable and environmentally unfriendly practices. One potential solution is the utilization of sheep wool fibers in polymer composites. This paper focuses on the study of mechanical vibration damping properties, sound absorption, light transmission, electrical conductivity of epoxy (EP), polyurethane (PU), and polyester (PES) resins, each filled with three different concentrations of sheep wool (i.e., 0%, 3%, and 5% by weight). It can be concluded that the sheep wool content in the polymer composites significantly influenced their physical properties. The impact of light transmission through the tested sheep wool fiber-filled polymer composites on the quality of daylight in a reference room was also mathematically simulated using Wdls 5.0 software.

See more in PubMed

Parlato M.C.M., Valenti F., Midolo G., Porto S.M.C. Livestock Wastes Sustainable Use and Management: Assessment of Raw Sheep Wool Reuse and Valorization. Energies. 2022;15:3008. doi: 10.3390/en15093008. DOI

Parlato M.C.M., Cuomo M., Porto S.M.C. Natural Fibers Reinforcement for Earthen Building Components: Mechanical Performances of a Low Quality Sheep Wool (“Valle Del Belice” Sheep) Constr. Build. Mater. 2022;326:126855. doi: 10.1016/j.conbuildmat.2022.126855. DOI

Thomas S., Jose S. Wool Fiber Reinforced Polymer Composites; The Textile Institute Book Series. 1st ed. Elsevier Science Publishing Co., Inc.; Cambridge, MA, USA: 2022. pp. 49–71.

Kulkarni M.B., Gavande V., Mahanwar P.A., Shah A.R., Shuib R.K., Khare A.M., Radhakrishnan S. Review on Biomass Sheep Wool–Based Polymer Composites. Biomass Convers. Biorefin. 2023. pp. 1–22. in press .

Altin M., Yildirim G. Investigation of Usability of Boron Doped Sheep Wool as Insulation Material and Comparison with Existing Insulation Materials. Constr. Build. Mater. 2022;331:127303. doi: 10.1016/j.conbuildmat.2022.127303. DOI

Korjenic A., Klarić S., Hadžić A., Korjenic S. Sheep Wool as a Construction Material for Energy Efficiency Improvement. Energies. 2015;8:5765–5781. doi: 10.3390/en8065765. DOI

Hegyi A., Bulacu C., Szilagyi H., Lăzărescu A.-V., Meită V., Vizureanu P., Mihaela Sandu M. Improving Indoor Air Quality by Using Sheep Wool Thermal Insulation. Materials. 2021;14:2443. doi: 10.3390/ma14092443. PubMed DOI PMC

Wani I.A., Kumar R.U.R. Experimental Investigation on Using Sheep Wool as Fiber Reinforcement in Concrete Giving Increment in Overall Strength. Mater. Today Proc. 2021;45:4405–4409. doi: 10.1016/j.matpr.2020.11.938. DOI

Braniša J., Jomová K., Lapčík Ľ., Porubská M. Testing of Electron Beam Irradiated Sheep Wool for Adsorption of Cr(III) and Co(II) of Higher Concentrations. Polym. Test. 2021;99:107191. doi: 10.1016/j.polymertesting.2021.107191. DOI

Hetimy S., Megahed N., Eleinen O.A., Elgheznawy D. Exploring the Potential of Sheep Wool as an Eco-Friendly Insulation Material: A Comprehensive Review and Analytical Ranking. Sustain. Mater. Technol. 2024;39:e00812. doi: 10.1016/j.susmat.2023.e00812. DOI

Tiuc A.E., Nemeş O., Vermeşan H., Vasile O. Innovative Use of Sheep Wool for Obtaining Materials with Improved Sound-Absorbing Properties. Materials. 2020;13:694. PubMed PMC

Tabbaa M.J., Al-Azzawi W.A., Campbell D. Variation in Fleece Characteristics of Awassi Sheep at Different Ages. Small Rumin. Res. 2001;41:95–100. doi: 10.1016/S0921-4488(01)00203-6. PubMed DOI

Kicinska- Jakubowska A., Morales Villavicencio A., Zimniewska M., Przybylska P., Kwiatkowska E. Evaluation of Wool Quality Parameters of Polish Sheep Breeds. J. Nat. Fibers. 2021;18:5880–5887. doi: 10.1080/15440478.2021.1902895. DOI

Senthilkumar N., Chowdhury S., Sanpui P. Extraction of Keratin from Keratinous Wastes: Current Status and Future Directions. J. Mater. Cycles Waste Manag. 2023;25:1–16. doi: 10.1007/s10163-022-01492-9. DOI

Chereji B.D., Munteanu F.D. The Impact of Sheep Wool Waste on the Environment. Sci. Pap. Ser. E—Land Reclam. Earth Obs. Surv. Environ. Eng. 2022;11:458–463.

Petek B., Logar R.M. Management of Waste Sheep Wool as Valuable Organic Substrate in European Union Countries. J. Mater. Cycles Waste Manag. 1234;23:44–54. doi: 10.1007/s10163-020-01121-3. DOI

Rajabinejad H., Bucişcanu I.-I., Maier S.S. Current Approaches for Raw Wool Waste Management and Unconventional Valorization: A review. Environ. Eng. Manag. J. 2019;18:1439–1456.

Fiore V., Di Bella G., Valenza A. Effect of Sheep Wool Fibers on Thermal Insulation and Mechanical Properties of Cement-Based Composites. J. Nat. Fibers. 2019;17:1532–1543. doi: 10.1080/15440478.2019.1584075. DOI

Alyousef R., Alabduljabbar H., Mohammadhosseini H., Mohamed A.M., Siddika A., Alrshoudi F., Alaskar A. Utilization of Sheep Wool as Potential Fibrous Materials in the Production of Concrete Composites. J. Build. Eng. 2020;30:101216. doi: 10.1016/j.jobe.2020.101216. DOI

Mounir S., Khabbazi A., Khaldoun A., Maaloufa Y., El Hamdouni Y. Thermal Inertia and Thermal Properties of the CompoSite Material Clay-Wool. Sustain. Cities Soc. 2015;19:191–199. doi: 10.1016/j.scs.2015.07.018. DOI

Fantilli A.P., Jóźwiak-Niedźwiedzka D., Denis P. Bio-Fibres as a Reinforcement of Gypsum Composites. Materials. 2021;14:4830. doi: 10.3390/ma14174830. PubMed DOI PMC

Atbir A., Khabbazi A., Cherkaoui M., Ibaaz K., El Wardi F.Z., Chebli S. Improvement of Thermomechanical Properties of Porous Plaster Reinforced with a Network of Morocco Sheep Wool Skeletons for Energy Efficiency. Build. Environ. 2023;234:110171. doi: 10.1016/j.buildenv.2023.110171. DOI

Maia Pederneiras C., Veiga R., de Brito J. Rendering Mortars Reinforced with Natural Sheep’s Wool Fibers. Materials. 2019;12:3648. doi: 10.3390/ma12223648. PubMed DOI PMC

Dénes T.-O., Tămaş-Gavrea D.-R. Mechanical Properties of Lime Based Composites. Procedia Manuf. 2020;46:19–26. doi: 10.1016/j.promfg.2020.03.004. DOI

Sharma Y.K., Meena A., Sahu M., Dalai A. Experimental Investigation on Mechanical and Thermal Characteristics of Waste Sheep Wool Fiber-Filled Epoxy Composites. Mater. Today Proc. p. 2023. in press .

Semitekolos D., Pardou K., Georgiou P., Koutsouli P., Bizelis I., Zoumpoulakis L. Investigation of Mechanical and Thermal Insulating Properties of Wool Fibres in Epoxy Composites. Polym. Polym. Compos. 2021;29:1412–1421. doi: 10.1177/0967391120971387. DOI

Bharath K.N., Pasha M., Nizamuddin B.A. Characterization of Natural Fiber (Sheep Wool)-Reinforced Polymer-Matrix Composites at Different Operating Conditions. J. Ind. Text. 2016;45:730–751. doi: 10.1177/1528083714540698. DOI

Jose S., Thomas S., Jibin K.P., Sisanth K.S., Kadam V., Shakyawar D.B. Surface Modification of Wool Fabric Using Sodium Lignosulfonate and Subsequent Improvement in the Interfacial Adhesion of Natural Rubber Latex in the Wool/Rubber Composites. Ind. Crops Prod. 2022;177:114489. doi: 10.1016/j.indcrop.2021.114489. DOI

Pawlak F., Aldas M., Parres F., López-Martínez J., Arrieta M.P. Silane-Functionalized Sheep Wool Fibers from Dairy Industry Waste for the Development of Plasticized PLA Composites with Maleinized Linseed Oil for Injection-Molded Parts. Polymers. 2020;12:2523. doi: 10.3390/polym12112523. PubMed DOI PMC

Mangat A.S., Singh S., Gupta M., Sharma R. Experimental investigations on natural fiber embedded additive manufacturing-based biodegradable structures for biomedical applications. Rapid Prototyp. J. 2018;24:1221–1234. doi: 10.1108/RPJ-08-2017-0162. DOI

Manivannan J., Rajesh S., Mayandi K., Rajini N., Ismail S.O., Mohammad F., Kuzman M.K., Al-Lohedan H.A. Animal fiber characterization and fiber loading effect on mechanical behaviors of sheep wool fiber reinforced polyester composites. J. Nat. Fibers. 2020;19:4007–4023. doi: 10.1080/15440478.2020.1848743. DOI

Tusnim J., Jenifar N.S., Hasan M. Properties of jute and sheep wool fiber reinforced hybrid polypropylene composites. IOP Conf. Ser. Mater. Sci. Eng. 2018;438:012029. doi: 10.1088/1757-899X/438/1/012029. DOI

Tămaş-Gavrea D.R., Dénes T.O., Iştoan R., Tiuc A.E., Manea D.L., Vasile O. A Novel Acoustic Sandwich Panel Based on Sheep Wool. Coatings. 2020;10:148. doi: 10.3390/coatings10020148. DOI

Dénes T.O., Iştoan R., Tǎmaş-Gavrea D.R., Manea D.L., Hegyi A., Popa F., Vasile O. Analysis of sheep wool-based composites for building insulation. Polymers. 2022;14:2109. doi: 10.3390/polym14102109. PubMed DOI PMC

Urdanpilleta M., Leceta I., Guerrero P., de la Caba K. Sustainable sheep wool/soy protein biocomposites for sound absorption. Polymers. 2022;14:5231. doi: 10.3390/polym14235231. PubMed DOI PMC

Bharath K.N., Binoj J.S., Mansingh B.B., Manjunath G.B., Raghu G.V., Siengchin S., Sanjay M.R. Effect of stacking sequence and interfacial analysis of biomass sheep wool/glass fiber reinforced epoxy biocomposites. Biomass Convers. Biorefinery. 2023:1–10. doi: 10.1007/s13399-023-03918-2. DOI

Pina A.C., Tancredi N., Baldan M., Marcuzzo J.S., Amaya A. CO2 Capture and Biomethane Obtention Using Activated Carbon Filter of Animal Origin. MRS Adv. 2018;3:3589–3600. doi: 10.1557/adv.2018.588. DOI

Rafikov A., Mirzayev N., Alimkhanova S. Multilayer Nonwoven Lining Materials Made of Wool and Cotton for Clothing and Footwear. J. Ind. Text. 2022;51:6173S–6194S. doi: 10.1177/15280837211060881. DOI

Rao S.S. Mechanical Vibrations. 5th ed. Pearson Education, Inc.; Upper Saddle River, NJ, USA: 2011. pp. 281–287.

Latif N.A., Rus A.Z.M. Vibration Transmissibility Study of High Density Solid Waste Biopolymer Foam; Proceedings of the International Conference on Mechanical Engineering Research; High Tatras, Slovakia. 28–31 May 2012; pp. 426–429.

Stephen N. On Energy Harvesting from Ambient Vibration. J. Sound Vib. 2006;293:409–425. doi: 10.1016/j.jsv.2005.10.003. DOI

Lv Q., Yao Z. Analysis of the Effects of Nonlinear Viscous Damping on Vibration Isolator. Nonlinear Dyn. 2015;79:2325–2332. doi: 10.1007/s11071-014-1814-2. DOI

Ho C., Lang Z., Billings S.A. The Benefits of Nonlinear Cubic Viscous Damping of the Force Transmissibility of a Duffing-Type Vibration Isolator; Proceedings of the UKACC International Conference on Control; Cardiff, UK. 3–5 September 2012; pp. 479–484.

Sgard F., Castel F., Atalla N. Use of a Hybrid Adaptive Finite Element/Modal Approach to Assess the Sound Absorption of Porous Materials with Meso-Heterogeneities. Appl. Acoust. 2011;72:157–168. doi: 10.1016/j.apacoust.2010.10.011. DOI

International Organization for Standardization. Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes-Part 2: Transfer-Function Method; ISO/TC 43/SC2 Building Acoustics. CEN, European Committee for Standardization; Brussels, Belgium: 1998. pp. 10534–10542.

Han F.S., Seiffert G., Zhao Y.Y., Gibbs B. Acoustic Absorption Behaviour of an Open-Celled Alluminium Foam. J. Phys. D. Appl. Phys. 2003;36:294–302. doi: 10.1088/0022-3727/36/3/312. DOI

Song W.J., Cha D.J. Determination of an Acoustic Reflection Coefficient at the Inlet of a Model Gas Turbine Combustor for Power Generation. IOP Conf. Ser. Mater. Sci. Eng. 2017;164:012010. doi: 10.1088/1757-899X/164/1/012010. DOI

Zhang Y.H., Wang W., Zhang F., Dai K., Li C.B., Fan Y., Chen G.M., Zheng Q.B. Soft Organic Thermoelectric Materials: Principles, Current State of the Art and Applications. Small. 2022;18:2104922. doi: 10.1002/smll.202104922. PubMed DOI

Taherian R. Development of an Equation to Model Electrical Conductivity of Polymer-Based Carbon Nanocomposites. ECS J. Solid State Sci. Technol. 2014;3:26–38. doi: 10.1149/2.023406jss. DOI

Wiersma D.S., Bartolini P., Lagendijk A., Righini R. Localization of Light in a Disordered Medium. Nature. 1997;390:671–673. doi: 10.1038/37757. DOI

Lighting Measurement in Interiére-Part 2: Daylighting Measurement. Prague, Czech Office for Standards, Metrology and Testing; Prague, Czech Republic: 2006.

Dolnikova E., Katunsky D., Vertal M., Zozulak M. Influence of Roof Windows Area Changes on the Classroom Indoor Climate in the Attic Space: A Case Study. Sustainability. 2020;12:5046. doi: 10.3390/su12125046. DOI

Kalauni K., Pawar S.J. A Review on the Taxonomy, Factors Associated with Sound Absorption and Theoretical Modeling of Porous Sound Absorbing Materials. J. Porous Mater. 2019;26:1795–1819. doi: 10.1007/s10934-019-00774-2. DOI

Cao L., Fu Q., Si Y., Ding B., Yu J. Porous Materials for Sound Absorption. Compos. Commun. 2018;10:25–35. doi: 10.1016/j.coco.2018.05.001. DOI

Everest F.A. Master Handbook of Acoustics. 4th ed. McGraw-Hill; New York, NY, USA: 2001. Absorption of sound; pp. 179–233.

Monkova K., Vasina M., Monka P.P., Kozak D., Vanca J. Effect of the Pore Shape and Size of 3D-Printed Open-Porous ABS Materials on Sound Absorption Performance. Materials. 2020;13:4474. doi: 10.3390/ma13204474. PubMed DOI PMC

Peña-García A., Gil-Martín L.M., Hernández-Montes E. Use of Sunlight in Road Tunnels: An Approach to the Improvement of Light-Pipes’ Efficacy through Heliostats. Tunn. Undergr. Space Technol. 2016;60:135–140. doi: 10.1016/j.tust.2016.08.008. DOI

Murillo M., Sánchez A., Gil A., Araya-Letelier G., Burbano C., Silva Y.F. Use of animal fiber-reinforcement in construction materials: A review. Case Stud. Constr. Mater. 2023;20:e02812. doi: 10.1016/j.cscm.2023.e02812. DOI

Starkova O., Sabalina A., Voikiva V., Osite A. Environmental Effects on Strength and Failure Strain Distributions of Sheep Wool Fibers. Polymers. 2022;14:2651. doi: 10.3390/polym14132651. PubMed DOI PMC

Cheung H., Ho M., Lau K., Cardona F., Hui D. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos. Part B Eng. 2009;40:655–663. doi: 10.1016/j.compositesb.2009.04.014. DOI

Parlato M.C.M., Porto S.M.C. Organized framework of main possible applications of sheep wool fibres in building components. Sustainability. 2020;12:761. doi: 10.3390/su12030761. DOI

Singha K. A short review on basalt fiber. Int. J. Text. Sci. 2012;1:19–28.

Thapliyal D., Verma S., Sen P., Kumar R., Thakur A., Tiwari A.K., Singh D., Verros G.D., Arya R.K. Natural Fibers Composites: Origin, Importance, Consumption Pattern, and Challenges. J. Compos. Sci. 2023;7:506. doi: 10.3390/jcs7120506. DOI

Thomas J., Patil R.S., John J., Patil M. A Comprehensive Outlook of Scope within Exterior Automotive Plastic Substrates and Its Coatings. Coatings. 2023;13:1569. doi: 10.3390/coatings13091569. DOI

Muthalagu R., Murugesan J., Sathees Kumar S., Sridhar Babu B. Tensile attributes and material analysis of kevlar and date palm fibers reinforced epoxy composites for automotive bumper applications. Mater. Today Proc. 2021;46:433–438. doi: 10.1016/j.matpr.2020.09.777. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...