Structural and biological survey of 7-chloro-4-(piperazin-1-yl)quinoline and its derivatives

. 2020 Nov ; 81 (7) : 786-802. [epub] 20200508

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32385857

Grantová podpora
17-00121S Grantová Agentura České Republiky - International
CZ.02.1.01/0.0/0.0/16_019/0000 729 European Regional Development Fund - International
Czech Science Foundation - International
National Research Centre - International

The 7-chloro-4-(piperazin-1-yl)quinoline structure is an important scaffold in medicinal chemistry. It exhibited either alone or as hybrid with other active pharmacophores diverse pharmacological profiles such as: antimalarial, antiparasitic, anti-HIV, antidiabetic, anticancer, sirtuin Inhibitors, dopamine-3 ligands, acetylcholinesterase inhibitors, and serotonin antagonists. In the presented review, a comprehensive discussion of compounds having this structural core is surveyed and illustrated.

Zobrazit více v PubMed

Abd-Allah, W. H., & Elshafie, M. F. (2018). Synthesis and biological evaluation of certain new cyclohexane-1-carboxamides as apoptosis inducers. Oriental Journal of Chemistry, 34(2), 825-833. https://doi.org/10.13005/ojc/340228

Aboul-Enein, M. N., El-Azzouny, A. M. A. E.-S., Ragab, F. A.-F., & Hamissa, M. F. (2017). Design, synthesis, and cytotoxic evaluation of certain 7-chloro-4-(piperazin-1-yl)quinoline derivatives as VEGFR-II inhibitors. Archiv der Pharmazie - Chemistry in Life Sciences, 350(3-4), 1600377. https://doi.org/10.1002/ardp.201600377

Abouzid, K., & Shouman, S. (2008). Design, synthesis and in vitro antitumor activity of 4-aminoquinoline and 4-aminoquinazoline derivatives targeting EGFR tyrosine kinase. Bioorganic & Medicinal Chemistry, 16(16), 7543-7551. https://doi.org/10.1016/j.bmc.2008.07.038

Ananthan, S., Saini, S. K., Zhou, G., Hobrath, J. V., Padmalayam, I., Zhai, L., … Luedtke, R. R. (2014). Design, synthesis, and structure-activity relationship studies of a series of [4-(4-carboxamidobutyl)]-1-arylpiperazines: Insights into structural features contributing to dopamine D3 versus D2 receptor subtype selectivity. Journal of Medicinal Chemistry, 57(16), 7042-7060. https://doi.org/10.1021/jm500801r

Andrews, S., Burgess, S. J., Skaalrud, D., Kelly, J. X., & Peyton, D. H. (2010). Reversal agent and linker variants of reversed chloroquines: Activities against Plasmodium falciparum. Journal of Medicinal Chemistry, 53(2), 916-919. https://doi.org/10.1021/jm900972u

Ansari, M. F., Hayat, F., Inam, A., Kathrada, F., van Zyl, R. L., Coetzee, M., … Azam, A. (2017). New antiprotozoal agents: Synthesis and biological evaluation of different 4-(((7-chloroquinolin-4-yl) piperazin-1-yl)pyrrolidin-2-yl)methanone derivatives. Bioorganic & Medicinal Chemistry, 27(3), 460-465. https://doi.org/10.1016/j.bmcl.2016.12.043

Araújo, N. C. P., Barton, V., Jones, M., Stocks, P. A., Ward, S. A., Davies, J., … O'Neill, P. M. (2009). Semi-synthetic and synthetic 1,2,4-trioxaquines and 1,2,4-trioxolaquines: Synthesis, preliminary SAR and comparison with acridine endoperoxide conjugates. Bioorganic & Medicinal Chemistry Letters, 19(7), 2038-2043. https://doi.org/10.1016/j.bmcl.2009.02.013

Bathula, C., Ghosh, S., Hati, S., Tripathy, S., Singh, S., Chakrabarti, S., & Sen, S. (2017). Bioisosteric modification of known fucosidase inhibitors to discover a novel inhibitor of α-l-fucosidase. RSC Advances, 7(6), 3563-3572. https://doi.org/10.1039/C6RA24939F

Bian, T., Chandagirikoppal Vijendra, K., Wang, Y., Meacham, A., Hati, S., Cogle, C. R., … Xing, C. (2018). Exploring the structure-activity relationship and mechanism of a chromene scaffold (CXL series) for its selective antiproliferative activity toward multidrug-resistant cancer cells. Journal of Medicinal Chemistry, 61(15), 6892-6903. https://doi.org/10.1021/acs.jmedchem.8b00813

Blake, J. F., Kallan, N. C., Xiao, D., Xu, R., Bencsik, J. R., Skelton, N. J., … Brandhuber, B. J. (2010). Discovery of pyrrolopyrimidine inhibitors of Akt. Bioorganic & Medicinal Chemistry Letters, 20(19), 5607-5612. https://doi.org/10.1016/j.bmcl.2010.08.053

Bogdanov, A. V., ABM, V., Khasiyatullina, N. R., Krivolapov, D. B., Dobrynin, A. B., Voloshina, A. D., & Mironov, V. F. (2016). New N-Mannich bases obtained from isatin and piperazine derivatives: the synthesis and evaluation of antimicrobial activity. Chemistry of Heterocyclic Compounds, 52(1), 25-30. https://doi.org/10.1007/s10593-016-1826-6

Burnett, J. C., Schmidt, J. J., Stafford, R. G., Panchal, R. G., Nguyen, T. L., Hermone, A. R., … Bavari, S. (2003). Novel small molecule inhibitors of botulinum neurotoxin A metalloprotease activity. Biochemical and Biophysical Research Communications, 310(1), 84-93. https://doi.org/10.1016/j.bbrc.2003.08.112

Byakika-Kibwika, P., Ssenyonga, R., Lamorde, M., Blessborn, D., & Tarning, J. (2019). Piperaquine concentration and malaria treatment outcomes in Ugandan children treated for severe malaria with intravenous Artesunate or quinine plus Dihydroartemisinin-Piperaquine. BMC Infectious Diseases, 19(1), 1025. https://doi.org/10.1186/s12879-019-4647-2

Chibale, K., Greenbaum, D. C., & Mckerrow, J. H. (2005). Anti-parasitic compounds and methods of their use. WO2005087211A1.

Chipeleme, A., Gut, J., Rosenthal, P. J., & Chibale, K. (2007). Synthesis and biological evaluation of phenolic Mannich bases of benzaldehyde and (thio)semicarbazone derivatives against the cysteine protease falcipain-2 and a chloroquine resistant strain of Plasmodium falciparum. Bioorganic & Medicinal Chemistry, 15(1), 273-282. https://doi.org/10.1016/j.bmc.2006.09.055

Chiyanzu, I., Clarkson, C., Smith, P. J., Lehman, J., Gut, J., Rosenthal, P. J., & Chibale, K. (2005). Design, synthesis and anti-plasmodial evaluation in vitro of new 4-aminoquinoline isatin derivatives. Bioorganic & Medicinal Chemistry, 13(9), 3249-3261. https://doi.org/10.1016/j.bmc.2005.02.037

Chotsiri, P., Zongo, I., Milligan, P., Compaore, Y. D., Somé, A. F., Chandramohan, D., … Tarning, J. (2019). Optimal dosing of dihydroartemisinin-piperaquine for seasonal malaria chemoprevention in young children. Nature Communications, 10(1), 480. https://doi.org/10.1038/s41467-019-08297-9

Chu, C. S., Phyo, A. P., Turner, C., Win, H. H., Poe, N. P., Yotyingaphiram, W., … White, N. J. (2018). Chloroquine versus dihydroartemisinin-piperaquine with standard high-dose primaquine given either for 7 days or 14 days in Plasmodium vivax Malaria. Clinical Infectious Diseases, 68(8), 1311-1319. https://doi.org/10.1093/cid/ciy735

Clarkson, C., Musonda, C. C., Chibale, K., Campbell, W. E., & Smith, P. (2003). Synthesis of totarol amino alcohol derivatives and their antiplasmodial activity and cytotoxicity. Bioorganic & Medicinal Chemistry, 11(20), 4417-4422. https://doi.org/10.1016/S0968-0896(03)00491-7

Cortegiani, A., Ingoglia, G., Ippolito, M., Giarratano, A., & Einav, S. (2020). A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. Journal of Critical Care. https://doi.org/10.1016/j.jcrc.2020.03.005

Dahl, R. (2016). Quinolines and their use for treating endoplasmic reticulum stress-caused diseases. WO2016032569A1.

Davis, T. M. E., Hung, T.-Y., Sim, I.-K., Karunajeewa, H. A., & Ilett, K. F. (2005). Piperaquine. Drugs, 65(1), 75-87. https://doi.org/10.2165/00003495-200565010-00004

Faist, J., Hinteregger, C., Seebacher, W., Saf, R., Mäser, P., Kaiser, M., & Weis, R. (2017). New derivatives of 7-chloroquinolin-4-amine with antiprotozoal activity. Bioorganic & Medicinal Chemistry, 25(3), 941-948. https://doi.org/10.1016/j.bmc.2016.12.006

Feng, T.-S., Guantai, E. M., Nell, M. J., van Rensburg, C. E. J., Hoppe, H. C., & Chibale, K. (2011). Antiplasmodial and antitumor activity of dihydroartemisinin analogs derived via the aza-Michael addition reaction. Bioorganic & Medicinal Chemistry Letters, 21(10), 2882-2886. https://doi.org/10.1016/j.bmcl.2011.03.090

Funck-Brentano, C., Bacchieri, A., Valentini, G., Pace, S., Tommasini, S., Voiriot, P., … Corsi, M. (2019). Effects of dihydroartemisinin-piperaquine phosphate and artemether-lumefantrine on qtc interval prolongation. Scientific Reports, 9(1), 777. https://doi.org/10.1038/s41598-018-37112-6

Gauthier, B., Renault, J., Gobert, J. G., & Leluan, G. (1986). Aminoquinolines. Chemical, antiparasitic, antimicrobial and antifungal studies of 4-(mono-, di- and tri-4-chloroacetyl-1-piperazinyl)quinolines. Annales Pharmaceutiques Françaises, 44(1), 55-64.

Gemma, S., Camodeca, C., Sanna Coccone, S., Joshi, B. P., Bernetti, M., Moretti, V., … Butini, S. (2012). Optimization of 4-aminoquinoline/clotrimazole-based hybrid antimalarials: Further structure-activity relationships, in vivo studies, and preliminary toxicity profiling. Journal of Medicinal Chemistry, 55(15), 6948-6967. https://doi.org/10.1021/jm300802s

Guantai, E. M., Ncokazi, K., Egan, T. J., Gut, J., Rosenthal, P. J., Bhampidipati, R., … Chibale, K. (2011). Enone- and chalcone-chloroquinoline hybrid analogues: In silico guided design, synthesis, antiplasmodial activity, in vitro metabolism, and mechanistic studies. Journal of Medicinal Chemistry, 54(10), 3637-3649. https://doi.org/10.1021/jm200149e

Hassan, R. M., Abd-Allah, W. H., Salman, A. M., El-Azzouny, A. A.-S., & Aboul-Enein, M. N. (2019). Design, synthesis and anticancer evaluation of novel 1,3-benzodioxoles and 1,4-benzodioxines. European Journal of Pharmaceutical Sciences, 139, 105045. https://doi.org/10.1016/j.ejps.2019.105045

Hati, S., Tripathy, S., Dutta, P. K., Agarwal, R., Srinivasan, R., Singh, A., … Sen, S. (2016). Spiro[pyrrolidine-3, 3′-oxindole] as potent anti-breast cancer compounds: Their design, synthesis, biological evaluation and cellular target identification. Scientific Reports, 6(1), 32213. https://doi.org/10.1038/srep32213

Inam, A., Siddiqui, S. M., Macedo, T. S., Moreira, D. R. M., Leite, A. C. L., Soares, M. B. P., & Azam, A. (2014). Design, synthesis and biological evaluation of 3-[4-(7-chloro-quinolin-4-yl)-piperazin-1-yl]-propionic acid hydrazones as antiprotozoal agents. European Journal of Medicinal Chemistry, 75, 67-76. https://doi.org/10.1016/j.ejmech.2014.01.023

Inam, A., Van Zyl, R. L., van Vuuren, N. J., Chen, C.-T., Avecilla, F., Agarwal, S. M., & Azam, A. (2015). Chloroquinoline-acetamide hybrids: a promising series of potential antiprotozoal agents. RSC Advances, 5(60), 48368-48381. https://doi.org/10.1039/C5RA05472A

Jeankumar, V. U., Reshma, R. S., Vats, R., Janupally, R., Saxena, S., Yogeeswari, P., & Sriram, D. (2016). Engineering another class of anti-tubercular lead: Hit to lead optimization of an intriguing class of gyrase ATPase inhibitors. European Journal of Medicinal Chemistry, 122, 216-231. https://doi.org/10.1016/j.ejmech.2016.06.042

Kalil, A. C. (2020). Treating COVID-19-off-label drug use, compassionate use, and randomized clinical trials during pandemics. Journal of the American Medical Association. https://doi.org/10.1001/jama.2020.4742

Kamal, A., Shaik, A., Shaik, A. A., Malik, M. S., Khan, I. A., Abdullah, S. T., … Ram, A. B. (2011). Quinolylpiperazino substituted thiolactone compounds and process for the preparation thereof. WO2011138666A1.

Karunajeewa, H., Lim, C., Hung, T.-Y., Ilett, K. F., Denis, M. B., Socheat, D., & Davis, T. M. E. (2004). Safety evaluation of fixed combination piperaquine plus dihydroartemisinin (Artekin®) in Cambodian children and adults with malaria. British Journal of Clinical Pharmacology, 57(1), 93-99. https://doi.org/10.1046/j.1365-2125.2003.01962.x

Kaur, H., Balzarini, J., de Kock, C., Smith, P. J., Chibale, K., & Singh, K. (2015). Synthesis, antiplasmodial activity and mechanistic studies of pyrimidine-5-carbonitrile and quinoline hybrids. European Journal of Medicinal Chemistry, 101, 52-62. https://doi.org/10.1016/j.ejmech.2015.06.024

Kazantsev, A. G. (2008). Compositions and methods for modulating sirtuin activity. US20080021063A1.

Kumar, A., Srivastava, K., Raja Kumar, S., Puri, S. K., & Chauhan, P. M. S. (2010). Synthesis of new 4-aminoquinolines and quinoline-acridine hybrids as antimalarial agents. Bioorganic & Medicinal Chemistry Letters, 20(23), 7059-7063. https://doi.org/10.1016/j.bmcl.2010.09.107

Kumar, N., Hati, S., Munshi, P., Sen, S., Sehrawat, S., & Singh, S. (2017). A novel spiroindoline targets cell cycle and migration via modulation of microtubule cytoskeleton. Molecular and Cellular Biochemistry, 429(1), 11-21. https://doi.org/10.1007/s11010-016-2932-6

Kumawat, M. K., Parida, P., & Chetia, D. (2016). Synthesis, antimalarial activity evaluation and docking studies of some novel tetraoxaquines. Medicinal Chemistry Research, 25(9), 1993-2004. https://doi.org/10.1007/s00044-016-1644-5

Kushwaha, R. N., Debnath, U., Singh, P., Saxena, R., Gupta, S. K., Tripathi, R. K., … Katt, S. B. (2015). New piperazine-derived NNRTIs as anti-HIV agent: Synthesis, biological evaluation and molecular docking studies. Indo American Journal of Pharmaceutical Research, 5(1), 408-421. http://dx.doi.org/10.1044/1980-iajpr.141232.

Kushwaha, R. N., Srivastava, R., Mishra, A., Rawat, A. K., Srivastava, A. K., Haq, W., & Katti, S. B. (2015). Design, synthesis, biological screening, and molecular docking studies of piperazine-derived constrained inhibitors of DPP-IV for the treatment of type 2 diabetes. Chemical Biology & Drug Design, 85(4), 439-446. https://doi.org/10.1111/cbdd.12426

Lairson, L. L., Bollong, M. J., Schultz, P. G., & Mani, S. A. (2019). Small molecule inhibitors of cancer stem cells and mesenchymal cancer types. WO2019089577A1.

Lee, H., Solomon, V. R., & Pundir, S. (2014). Quinoline sulfonyl derivatives and uses thereof. WO2014134705A1.

Liu, Y., Zhou, E., Yu, K., Zhu, J., Zhang, Y., Xie, X., … Jiang, H. (2008). Discovery of a novel CCR5 antagonist lead compound through fragment assembly. Molecules, 13(10), 2426-2441 https://www.mdpi.com/1420-3049/13/10/2426

Lombard, M. C., N'Da, D. D., Breytenbach, J. C., Smith, P. J., & Lategan, C. A. (2011). Synthesis, in vitro antimalarial and cytotoxicity of artemisinin-aminoquinoline hybrids. Bioorganic & Medicinal Chemistry Letters, 21(6), 1683-1686. https://doi.org/10.1016/j.bmcl.2011.01.103

Maether, M.-P., Bernat, V., Maturano, M., André-Barrès, C., Ladeira, S., Valentin, A., … Payrastre, C. (2011). Synthesis and antiplasmodial activity of streptocyanine/peroxide and streptocyanine/4-aminoquinoline hybrid dyes. Organic & Biomolecular Chemistry, 9(21), 7400-7410. https://doi.org/10.1039/C1OB06048A

Majumdar, P., Bathula, C., Basu, S. M., Das, S. K., Agarwal, R., Hati, S., … Das, B. B. (2015). Design, synthesis and evaluation of thiohydantoin derivatives as potent topoisomerase I (Top1) inhibitors with anticancer activity. European Journal of Medicinal Chemistry, 102, 540-551. https://doi.org/10.1016/j.ejmech.2015.08.032

Melato, S., Coghi, P., Basilico, N., Prosperi, D., & Monti, D. (2007). Novel 4-aminoquinolines through microwave-assisted SNAr reactions: A practical route to antimalarial agents. European Journal of Organic Chemistry, 2007(36), 6118-6123. https://doi.org/10.1002/ejoc.200700612

Musonda, C. C., Little, S., Yardley, V., & Chibale, K. (2007). Application of multicomponent reactions to antimalarial drug discovery. Part 3: Discovery of aminoxazole 4-aminoquinolines with potent antiplasmodial activity in vitro. Bioorganic & Medicinal Chemistry Letters, 17(17), 4733-4736. https://doi.org/10.1016/j.bmcl.2007.06.070

N'Da, D. D., & Smith, P. J. (2014). Synthesis, in vitro antiplasmodial and antiproliferative activities of a series of quinoline-ferrocene hybrids. Medicinal Chemistry Research, 23(3), 1214-1224. https://doi.org/10.1007/s00044-013-0748-4

Nisha, K. K., Bhargava, G., Land, K. M., Chang, K.-H., Arora, R., … Kumar, V. (2014). N-propargylated isatin-Mannich mono- and bis-adducts: Synthesis and preliminary analysis of in vitro activity against Tritrichomonas foetus. European Journal of Medicinal Chemistry, 74, 657-663. https://doi.org/10.1016/j.ejmech.2014.01.015

Nisha, T. R., Yang, D., Hall, D., Hopper, M. J., Wrischnik, L. A., … Kumar, V. (2014). Cu(I)Cl-promoted synthesis of novel N-alkylated isatin analogs with an extension toward isatin-4-aminoquinoline conjugates: in vitro analysis against Trichomonas vaginalis. Medicinal Chemistry Research, 23(10), 4570-4578. https://doi.org/10.1007/s00044-014-1024-y

Pandey, S., Agarwal, P., Srivastava, K., RajaKumar, S., Puri, S. K., Verma, P., … Chauhan, P. M. S. (2013). Synthesis and bioevaluation of novel 4-aminoquinoline-tetrazole derivatives as potent antimalarial agents. European Journal of Medicinal Chemistry, 66, 69-81. https://doi.org/10.1016/j.ejmech.2013.05.023

Pathak, P., Thakur, A., Bhat, H. R., & Singh, U. P. (2015). Hybrid 4-aminoquinoline-1,3,5-triazine derivatives: Design, synthesis, characterization, and antibacterial evaluation. Journal of Heterocyclic Chemistry, 52(4), 1108-1113. https://doi.org/10.1002/jhet.2210

Pretorius, S. I., Breytenbach, W. J., de Kock, C., Smith, P. J., & N'Da, D. D. (2013). Synthesis, characterization and antimalarial activity of quinoline-pyrimidine hybrids. Bioorganic & Medicinal Chemistry, 21(1), 269-277. https://doi.org/10.1016/j.bmc.2012.10.019

Pull, L., Lupoglazoff, J.-M., Beardmore, M., Michel, J.-F., Buffet, P., Bouchaud, O., & Siriez, J.-Y. (2019). Artenimol-piperaquine in children with uncomplicated imported falciparum malaria: experience from a prospective cohort. Malaria Journal, 18(1), 419. https://doi.org/10.1186/s12936-019-3047-9

Raj, R., Biot, C., Carrère-Kremer, S., Kremer, L., Guérardel, Y., Gut, J., … Kumar, V. (2014). 7-Chloroquinoline-isatin conjugates: Antimalarial, antitubercular, and cytotoxic evaluation. Chemical Biology & Drug Design, 83(5), 622-629. https://doi.org/10.1111/cbdd.12273

Ranjbar-Karimi, R., & Poorfreidoni, A. (2018). Incorporation of fluorinated pyridine in the side chain of 4-aminoquinolines: Synthesis, characterization and antibacterial activity. Drug Research (Stuttgart), 68(01), 17-22. https://doi.org/10.1055/s-0043-116674

Rhone-Poulenc. (1962). Nouveaux dérivés de la quinoléine et leur préparation. FR1392458A.

Ribeiro, C. J. A., Kumar, S. P., Gut, J., Gonçalves, L. M., Rosenthal, P. J., Moreira, R., & Santos, M. M. M. (2013). Squaric acid/4-aminoquinoline conjugates: Novel potent antiplasmodial agents. European Journal of Medicinal Chemistry, 69, 365-372. https://doi.org/10.1016/j.ejmech.2013.08.037

Saadeh, H. A., Al-Qaoud, K. M., Abu-Qatouseh, L. F., Shihab, P. A., Kaur, H., Goyal, K., … Mubarak, M. S. (2015). Synthesis and biological activity of novel amidrazones incorporating 5-nitroimidazole, ciprofloxacin, and 7-chloro-4-piperazinylquinoline. Medicinal Chemistry Research, 24(5), 2247-2256. https://doi.org/10.1007/s00044-014-1288-2

Saadeh, H. A., Mosleh, I. M., & Mubarak, M. S. (2009). Synthesis of novel hybrid molecules from precursors with known antiparasitic activity. Molecules, 14(4), 1483-1494 https://www.mdpi.com/1420-3049/14/4/1483

Salahuddin, A., Inam, A., van Zyl, R. L., Heslop, D. C., Chen, C.-T., Avecilla, F., … Azam, A. (2013). Synthesis and evaluation of 7-chloro-4-(piperazin-1-yl)quinoline-sulfonamide as hybrid antiprotozoal agents. Bioorganic & Medicinal Chemistry, 21(11), 3080-3089. https://doi.org/10.1016/j.bmc.2013.03.052

Saleh, Y. R. H., Saadeh, H. A., Kaur, H., Goyal, K., Sehgal, R., & Mubarak, M. S. (2015). The synthesis of novel hybrid compounds containing 5-nitrothiazole moiety as potential antiparasitic agents. Monatshefte für Chemie - Chemical Monthly, 146(12), 2087-2095. https://doi.org/10.1007/s00706-015-1511-y

Shalini, V. A., Kremer, L., & Kumar, V. (2018). Alkylated/aminated nitroimidazoles and nitroimidazole-7-chloroquinoline conjugates: Synthesis and anti-mycobacterial evaluation. Bioorganic & Medicinal Chemistry Letters, 28(8), 1309-1312. https://doi.org/10.1016/j.bmcl.2018.03.021

Shruthi, T. G., Eswaran, S., Shivarudraiah, P., Narayanan, S., & Subramanian, S. (2019). Synthesis, antituberculosis studies and biological evaluation of new quinoline derivatives carrying 1,2,4-oxadiazole moiety. Bioorganic & Medicinal Chemistry Letters, 29(1), 97-102. https://doi.org/10.1016/j.bmcl.2018.11.002

Sidorin, D. N., Kozyukov, A. V., Zakharova, V. A., Porodenko, N. V., & Krukov, L. N. (1992). Synthesis and investigation of the effect of piperazinylcholine amidophosphates on blockage of serotonin uptake. Pharmaceutical Chemistry Journal, 26(9), 767-768. https://doi.org/10.1007/bf00770631

Sikora, S. A., Poespoprodjo, J. R., Kenangalem, E., Lampah, D. A., Sugiarto, P., Laksono, I. S., … Murhandarwati, E. E. H. (2019). Intravenous artesunate plus oral dihydroartemisinin-piperaquine or intravenous quinine plus oral quinine for optimum treatment of severe malaria: lesson learnt from a field hospital in Timika, Papua, Indonesia. Malaria Journal, 18(1), 448. https://doi.org/10.1186/s12936-019-3085-3

Singh, A., Gut, J., Rosenthal, P. J., & Kumar, V. (2017). 4-Aminoquinoline-ferrocenyl-chalcone conjugates: Synthesis and anti-plasmodial evaluation. European Journal of Medicinal Chemistry, 125, 269-277. https://doi.org/10.1016/j.ejmech.2016.09.044

Singh, A., Rani, A., Gut, J., Rosenthal, P. J., & Kumar, V. (2017). Piperazine-linked 4-aminoquinoline-chalcone/ferrocenyl-chalcone conjugates: Synthesis and antiplasmodial evaluation. Chemical Biology & Drug Design, 90(4), 590-595. https://doi.org/10.1111/cbdd.12982

Singh, A., Viljoen, A., Kremer, L., & Kumar, V. (2018). Synthesis and antimycobacterial evaluation of piperazyl-alkyl-ether linked 7-chloroquinoline-chalcone/ferrocenyl chalcone conjugates. ChemistrySelect, 3(29), 8511-8513. https://doi.org/10.1002/slct.201801453

Singh, B., & Ghetia, D. (2014). Pharmaceutical compounds having anti-malarial activity. IN 2014KO00419.

Singh, J., Dhakarey, R. K. S., Singh, S. V., Suthar, M. K., Saxena, J. K., & Dwivedi, A. K. (2012). Synthesis of 4-Amino substituted Quinolines and their β -hematin inhibitory activity. Chemistry & Biology Interface, 2(5), 347-361.

Singh, T., Stein, R. G., Hoops, J. F., Biel, J. H., Hoya, W. K., & Cruz, D. R. (1971). Antimalarials. 7-Chloro-4-(substituted amino)quinolines. Journal of Medicinal Chemistry, 14(4), 283-286. https://doi.org/10.1021/jm00286a003

Smit, F. J., & N'Da, D. D. (2014). Synthesis, in vitro antimalarial activity and cytotoxicity of novel 4-aminoquinolinyl-chalcone amides. Bioorganic & Medicinal Chemistry, 22(3), 1128-1138. https://doi.org/10.1016/j.bmc.2013.12.032

Solomon, V. R., Hu, C., & Lee, H. (2010a). Design and synthesis of anti-breast cancer agents from 4-piperazinylquinoline: A hybrid pharmacophore approach. Bioorganic & Medicinal Chemistry, 18(4), 1563-1572. https://doi.org/10.1016/j.bmc.2010.01.001

Solomon, V. R., Hu, C., & Lee, H. (2010b). Design and synthesis of chloroquine analogs with anti-breast cancer property. European Journal of Medicinal Chemistry, 45(9), 3916-3923. https://doi.org/10.1016/j.ejmech.2010.05.046

Solomon, V. R., Pundir, S., & Lee, H. (2019). Examination of novel 4-aminoquinoline derivatives designed and synthesized by a hybrid pharmacophore approach to enhance their anticancer activities. Scientific Reports, 9(1), 6315. https://doi.org/10.1038/s41598-019-42816-4

Spadoni, G., Bedini, A., Bartolucci, S., Pala, D., Mor, M., Riccioni, T., … Minetti, P. (2014). Towards the development of 5-HT7 ligands combining serotonin-like and arylpiperazine moieties. European Journal of Medicinal Chemistry, 80, 8-35. https://doi.org/10.1016/j.ejmech.2014.04.034

Srivastava, S., Tewari, S., Chauhan, P. M. S., Puri, S. K., Bhaduri, A. P., & Pandey, V. C. (1999). Synthesis of bisquinolines and their in vitro ability to produce methemoglobin in canine hemolysate. Bioorganic & Medicinal Chemistry Letters, 9(5), 653-658. https://doi.org/10.1016/S0960-894X(99)00058-X

Srivastava, S., Tewari, S., Srivastava, S. K., Chauhan, P. M. S., Bhaduri, A. P., Puri, S. K., & Pandey, V. C. (1997). Synthesis of 7-chloro-4-substituted aminoquinolines and their in vitro ability to produce methemoglobin in canine hemolysate. Bioorganic & Medicinal Chemistry Letters, 7(21), 2741-2746. https://doi.org/10.1016/S0960-894X(97)10074-9

Stephen, T. A., Frank, F. P., & May, H. A. (1967). Pharmaceutical compounds having anti-malarial activity. US3331843A.

Sunduru, N., Sharma, M., Srivastava, K., Rajakumar, S., Puri, S. K., Saxena, J. K., & Chauhan, P. M. S. (2009). Synthesis of oxalamide and triazine derivatives as a novel class of hybrid 4-aminoquinoline with potent antiplasmodial activity. Bioorganic & Medicinal Chemistry, 17(17), 6451-6462. https://doi.org/10.1016/j.bmc.2009.05.075

Talley, J. J., Fretzen, A., Zimmerman, C., Barden, T., Yang, J. J., Martinez, E., … O'leary, J. (2004). Inhibitors of fungal invasion. WO2004092123A2.

Thakur, A., Khan, S. I., & Rawat, D. S. (2014). Synthesis of piperazine tethered 4-aminoquinoline-pyrimidine hybrids as potent antimalarial agents. RSC Advances, 4(40), 20729-20736. https://doi.org/10.1039/C4RA02276A

Umar, T., Shalini, S., Raza, M. K., Gusain, S., Kumar, J., Seth, P., … Hoda, N. (2019). A multifunctional therapeutic approach: Synthesis, biological evaluation, crystal structure and molecular docking of diversified 1H-pyrazolo[3,4-b]pyridine derivatives against Alzheimer's disease. European Journal of Medicinal Chemistry, 175, 2-19. https://doi.org/10.1016/j.ejmech.2019.04.038

Vennerstrom, J. L., Ager, A. L., Dorn, A., Andersen, S. L., Gerena, L., Ridley, R. G., & Milhous, W. K. (1998). Bisquinolines. 2. Antimalarial N,N-Bis(7-chloroquinolin-4-yl)heteroalkanediamines. Journal of Medicinal Chemistry., 41(22), 4360-4364. https://doi.org/10.1021/jm9803828

Viswas, R. S., Pundir, S., & Lee, H. (2019). Design and synthesis of 4-piperazinyl quinoline derived urea/thioureas for anti-breast cancer activity by a hybrid pharmacophore approach. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 620-630. https://doi.org/10.1080/14756366.2019.1571055

Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., … Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269-271. https://doi.org/10.1038/s41422-020-0282-0

World Health, O. (2019). World Health Organization model list of essential medicines: 21st list 2019. Retrieved from Geneva https://apps.who.int/iris/handle/10665/325771

Yoshida, T., Akahoshi, F., Sakashita, H., Sonda, S., Takeuchi, M., Tanaka, Y., … Hayashi, Y. (2012). Fused bicyclic heteroarylpiperazine-substituted l-prolylthiazolidines as highly potent DPP-4 inhibitors lacking the electrophilic nitrile group. Bioorganic & Medicinal Chemistry, 20(16), 5033-5041. https://doi.org/10.1016/j.bmc.2012.06.033

Youngsaye, W., Vincent, B., Hartland, C. L., Morgan, B. J., Buhrlage, S. J., Johnston, S., … Munoz, B. (2011). Piperazinyl quinolines as chemosensitizers to increase fluconazole susceptibility of Candida albicans clinical isolates. Bioorganic & Medicinal Chemistry Letters, 21(18), 5502-5505. https://doi.org/10.1016/j.bmcl.2011.06.105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...