A statistical approach for enhanced production of β-galactosidase from Paracoccus sp. and synthesis of galacto-oligosaccharides

. 2020 Oct ; 65 (5) : 811-822. [epub] 20200511

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32394298
Odkazy

PubMed 32394298
DOI 10.1007/s12223-020-00791-8
PII: 10.1007/s12223-020-00791-8
Knihovny.cz E-zdroje

A new β-galactosidase-producing bacterium KGP, isolated from the Bay of Bengal, was identified as Paracoccus marcusii through morphology, biochemistry and 16S rRNA sequencing. This study is the first report on the production of β-galactosidase from P. marcusii. The medium components for the high yield of β-galactosidase were optimised using response surface methodology (RSM). A set of 17 experiments consisting of three independent variables, viz. yeast extract, galactose and MgSO4, was employed. A second-order polynomial equation was used for the analysis of the response, and the optimum β-galactosidase yield was achieved using 12.5 g/L yeast extract, 12.5 g/L galactose and 12.5 mmol/L MgSO4. The predicted quadratic model was inferred to be significant from the F-value, P value and the lack of fit value. Optimisation of the media components resulted in a ninefold increase (560 Miller units) in β-galactosidase production. Furthermore, the hydrolysis and transgalactosylation efficiency of the crude β-galactosidase was assessed and the results showed that the lactose was successfully hydrolysed and transgalactosylated at an optimum temperature of 40 °C and 50 °C, respectively. Considering the overall yield and productivity, P. marcusii can be considered a candidate for the industrial production of β-galactosidase. This study provides an essential basis for the future production and use of the alkali-tolerant β-galactosidase from P. marcusii KGP.

Zobrazit více v PubMed

Aburto C, Castillo C, Cornejo F, Arenas-Salinas M, Vásquez C, Guerrero C, Arenas F, Illanes A, Vera C (2019) Β-galactosidase from Exiguobacterium acetylicum: cloning, expression, purification and characterization. Bioresour Technol 277:211–215. https://doi.org/10.1016/j.biortech.2019.01.005 PubMed DOI

Alikkunju AP, Sainjan N, Silvester R, Joseph A, Rahiman M, Antony AC, Kumaran RC, Hatha M (2016) Screening and characterization of cold-active β-galactosidase producing psychrotrophic Enterobacter ludwigii from the sediments of Arctic Fjord. Appl Biochem Biotechnol 180:477–490. https://doi.org/10.1007/s12010-016-2111-y PubMed DOI

Alikunju AP, Joy S, Rahiman M, Rosmine E, Antony AC, Solomon S, Manjusha K, Saramma AV, Krishnan KP, Hatha AAM (2018) A statistical approach to optimize cold active β-galactosidase production by an Arctic sediment pscychrotrophic bacteria, Enterobacter ludwigii (MCC 3423) in cheese whey. Catal Letters 148:712–724. https://doi.org/10.1007/s10562-017-2257-4 DOI

Ba D, Boyaci IH (2007) Modeling and optimization i: usability of response surface methodology. J Food Eng 78:836–845. https://doi.org/10.1016/j.jfoodeng.2005.11.024 DOI

Barboza M, Sela DA, Pirim C, LoCascio RG, Freeman SL, German JB, Mills DA, Lebrilla CB (2009) Glycoprofiling bifidobacterial consumption of galacto-oligosaccharides by mass spectrometry reveals strain-specific, preferential consumption of glycans. Appl Environ Microbiol 75:7319–7325. https://doi.org/10.1128/AEM.00842-09 PubMed DOI PMC

Boeris V, Balce I, Vennapusa RR, Rodríguez MA, Picó G, Lahore MF (2012) Production, recovery and purification of a recombinant β-galactosidase by expanded bed anion exchange adsorption. J Chromatogr B 900:32–37. https://doi.org/10.1016/j.jchromb.2012.05.024 DOI

Chan V, Dreolini LF, Flintoff KA et al (2002) The effects of glycerol, glucose, galactose, lactose and glucose with galactose on the induction of β-galactosidase in Escherichia coli. J Exp Microbiol Immunol 2:130–137

Chanalia P, Gandhi D, Attri P, Dhanda S (2018) Purification and characterization of β-galactosidase from probiotic Pediococcus acidilactici and its use in milk lactose hydrolysis and galactooligosaccharide synthesis. Bioorg Chem 77:176–189. https://doi.org/10.1016/j.bioorg.2018.01.006 PubMed DOI

Das B, Roy AP, Bhattacharjee S, Chakraborty S, Bhattacharjee C (2015) Lactose hydrolysis by β-galactosidase enzyme: optimization using response surface methodology. Ecotoxicol Environ Saf 121:244–252. https://doi.org/10.1016/j.ecoenv.2015.03.024 PubMed DOI

Dragosits M, Pflügl S, Kurz S et al (2014) Recombinant Aspergillus β-galactosidases as a robust glycomic and biotechnological tool. 98:3553–3567. https://doi.org/10.1007/s00253-013-5192-3

Ghosh M, Pulicherla KK, Rekha VPB, Raja PK, Sambasiva Rao KRS (2012) Cold active β-galactosidase from Thalassospira sp. 3SC-21 to use in milk lactose hydrolysis: a novel source from deep waters of Bay-of-Bengal. World J Microbiol Biotechnol 28:2859–2869. https://doi.org/10.1007/s11274-012-1097-z PubMed DOI

González-Delgado I, López-Muñoz MJ, Morales G, Segura Y (2016) Optimisation of the synthesis of high galacto-oligosaccharides (GOS) from lactose with β-galactosidase from Kluyveromyces lactis. Int Dairy J 61:211–219. https://doi.org/10.1016/j.idairyj.2016.06.007 DOI

González-Delgado I, Segura Y, Morales G, López-Muñoz MJ (2017) Production of high galacto-oligosaccharides by pectinex ultra SP-L: optimization of reaction conditions and immobilization on glyoxyl-functionalized silica. J Agric Food Chem 65:1649–1658. https://doi.org/10.1021/acs.jafc.6b05431 PubMed DOI

Gunst RF, Myers RH, Montgomery DC (1996) Response surface methodology: process and product optimization using designed experiments. Technometrics 38:285. https://doi.org/10.2307/1270613 DOI

Han YR, Youn SY, Ji GE, Park MS (2014) Production of α- and β-galactosidases from Bifidobacterium longum subsp. longum RD47. J Microbiol Biotechnol 24:675–682. https://doi.org/10.4014/jmb.1402.02037 PubMed DOI

Harker M, Hirschberg J, Oren A (1998) Paracoccus marcusii sp. nov., an orange Gram-negative coccus. Int J Syst 48:543–548

Heyndrickx M, Logan NA, Lebbe L, Rodríguez-Díaz M, Forsyth G, Goris J, Scheldeman P, de Vos P (2004) Bacillus galactosidilyticus sp. nov., an alkali-tolerant β-galactosidase producer. Int J Syst Evol Microbiol 54:617–621. https://doi.org/10.1099/ijs.0.02816-0 PubMed DOI

Honda H, Yajima N, Saito T (2012) Characterization of lactose utilization and β-galactosidase in Lactobacillus brevis KB290, the hetero-fermentative lactic acid bacterium. Curr Microbiol 65:679–685. https://doi.org/10.1007/s00284-012-0216-2 PubMed DOI

Intanon M, Arreola SL, Pham NH, Kneifel W, Haltrich D, Nguyen TH (2014) Nature and biosynthesis of galacto-oligosaccharides related to oligosaccharides in human breast milk. FEMS Microbiol Lett 353:89–97. https://doi.org/10.1111/1574-6968.12407 PubMed DOI PMC

Ismail AR, El-Henawy SB, Younis SA et al (2018) Statistical enhancement of lipase extracellular production by Bacillus stratosphericus PSP8 in a batch submerged fermentation process. J Appl Microbiol 125:1076–1093. https://doi.org/10.1111/jam.14023 PubMed DOI

Kamran A, Bibi Z, Aman A, Qader SAU (2016) Lactose hydrolysis approach: isolation and production of β-galactosidase from newly isolated Bacillus strain B-2. Biocatal Agric Biotechnol 5:99–103. https://doi.org/10.1016/j.bcab.2015.12.010 DOI

Kamran A, Bibi Z, Aman A, Qader SAU (2017) Hyper production of β-galactosidase from newly isolated strain of Aspergillus nidulans. J Food Process Eng 40:1–10. https://doi.org/10.1111/jfpe.12452 DOI

Kareb O, Aïder M (2019) Whey and its derivatives for probiotics, prebiotics, synbiotics, and functional foods: a critical review. Probiotics Antimicrob Proteins 11:348–369. https://doi.org/10.1007/s12602-018-9427-6 PubMed DOI

Kim SR, Song SY, Kim DS, Lee JW, Kim BG, Bae DS, Song ES, Joo HJ (2007) Pad - a new self-collection device for human papillomavirus. Int J STD AIDS 18:163–166. https://doi.org/10.1258/095646207780132532 PubMed DOI

Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83 DOI

Miller JH (1972) Assay of B-galactosidase. In: Experiments in molecular genetics, pp 352–355

Miller JH (1992) A short course in bacterial genetics: a laboratory manual for Escherichia coli and related bacteria. Cold Spring Harb:456

Mondin R, Josephson B, Liu K (2002) The effect of glucose, lactose, and galactose on the induction of β-galactosidase in E. coli. J Exp Microbiol Immunol 2:22–26

Nath A, Chowdhury R, Bhattacharjee C, Maitra M (2016) Production of β-galactosidase in a batch bioreactor using whey through microbial route – characterization of isolate and reactor model. Period Polytech Chem Eng 60:298–312. https://doi.org/10.3311/PPch.8286 DOI

Panesar PS, Panesar R, Singh RS, Kennedy JF, Kumar H (2006) Microbial production, immobilization and applications of β-D-galactosidase. J Chem Technol Biotechnol 81:530–543. https://doi.org/10.1002/jctb.1453 DOI

Panesar PS, Kaur R, Singh RS, Kennedy JF (2018) Biocatalytic strategies in the production of galacto-oligosaccharides and its global status. Int J Biol Macromol 111:667–679. https://doi.org/10.1016/j.ijbiomac.2018.01.062 PubMed DOI

Raol GG, Raol BV, Prajapati VS, Patel KC (2015) Kinetic and thermodynamic characterization of a halotolerant β-galactosidase produced by halotolerant Aspergillus tubingensis GR1. J Basic Microbiol 55:879–889. https://doi.org/10.1002/jobm.201400747 PubMed DOI

Sabater C, Fara A, Palacios J, Corzo N, Requena T, Montilla A, Zárate G (2019) Synthesis of prebiotic galactooligosaccharides from lactose and lactulose by dairy Propionibacteria. Food Microbiol 77:93–105. https://doi.org/10.1016/j.fm.2018.08.014 PubMed DOI

Sen S, Ray L, Chattopadhyay P (2012) Production, purification, immobilization, and characterization of a thermostable β-galactosidase from Aspergillus alliaceus. Appl Biochem Biotechnol 167:1938–1953. https://doi.org/10.1007/s12010-012-9732-6 PubMed DOI

Silbir S, Dagbagli S, Yegin S, Baysal T, Goksungur Y (2014) Levan production by Zymomonas mobilis in batch and continuous fermentation systems. Carbohydr Polym 99:454–461. https://doi.org/10.1016/j.carbpol.2013.08.031 PubMed DOI

Sorensen JL, Sondergaard TE (2014) The effects of different yeast extracts on secondary metabolite production in Fusarium. Int J Food Microbiol 170:55–60. https://doi.org/10.1016/j.ijfoodmicro.2013.10.024 PubMed DOI

Vasileva N, Ivanov Y, Damyanova S, Kostova I (2016) Hydrolysis of whey lactose by immobilized B-galactosidase in a bioreactor with a spirally wound membrane. Int J Biol Macromol 82:339–346. https://doi.org/10.1016/j.ijbiomac.2015.11.025 PubMed DOI

Wellenbeck W, Mampel J, Naumer C, Knepper A, Neubauer P (2017) Fast-track development of a lactase production process with Kluyveromyces lactis by a progressive parameter-control workflow. Eng Life Sci 17:1185–1194. https://doi.org/10.1002/elsc.201600031 PubMed DOI

Wierzbicka-Woś A, Cieśliński H, Wanarska M, Kozłowska-Tylingo K, Hildebrandt P, Kur J (2011) A novel cold-active β-D-galactosidase from the Paracoccus sp. 32d - gene cloning, purification and characterization. Microb Cell Factories 10:108. https://doi.org/10.1186/1475-2859-10-108 DOI

Xia Y, He L, Mao J, Fang P, Ma X, Wang Z (2018) Purification, characterization, and gene cloning of a new cold-adapted β-galactosidase from Erwinia sp. E602 isolated in Northeast China. J Dairy Sci 101:6946–6954. https://doi.org/10.3168/jds.2018-14605 PubMed DOI

Xu JL, Zhao J, Wang LF, Sun HY, Song CL, Chi ZM (2012) Enhanced β-galactosidase production from whey powder by a mutant of the psychrotolerant yeast Guehomyces pullulans 17-1 for hydrolysis of lactose. Appl Biochem Biotechnol 166:599–611. https://doi.org/10.1007/s12010-011-9451-4 PubMed DOI

Xu X, Fan X, Fan C et al (2019) Production optimization of an active B-galactosidase of Bifidobacterium animalis in heterologous expression systems. 2019:1–10

Yamada M, Chiba S, Endo Y, Isobe K (2017) New alkalophilic β-galactosidase with high activity in alkaline pH region from Teratosphaeria acidotherma AIU BGA-1. J Biosci Bioeng 123:15–19. https://doi.org/10.1016/j.jbiosc.2016.07.003 PubMed DOI

Zhang S, Liao X, Raniero L, Fortunato E, Xu Y, Kong G, Águas H, Ferreira I, Martins R (2006) Silicon thin films prepared in the transition region and their use in solar cells. Sol Energy Mater Sol Cells 90:3001–3008. https://doi.org/10.1016/j.solmat.2006.06.006 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...