Helquats as Promoters of the Povarov Reaction: Synthesis of 1,2,3,4-Tetrahydroquinoline Scaffolds Catalyzed by Helicene-Viologen Hybrids
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
61388963
Academy of Sciences of the Czech Republic
61388955
Academy of Sciences of the Czech Republic
20-03691X
Czech Grant Agency
IOCB
PubMed
32400944
DOI
10.1002/cplu.202000151
Knihovny.cz E-zdroje
- Klíčová slova
- Povarov reaction, electron transfer, helquats, radicals, tetrahydroquinolines,
- MeSH
- chinoliny chemická syntéza chemie MeSH
- katalýza MeSH
- molekulární struktura MeSH
- polycyklické sloučeniny chemie MeSH
- stereoizomerie MeSH
- viologeny chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1,2,3,4-tetrahydroquinoline MeSH Prohlížeč
- chinoliny MeSH
- helicenes MeSH Prohlížeč
- polycyklické sloučeniny MeSH
- viologeny MeSH
Helquats (HQs) are structurally linked to helicenes and viologens, and they represent an attractive field of research in chemistry and medicinal chemistry. In the present work they were used as catalysts for the synthesis of 1,2,3,4-tetrahydroquinolines in good yields by the Povarov reaction. The substrate scope and the capability of different helquats to promote Povarov reactions are demonstrated. Studies to elucidate mechanistic details revealed that helquats act as single-electron transfer oxidants through a cation-radical mechanism. The screening of the catalytic activity of HQs confirmed that an active HQ must have a LUMO energy below -8.67 eV and the standard redox potential higher (less negative) than -1.2 V vs. the ferrocene/ferrocenium redox couple.
Zobrazit více v PubMed
J. de O S Giacoppo, J. B. Carregal, M. C. Junior, E. F. F. da Cunha, T. C. Ramalho, Mol. Simul. 2017, 43, 121;
H. F. Koolman, W. M. Braje, A. Haupt, Synlett 2016, 27, 2561;
C. Chen, S. Zingales, T. Wang, M. Yuan, D. Wang, L. Cai, Q. Jiang, J. Enzyme Inhib. Med. Chem. 2016, 31, 853;
H. Jo, M. Choi, A. S. Kumar, Y. Jung, S. Kim, J. Yun, J.-S. Kang, Y. Kim, S.-b. Han, J.-K. Jung, J. Cho, K. Lee, J.-H. Kwak, H. Lee, ACS Med. Chem. Lett. 2016, 7, 385;
L. Chen, P. T. Wilder, B. Drennen, J. Tran, B. M. Roth, K. Chesko, P. Shapiro, S. Fletcher, Org. Biomol. Chem. 2016, 14, 5505;
G. Diaz-Muñoz, G. B. Dudley, Org. Prep. Proced. Int. 2015, 47, 179;
A. M. Bender, N. W. Griggs, J. P. Anand, J. R. Traynor, E. M. Jutkiewicz, H. I. Mosberg, ACS Chem. Neurosci. 2015, 6, 1428;
Y.-M. Liu, H.-Y. Lee, C.-H. Chen, C.-H. Lee, L.-T. Wang, S.-L. Pan, M.-J. Lai, T.-K. Yeh, J.-P. Liou, Eur. J. Med. Chem. 2015, 89, 320.
A. R. Katritzky, S. Rachwal, B. Rachwal, Tetrahedron 1996, 52, 15031;
G. Dagousset, J. Zhu, G. Masson, J. Am. Chem. Soc. 2011, 133, 14804 (references therein);
V. Sridharan, P. A. Suryavanshi, J. C. Menéndez, Chem. Rev. 2011, 111, 7157;
B. Nammalwar, R. A. Bunce, Molecules 2014, 19, 204;
I. Muthukrishnan, V. Sridharan J C Menéndez, Chem. Rev. 2019, 119, 5057.
L. S. Povarov, Russ. Chem. Rev. 1967, 36, 656.
V. V. Kouznetsov, Tetrahedron 2009, 65, 2721;
M. Fochi, L. Caruana, L. Bernardi, Synthesis 2014, 46, 135;
D. Bello, R. Ramón, R. Lavilla, Curr. Org. Chem. 2010, 14, 332;
V. A. Glushkov, A. G. Tolstikov, Russ. Chem. Rev. 2008, 77, 137;
J. S. Bello-Forero, J. J. Junior, F. M. da Silva, Curr. Org. Synth. 2016, 13, 157.
P. A. Grieco, A. Bahsas, Tetrahedron Lett. 1988, 29, 5855;
H. Xu, S. J. Zuend, M. G. Woll, Y. Tao, E. N. Jacobsen, Science, 2010, 327, 986;
M. Xie, X. Chen, Y. Zhu, B. Gao, L. Lin, X. Liu, X. Feng, Angew. Chem. Int. Ed. 2010, 49, 3799;
C. Cimarelli, S. Bordi, P. Piermattei, M. Pellei, F. Del Bello, E. Marcantoni, Synthesis 2017, 49, 5387;
Y. Huang, C. Qiu, Z. Li, W. Feng, H. Gan, J. Liu, K. Guo, ACS Sustainable Chem. Eng. 2016, 4, 47;
J. Barluengar A Mendoza, F. Rodríguez, F.-J. Fañanás, Angew. Chem. Int. Ed. 2008, 47, 7044;
J. Calleja, A. B. González-Pérez, Á. R. de Lera, R. Álvarez, F. J. Fañanás, F. Rodríguez, Chem. Sci. 2014, 5, 996-1007.
X. Jia, H. Lin, C. Huo, W. Zhang, J. Lü, L. Yang, G. Zhao, Z.-L. Liu, Synlett 2003, 11, 1707;
Y. Zhou, X. Jia, R. Li, Z. Liu, Z. Liu, L. Wu, Tetrahedron Lett. 2005, 46, 8937;
B. Han, X.-D. Jia, X.-L. Jin, Y.-L. Zhou, L. Yang, Z.-L. Liu, W. Yu, Tetrahedron Lett. 2006, 47, 3545;
W. Zhang, Y. Guo, Z. Liu, X. Jin, L. Yang, Z.-L. Liu, Tetrahedron 2005, 61, 1325.
Z. Xue, A. Samanta, B. R. Whittlesey, M. F. Mayer, Tetrahedron Lett. 2009, 50, 6064.
L. Adriaenssens, L. Severa, T. Šálová, I. Císařová, R. Pohl, D. Šaman, S. V. Rocha, S. Finney, L. Pospíšil, P. Slavíček, F. Teplý, Chem. Eur. J. 2009, 15, 1072;
L. Severa, L. Adriaenssens, J. Vávra, D. Šaman, I. Císařová, P. Fiedler, F. Teplý, Tetrahedron 2010, 66, 3537.
L. Pospíšil, F. Teplý, M. Gál, L. Adriaenssens, M. Horáček, L. Severa, Phys. Chem. Chem. Phys. 2010, 12, 1550;
L. Pospíšil, L. Bednárová, P. Štěpánek, P. Slavíček, J. Vávra, M. Hromadová, H. Dlouhá, J. Tarábek, F. Teplý, J. Am. Chem. Soc. 2014, 136, 10826.
M. Růžička, D. Koval, J. Vávra, P. E. Reyes-Gutiérrez, F. Teplý, V. Kašička, J. Chromatogr. A 2016, 1467, 417.
N. Shindoh, H. Tocuyama, Y. Takemoto, K. Takasu, J. Org. Chem. 2008, 73, 7451.
J. Esquivias, R. Gómez-Arrayas, J. C. Carretero, Angew. Chem. Int. Ed. 2006, 45, 629;
M. Xia, S.-h. Wang, W.-b. Yuan, Synth. Commun. 2004, 34, 3175;
S. Verma, S. Kumar, S. L. Jain, B. Sain, Org. Biomol. Chem. 2011, 9, 6943;
P. Kaur, S. Kaur, K. Singh, Org. Biomol. Chem. 2012, 10, 1497;
N. Kumari, S. Jha, S. Bhattacharya, Chem. Asian J. 2014, 9, 830.
Helquats catalysts were prepared according to previous report Ref. 8a.
Review of cation radical cycloadditions:
N. L. Bauld, Tetrahedron 1989, 45, 5307;
R. A. Crellin, M. C. Lambert, A. Ledwith, J. Chem. Soc. Chem. Commun. 1970, 682.
K. Dhbaibi, L. Favereau, J. Crassous, Chem. Rev. 2019, 119, 8846-8954.