A selective autophagy cargo receptor NBR1 modulates abscisic acid signalling in Arabidopsis thaliana

. 2020 May 08 ; 10 (1) : 7778. [epub] 20200508

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32385330
Odkazy

PubMed 32385330
PubMed Central PMC7211012
DOI 10.1038/s41598-020-64765-z
PII: 10.1038/s41598-020-64765-z
Knihovny.cz E-zdroje

The plant selective autophagy cargo receptor neighbour of breast cancer 1 gene (NBR1) has been scarcely studied in the context of abiotic stress. We wanted to expand this knowledge by using Arabidopsis thaliana lines with constitutive ectopic overexpression of the AtNBR1 gene (OX lines) and the AtNBR1 Knock-Out (KO lines). Transcriptomic analysis of the shoots and roots of one representative OX line indicated differences in gene expression relative to the parental (WT) line. In shoots, many differentially expressed genes, either up- or down-regulated, were involved in responses to stimuli and stress. In roots the most significant difference was observed in a set of downregulated genes that is mainly related to translation and formation of ribonucleoprotein complexes. The link between AtNBR1 overexpression and abscisic acid (ABA) signalling was suggested by an interaction network analysis of these differentially expressed genes. Most hubs of this network were associated with ABA signalling. Although transcriptomic analysis suggested enhancement of ABA responses, ABA levels were unchanged in the OX shoots. Moreover, some of the phenotypes of the OX (delayed germination, increased number of closed stomata) and the KO lines (increased number of lateral root initiation sites) indicate that AtNBR1 is essential for fine-tuning of the ABA signalling pathway. The interaction of AtNBR1 with three regulatory proteins of ABA pathway (ABI3, ABI4 and ABI5) was observed in planta. It suggests that AtNBR1 might play role in maintaining the balance of ABA signalling by controlling their level and/or activity.

Zobrazit více v PubMed

Batoko H, Dagdas Y, Baluska F, Sirko A. Understanding and exploiting autophagy signaling in plants. Essays Biochem. 2017;61:675–685. doi: 10.1042/EBC20170034. PubMed DOI PMC

Galluzzi L, et al. Molecular definitions of autophagy and related processes. EMBO J. 2017;36:1811–1836. doi: 10.15252/embj.201796697. PubMed DOI PMC

Jacomin AC, Gul L, Sudhakar P, Korcsmaros T, Nezis IP. What We Learned From Big Data for Autophagy Research. Front. Cell Dev. Biol. 2018;6:92. doi: 10.3389/fcell.2018.00092. PubMed DOI PMC

Liu F, Marshall RS, Li F. Understanding and exploiting the roles of autophagy in plants through multi-omics approaches. Plant. Sci. 2018;274:146–152. doi: 10.1016/j.plantsci.2018.05.009. PubMed DOI PMC

Marshall RS, Vierstra RD. Autophagy: The Master of Bulk and Selective Recycling. Annu. Rev. Plant. Biol. 2018;69:173–208. doi: 10.1146/annurev-arplant-042817-040606. PubMed DOI

Wang P, Mugume Y, Bassham DC. New advances in autophagy in plants: Regulation, selectivity and function. Semin. Cell Dev. Biol. 2018;80:113–122. doi: 10.1016/j.semcdb.2017.07.018. PubMed DOI PMC

Zientara-Rytter K, Sirko A. To deliver or to degrade - an interplay of the ubiquitin-proteasome system, autophagy and vesicular transport in plants. FEBS J. 2016;283:3534–3555. doi: 10.1111/febs.13712. PubMed DOI

Masclaux-Daubresse C, Chen Q, Have M. Regulation of nutrient recycling via autophagy. Curr. Opin. Plant. Biol. 2017;39:8–17. doi: 10.1016/j.pbi.2017.05.001. PubMed DOI

Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant. Physiol. 2005;138:2097–2110. doi: 10.1104/pp.105.060673. PubMed DOI PMC

Signorelli S, Tarkowski LP, Van den Ende W, Bassham DC. Linking Autophagy to Abiotic and Biotic Stress Responses. Trends Plant. Sci. 2019;24:413–430. doi: 10.1016/j.tplants.2019.02.001. PubMed DOI PMC

Suttangkakul A, Li F, Chung T, Vierstra RD. The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant. Cell. 2011;23:3761–3779. doi: 10.1105/tpc.111.090993. PubMed DOI PMC

Gonzalez A, Hall MN. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 2017;36:397–408. doi: 10.15252/embj.201696010. PubMed DOI PMC

Robaglia C, Thomas M, Meyer C. Sensing nutrient and energy status by SnRK1 and TOR kinases. Curr. Opin. Plant. Biol. 2012;15:301–307. doi: 10.1016/j.pbi.2012.01.012. PubMed DOI

Rexin D, Meyer C, Robaglia C, Veit B. TOR signalling in plants. Biochem. J. 2015;470:1–14. doi: 10.1042/BJ20150505. PubMed DOI

Shi, L., Wu, Y. & Sheen, J. TOR signaling in plants: conservation and innovation. Development 145, 10.1242/dev.160887 (2018). PubMed PMC

Xiong Y, Sheen J. Novel links in the plant TOR kinase signaling network. Curr. Opin. Plant. Biol. 2015;28:83–91. doi: 10.1016/j.pbi.2015.09.006. PubMed DOI PMC

Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017;169:361–371. doi: 10.1016/j.cell.2017.03.035. PubMed DOI

Dong P, et al. Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis. Front. Plant. Sci. 2015;6:677. doi: 10.3389/fpls.2015.00677. PubMed DOI PMC

Caldana C, et al. Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana. Plant. J. 2013;73:897–909. doi: 10.1111/tpj.12080. PubMed DOI

Salem MA, et al. RAPTOR Controls Developmental Growth Transitions by Altering the Hormonal and Metabolic Balance. Plant. Physiol. 2018;177:565–593. doi: 10.1104/pp.17.01711. PubMed DOI PMC

Kravchenko A, et al. Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis. Biochem. Biophys. Res. Commun. 2015;467:992–997. doi: 10.1016/j.bbrc.2015.10.028. PubMed DOI

Wang P, et al. Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response. Mol. Cell. 2018;69(100-112):e106. doi: 10.1016/j.molcel.2017.12.002. PubMed DOI PMC

Kim BW, Kwon DH, Song HK. Structure biology of selective autophagy receptors. BMB Rep. 2016;49:73–80. doi: 10.5483/BMBRep.2016.49.2.265. PubMed DOI PMC

Stolz A, Ernst A, Dikic I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 2014;16:495–501. doi: 10.1038/ncb2979. PubMed DOI

Zaffagnini G, Martens S. Mechanisms of Selective Autophagy. J. Mol. Biol. 2016;428:1714–1724. doi: 10.1016/j.jmb.2016.02.004. PubMed DOI PMC

Kirkin, V. History of The Selective Autophagy Research: How Did It Begin and Where Does It Stand Today? J Mol Biol, 10.1016/j.jmb.2019.05.010 (2019). PubMed PMC

Zhou J, et al. NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genet. 2013;9:e1003196. doi: 10.1371/journal.pgen.1003196. PubMed DOI PMC

Svenning S, Lamark T, Krause K, Johansen T. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy. 2011;7:993–1010. doi: 10.4161/auto.7.9.16389. PubMed DOI PMC

Zientara-Rytter K, et al. Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors. Autophagy. 2011;7:1145–1158. doi: 10.4161/auto.7.10.16617. PubMed DOI PMC

Zientara-Rytter K, Sirko A. Selective autophagy receptor Joka2 co-localizes with cytoskeleton in plant cells. Plant. Signal. Behav. 2014;9:e28523. doi: 10.4161/psb.28523. PubMed DOI PMC

Zientara-Rytter K, Sirko A. Significant role of PB1 and UBA domains in multimerization of Joka2, a selective autophagy cargo receptor from tobacco. Front. Plant. Sci. 2014;5:13. doi: 10.3389/fpls.2014.00013. PubMed DOI PMC

Dagdas, Y. F. et al. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. Elife 5, 10.7554/eLife.10856 (2016). PubMed PMC

Dagdas, Y. F. et al. Host autophagy machinery is diverted to the pathogen interface to mediate focal defense responses against the Irish potato famine pathogen. Elife 7, 10.7554/eLife.37476 (2018). PubMed PMC

Hafren A, Hofius D. NBR1-mediated antiviral xenophagy in plant immunity. Autophagy. 2017;13:2000–2001. doi: 10.1080/15548627.2017.1339005. PubMed DOI PMC

Hafren A, et al. Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. Proc. Natl Acad. Sci. USA. 2017;114:E2026–E2035. doi: 10.1073/pnas.1610687114. PubMed DOI PMC

Hafren A, et al. Turnip Mosaic Virus Counteracts Selective Autophagy of the Viral Silencing Suppressor HCpro. Plant. Physiol. 2018;176:649–662. doi: 10.1104/pp.17.01198. PubMed DOI PMC

Rodriguez MC, Wawrzynska A, Sirko A. Intronic T-DNA insertion in Arabidopsis NBR1 conditionally affects wild-type transcript level. Plant. Signal. Behav. 2014;9:e975659. doi: 10.4161/15592324.2014.975659. PubMed DOI PMC

Yoshida T, Mogami J, Yamaguchi-Shinozaki K. Omics Approaches Toward Defining the Comprehensive Abscisic Acid Signaling Network in Plants. Plant. Cell Physiol. 2015;56:1043–1052. doi: 10.1093/pcp/pcv060. PubMed DOI

Yu F, Wu Y, Xie Q. Ubiquitin-Proteasome System in ABA Signaling: From Perception to Action. Mol. Plant. 2016;9:21–33. doi: 10.1016/j.molp.2015.09.015. PubMed DOI

Yang W, Zhang W, Wang X. Post-translational control of ABA signalling: the roles of protein phosphorylation and ubiquitination. Plant. Biotechnol. J. 2017;15:4–14. doi: 10.1111/pbi.12652. PubMed DOI PMC

Yu F, et al. ESCRT-I Component VPS23A Affects ABA Signaling by Recognizing ABA Receptors for Endosomal Degradation. Mol. Plant. 2016;9:1570–1582. doi: 10.1016/j.molp.2016.11.002. PubMed DOI

Yu F, Xie Q. Non-26S Proteasome Endomembrane Trafficking Pathways in ABA Signaling. Trends Plant. Sci. 2017;22:976–985. doi: 10.1016/j.tplants.2017.08.009. PubMed DOI

Vanhee C, Zapotoczny G, Masquelier D, Ghislain M, Batoko H. The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. Plant. Cell. 2011;23:785–805. doi: 10.1105/tpc.110.081570. PubMed DOI PMC

Antoni R, et al. Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors. Plant. Physiol. 2012;158:970–980. doi: 10.1104/pp.111.188623. PubMed DOI PMC

Ma, Y. et al. Molecular Mechanism for the Regulation of ABA Homeostasis During Plant Development and Stress Responses. Int J Mol Sci 19, 10.3390/ijms19113643 (2018). PubMed PMC

Saito S, et al. Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant. Physiol. 2004;134:1439–1449. doi: 10.1104/pp.103.037614. PubMed DOI PMC

Priest DM, et al. Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. Plant. J. 2006;46:492–502. doi: 10.1111/j.1365-313X.2006.02701.x. PubMed DOI

Lee KH, et al. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell. 2006;126:1109–1120. doi: 10.1016/j.cell.2006.07.034. PubMed DOI

Xu ZY, et al. A vacuolar beta-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. Plant. Cell. 2012;24:2184–2199. doi: 10.1105/tpc.112.095935. PubMed DOI PMC

Kuromori T, Seo M, Shinozaki K. ABA Transport and Plant Water Stress Responses. Trends Plant. Sci. 2018;23:513–522. doi: 10.1016/j.tplants.2018.04.001. PubMed DOI

Yoshida, T. et al. Insights into ABA-mediated regulation of guard cell primary metabolism revealed by systems biology approaches. Prog Biophys Mol Biol, 10.1016/j.pbiomolbio.2018.11.006 (2018). PubMed

Harris JM. Abscisic Acid: Hidden Architect of Root System Structure. Plants. 2015;4:548–572. doi: 10.3390/plants4030548. PubMed DOI PMC

Zhang H, et al. ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. Plant. J. 2010;64:764–774. doi: 10.1111/j.1365-313X.2010.04367.x. PubMed DOI

Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant. J. 2002;32:317–328. doi: 10.1046/j.1365-313X.2002.01430.x. PubMed DOI

Lumba S, et al. A mesoscale abscisic acid hormone interactome reveals a dynamic signaling landscape in Arabidopsis. Dev. Cell. 2014;29:360–372. doi: 10.1016/j.devcel.2014.04.004. PubMed DOI

Goda H, et al. The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant. J. 2008;55:526–542. doi: 10.1111/j.0960-7412.2008.03510.x. PubMed DOI

Monke G, et al. Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Res. 2012;40:8240–8254. doi: 10.1093/nar/gks594. PubMed DOI PMC

Reeves WM, Lynch TJ, Mobin R, Finkelstein RR. Direct targets of the transcription factors ABA-Insensitive(ABI)4 and ABI5 reveal synergistic action by ABI4 and several bZIP ABA response factors. Plant. Mol. Biol. 2011;75:347–363. doi: 10.1007/s11103-011-9733-9. PubMed DOI PMC

Skubacz A, Daszkowska-Golec A, Szarejko I. The Role and Regulation of ABI5 (ABA-Insensitive 5) in Plant Development, Abiotic Stress Responses and Phytohormone Crosstalk. Front. Plant. Sci. 2016;7:1884. doi: 10.3389/fpls.2016.01884. PubMed DOI PMC

Piskurewicz U, Lopez-Molina L. The GA-signaling repressor RGL3 represses testa rupture in response to changes in GA and ABA levels. Plant. Signal. Behav. 2009;4:63–65. doi: 10.4161/psb.4.1.7331. PubMed DOI PMC

Shi H, Liu W, Wei Y, Ye T. Integration of auxin/indole-3-acetic acid 17 and RGA-LIKE3 confers salt stress resistance through stabilization by nitric oxide in Arabidopsis. J. Exp. Bot. 2017;68:1239–1249. doi: 10.1093/jxb/erw508. PubMed DOI

Shu K, Zhou W, Chen F, Luo X. & Yang, W. Abscisic Acid and Gibberellins Antagonistically Mediate Plant Development and Abiotic Stress Responses. Front. Plant. Sci. 2018;9:416. doi: 10.3389/fpls.2018.00416. PubMed DOI PMC

Shu K, Zhou W, Yang W. APETALA 2-domain-containing transcription factors: focusing on abscisic acid and gibberellins antagonism. N. Phytol. 2018;217:977–983. doi: 10.1111/nph.14880. PubMed DOI

Zhang P, et al. The R2R3-MYB Transcription Factor MYB49 Regulates Cadmium Accumulation. Plant. Physiol. 2019;180:529–542. doi: 10.1104/pp.18.01380. PubMed DOI PMC

Chen C, et al. ASCORBATE PEROXIDASE6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin. Plant. Physiol. 2014;166:370–383. doi: 10.1104/pp.114.245324. PubMed DOI PMC

Gampala SS, Finkelstein RR, Sun SS, Rock CD. ABI5 interacts with abscisic acid signaling effectors in rice protoplasts. J. Biol. Chem. 2002;277:1689–1694. doi: 10.1074/jbc.M109980200. PubMed DOI

Xie Y, et al. Arabidopsis HY1-Modulated Stomatal Movement: An Integrative Hub Is Functionally Associated with ABI4 in Dehydration-Induced ABA Responsiveness. Plant. Physiol. 2016;170:1699–1713. doi: 10.1104/pp.15.01550. PubMed DOI PMC

Mu Y, et al. BASIC PENTACYSTEINE Proteins Repress ABSCISIC ACID INSENSITIVE4 Expression via Direct Recruitment of the Polycomb-Repressive Complex 2 in Arabidopsis Root Development. Plant. Cell Physiol. 2017;58:607–621. doi: 10.1093/pcp/pcx006. PubMed DOI

Shkolnik-Inbar D, Bar-Zvi D. ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant. Cell. 2010;22:3560–3573. doi: 10.1105/tpc.110.074641. PubMed DOI PMC

Tarnowski L, et al. Overexpression of the selective autophagy cargo receptor NBR1 modifies plant response to sulfur deficit. Cells. 2020;9:669. doi: 10.3390/cells9030669. PubMed DOI PMC

Zientara K, et al. Activity of the AtMRP3 promoter in transgenic Arabidopsis thaliana and Nicotiana tabacum plants is increased by cadmium, nickel, arsenic, cobalt and lead but not by zinc and iron. J. Biotechnol. 2009;139:258–263. doi: 10.1016/j.jbiotec.2008.12.001. PubMed DOI

Liu, N., Ding, Y., Fromm, M. & Avramova, Z. Endogenous ABA Extraction and Measurement from Arabidopsis Leaves. Bio Protoc 4 (2014). PubMed PMC

Dobrev PI, Hoyerova K, Petrasek J. Analytical Determination of Auxins and Cytokinins. Methods Mol. Biol. 2017;1569:31–39. doi: 10.1007/978-1-4939-6831-2_2. PubMed DOI

Dobrev PI, Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A. 2002;950:21–29. doi: 10.1016/s0021-9673(02)00024-9. PubMed DOI

Martin K, et al. Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta. Plant. J. 2009;59:150–162. doi: 10.1111/j.1365-313X.2009.03850.x. PubMed DOI

Shannon P, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC

Morris JH, Kuchinsky A, Ferrin TE, Pico A. R. enhancedGraphics: a Cytoscape app for enhanced node graphics. F1000Res. 2014;3:147. doi: 10.12688/f1000research.4460.1. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace