Global radiation in a rare biosphere soil diatom
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
32404869
PubMed Central
PMC7221085
DOI
10.1038/s41467-020-16181-0
PII: 10.1038/s41467-020-16181-0
Knihovny.cz E-zdroje
- MeSH
- Bacteria klasifikace genetika růst a vývoj MeSH
- biodiverzita * MeSH
- druhová specificita MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- molekulární evoluce MeSH
- půdní mikrobiologie * MeSH
- rozsivky klasifikace genetika růst a vývoj MeSH
- sekvenční analýza DNA MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Soil micro-organisms drive the global carbon and nutrient cycles that underlie essential ecosystem functions. Yet, we are only beginning to grasp the drivers of terrestrial microbial diversity and biogeography, which presents a substantial barrier to understanding community dynamics and ecosystem functioning. This is especially true for soil protists, which despite their functional significance have received comparatively less interest than their bacterial counterparts. Here, we investigate the diversification of Pinnularia borealis, a rare biosphere soil diatom species complex, using a global sampling of >800 strains. We document unprecedented high levels of species-diversity, reflecting a global radiation since the Eocene/Oligocene global cooling. Our analyses suggest diversification was largely driven by colonization of novel geographic areas and subsequent evolution in isolation. These results illuminate our understanding of how protist diversity, biogeographical patterns, and members of the rare biosphere are generated, and suggest allopatric speciation to be a powerful mechanism for diversification of micro-organisms.
British Antarctic Survey High Cross Madingley Rd Cambridge CB3 0ET UK
Department of Ecology Charles University Viničná 7 128 44 Prague 2 Czech Republic
Ecosystem Management Research Group University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
Laboratory of Protistology and Aquatic Ecology Ghent University Krijgslaan 281 S8 9000 Gent Belgium
Meise Botanic Garden Nieuwelaan 38 1860 Meise Belgium
Natural History Museum of Denmark Øster Farimagsgade 5 Building 7 DK 1353 Copenhagen Denmark
Zobrazit více v PubMed
Finlay BJ. Global dispersal of free-living microbial eukaryote species. Science. 2002;296:1061–1063. doi: 10.1126/science.1070710. PubMed DOI
Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 2012;10:497–506. doi: 10.1038/nrmicro2795. PubMed DOI
Bendif EM, et al. Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa. Nat. Commun. 2019;10:4234. doi: 10.1038/s41467-019-12169-7. PubMed DOI PMC
Casteleyn G, et al. Limits to gene flow in a cosmopolitan marine planktonic diatom. Proc. Natl Acad. Sci. USA. 2010;107:12952–12957. doi: 10.1073/pnas.1001380107. PubMed DOI PMC
Singer D, et al. Dispersal limitations and historical factors determine the biogeography of specialized terrestrial protists. Mol. Ecol. 2019;28:3089–3100. doi: 10.1111/mec.15117. PubMed DOI
de Vargas C, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605–1261605. doi: 10.1126/science.1261605. PubMed DOI
Lynch MDJ, Neufeld JD. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 2015;13:217–229. doi: 10.1038/nrmicro3400. PubMed DOI
Debroas D, Hugoni M, Domaizon I. Evidence for an active rare biosphere within freshwater protists community. Mol. Ecol. 2015;24:1236–1247. doi: 10.1111/mec.13116. PubMed DOI
Oliverio AM, et al. The global-scale distributions of soil protists and their contributions to belowground systems. Sci. Adv. 2020;6:eaax8787. doi: 10.1126/sciadv.aax8787. PubMed DOI PMC
Worden AZ, et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science. 2015;347:1257594. doi: 10.1126/science.1257594. PubMed DOI
Crowther TW, et al. The global soil community and its influence on biogeochemistry. Science. 2019;772:eaav0550. doi: 10.1126/science.aav0550. PubMed DOI
Mann DG, Vanormelingen P. An inordinate fondness? The number, distributions, and origins of diatom species. J. Eukaryot. Microbiol. 2013;60:414–420. doi: 10.1111/jeu.12047. PubMed DOI
Nakov T, Beaulieu JM, Alverson AJ. Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta) N. Phytol. 2018;219:462–473. doi: 10.1111/nph.15137. PubMed DOI PMC
Armbrust EV. The life of diatoms in the world’s oceans. Nature. 2009;459:185–192. doi: 10.1038/nature08057. PubMed DOI
Rodriguez-Caballero E, et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 2018;11:185–189. doi: 10.1038/s41561-018-0072-1. DOI
Krammer, K. Diatoms of Europe. Volume 1. The genus Pinnularia. (A.R.G. Gantner Verlag K.G., 2000).
Pinseel E, et al. Extensive cryptic diversity in the terrestrial diatom Pinnularia borealis (Bacillariophyceae) Protist. 2019;170:121–140. doi: 10.1016/j.protis.2018.10.001. PubMed DOI
Souffreau C, et al. Molecular evidence for distinct Antarctic lineages in the cosmopolitan terrestrial diatoms Pinnularia borealis and Hantzschia amphioxys. Protist. 2013;164:101–115. doi: 10.1016/j.protis.2012.04.001. PubMed DOI
Kollár J, et al. A polyphasic approach to the delimitation of diatom species: a case study for the genus Pinnularia (Bacillariophyta) J. Phycol. 2019;55:365–379. doi: 10.1111/jpy.12825. PubMed DOI
Pinseel E, et al. Pinnularia catenaborealis sp. nov. (Bacillariophyceae), a unique chain-forming diatom species from James Ross Island and Vega Island (Maritime Antarctica) Phycologia. 2017;56:94–107. doi: 10.2216/16-18.1. DOI
Liu Z, et al. Global cooling during Eocene-Oligocene Climate Transition. Science. 2009;323:1187–1190. doi: 10.1126/science.1166368. PubMed DOI
Pointing SB, et al. Biogeography of photoautotrophs in the high polar biome. Front. Plant Sci. 2015;6:692. doi: 10.3389/fpls.2015.00692. PubMed DOI PMC
Strömberg CAE. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 2011;39:517–544. doi: 10.1146/annurev-earth-040809-152402. DOI
Sun J, Windley BF. Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia. Geology. 2015;43:1015–1018. doi: 10.1130/G37165.1. DOI
Marshall CR. Five palaeobiological laws needed to understand the evolution of the living biota. Nat. Ecol. Evol. 2017;1:0165. doi: 10.1038/s41559-017-0165. PubMed DOI
Magallon S, Sanderson MJ. Absolute diversification rates in angiosperm clades. Evolution. 2001;55:1762–1780. doi: 10.1111/j.0014-3820.2001.tb00826.x. PubMed DOI
Rabosky DL, et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 2014;5:701–707. doi: 10.1111/2041-210X.12199. DOI
Höhna S, May M, Moore B. TESS: an R package for efficiently simulating phylogenetic trees and performing Bayesian inference of lineage diversification rates. Bioinformatics. 2015;32:789–791. doi: 10.1093/bioinformatics/btv651. PubMed DOI
Beaulieu JM, O’Meara BC. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 2016;64:583–601. doi: 10.1093/sysbio/syw022. PubMed DOI
Maliet O, Hartig F, Morlon H. A model with many small shifts for estimating species-specific diversification rates. Nat. Ecol. Evol. 2019;3:1086–1092. doi: 10.1038/s41559-019-0908-0. PubMed DOI
Van Bocxlaer I, et al. Gradual adaptation toward a range-expansion phenotype initiated the global radiation of toads. Science. 2010;327:679–682. doi: 10.1126/science.1181707. PubMed DOI
Lewitus E, Bittner L, Malviya S, Bowler C, Morlon H. Clade-specific diversification dynamics of marine diatoms since the Jurassic. Nat. Ecol. Evol. 2018;2:1715–1723. doi: 10.1038/s41559-018-0691-3. PubMed DOI PMC
Hejduková E, et al. Tolerance of pennate diatoms (Bacillariophyceae) to experimental freezing: comparison of polar and temperate strains. Phycologia. 2019;58:382–392. doi: 10.1080/00318884.2019.1591835. DOI
Souffreau C, Vanormelingen P, Sabbe K, Vyverman W. Tolerance of resting cells of freshwater and terrestrial benthic diatoms to experimental desiccation and freezing is habitat-dependent. Phycologia. 2013;52:246–255. doi: 10.2216/12-087.1. DOI
Callahan BJ, et al. DADA2: High resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Segawa T, et al. Bipolar dispersal of red-snow algae. Nat. Commun. 2018;9:3094. doi: 10.1038/s41467-018-05521-w. PubMed DOI PMC
Matzke NJ. Probabilistic historical biogeography: new models of founder-event speciation, imperfect detection, and fossils alow improved accuracy and model-testing. Front. Biogeogr. 2013;5:242–248. doi: 10.21425/F55419694. DOI
Škaloud P, et al. Speciation in protists: spatial and ecological divergence processes cause rapid species diversification in a freshwater chrysophyte. Mol. Ecol. 2019;28:1085–1095. doi: 10.1111/mec.15011. PubMed DOI
Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992;131:479–491. PubMed PMC
Martínez-Botí MA, et al. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature. 2015;518:49–54. doi: 10.1038/nature14145. PubMed DOI
Simões M, et al. The evolving theory of evolutionary radiations. Trends Ecol. Evol. 2016;31:27–34. doi: 10.1016/j.tree.2015.10.007. PubMed DOI
Weeks BC, Claramunt S. Dispersal has inhibited avian diversification in Australasian archipelagoes. Proc. R. Soc. B Biol. Sci. 2014;281:2–8. doi: 10.1098/rspb.2014.1257. PubMed DOI PMC
Eldrett JS, Greenwood DR, Harding IC, Huber M. Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature. 2009;459:969–973. doi: 10.1038/nature08069. PubMed DOI
Stelbrink B, et al. Diatoms do radiate: evidence for a freshwater species flock. J. Evol. Biol. 2018;31:1969–1975. doi: 10.1111/jeb.13368. PubMed DOI
Morlon H, Kemps BD, Plotkin JB, Brisson D. Explosive radiation of a bacterial species group. Evolution. 2012;66:2577–2586. doi: 10.1111/j.1558-5646.2012.01598.x. PubMed DOI PMC
Zwart G, et al. Divergent members of the bacterial division Verrucomicrobiales in a temperate freshwater lake. FEMS Microbiol. Ecol. 1998;25:159–169. doi: 10.1111/j.1574-6941.1998.tb00469.x. DOI
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods. 2012;9:772. doi: 10.1038/nmeth.2109. PubMed DOI PMC
Lanfear R, Calcott B, Ho SYW, Guindo S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 2012;29:1695–1701. doi: 10.1093/molbev/mss020. PubMed DOI
Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. in Proc. Gateway Computing Environments Workshop (GCE), 1–8 http://www.phylo.org/sub_sections/portal/cite.php (2010).
Trifinopoulos J, Nguyen L, Haeseler AVon, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:232–235. doi: 10.1093/nar/gkw256. PubMed DOI PMC
Templeton AR, Crandall KA, Sing F. Cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA Sequence Data. III. Cladogram Estimation. Genetics. 1992;132:619–633. PubMed PMC
Puillandre N, Lambert A, Brouillet S, Achaz G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 2012;21:1864–1877. doi: 10.1111/j.1365-294X.2011.05239.x. PubMed DOI
Pons J, et al. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 2006;55:595–609. doi: 10.1080/10635150600852011. PubMed DOI
Zhang J, Kapli P, Pavlidis P, Stamatakis A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics. 2013;29:2869–2876. doi: 10.1093/bioinformatics/btt499. PubMed DOI PMC
Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 2000;9:1657–1659. doi: 10.1046/j.1365-294x.2000.01020.x. PubMed DOI
Ronquist F, et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1.6, http://beast.bio.ed.ac.uk/Tracer (2014).
Ezard, T., Fujisawa, T. & Barraclough, T. splits: SPecies’ LImits by Threshold Statistics. R package version 1.0-19/r52. https://R-Forge.R-project.org/projects/splits/ (2017).
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. PubMed PMC
Nguyen L, Schmidt HA, Haeseler AVon, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Bouckaert R, et al. BEAST2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019;15:e1006650. doi: 10.1371/journal.pcbi.1006650. PubMed DOI PMC
Colwell, R. K. EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application. http://purl.oclc.org/estimates (2013).
Suchard M, et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4:vey016. doi: 10.1093/ve/vey016. PubMed DOI PMC
Souffreau C, et al. A time-calibrated multi-gene phylogeny of the diatom genus Pinnularia. Mol. Phylogenet. Evol. 2011;61:866–879. doi: 10.1016/j.ympev.2011.08.031. PubMed DOI
Revell L. J. phytools: an R package for phylogenetic comparative biology (and other things) Methods Ecol. Evol. 2012;3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI
Luke HJ, Weir JT, Brock CD, Glor RE, Challenger W. GEIGER: investigating evolutionary radiations. Bioinformatics. 2008;24:129–131. doi: 10.1093/bioinformatics/btm538. PubMed DOI
May MR, Höhna S, Moore BR. A Bayesian approach for detecting mass extinction events when rates of lineage diversification vary. Methods Ecol. Evol. 2016;7:947–959. doi: 10.1111/2041-210X.12563. DOI
Morlon H, et al. RPANDA: an R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 2016;7:589–597. doi: 10.1111/2041-210X.12526. DOI
Ree RH, Sanmartín I. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 2018;45:741–749. doi: 10.1111/jbi.13173. DOI
Klaus K, Matzke NJ. Statistical comparison of trait-dependent biogeographical models indicates that Podocarpaceae dispersal is influenced by both seed cone traits and geographical distance. Syst. Biol. 2019;69:61–75. doi: 10.1093/sysbio/syz034. PubMed DOI
Holt BG, et al. An update of Wallace’s zoogeographic regions of the world. Science. 2013;339:74–79. doi: 10.1126/science.1228282. PubMed DOI
Van Dam MH, Matzke NJ. Evaluating the influence of connectivity and distance on bigeographical patterns in the south-western deserts of North America. J. Biogeogr. 2016;43:1514–1532. doi: 10.1111/jbi.12727. DOI
Dupin J, et al. Bayesian estimation of the global biogeographical history of the Solanaceae. J. Biogeogr. 2017;44:887–899. doi: 10.1111/jbi.12898. DOI
Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Version 3.6. http://mesquiteproject.org. (2018).
Dray S, Dufour A. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 2007;22:1–20. doi: 10.18637/jss.v022.i04. DOI
Leigh JW, Bryant D. popart: full-feature software for haplotype network construction. Methods Ecol. Evol. 2015;6:1110–1116. doi: 10.1111/2041-210X.12410. DOI
Crinaldesi C, Danovaro R, Dell'Anno A. Simultaneous Recovery of Extracellular and Intracellular DNA Suitable for Molecular Studies from Marine Sediments. Appl. Environ. Microbiol. 2005;71:46–50. doi: 10.1128/AEM.71.1.46-50.2005. PubMed DOI PMC
Stoeck T, Bass D, Nebel M, Christen R, Meredith D. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 2010;19:21–31. doi: 10.1111/j.1365-294X.2009.04480.x. PubMed DOI
Schloss P, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09. PubMed DOI PMC
Guillou L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:597–604. doi: 10.1093/nar/gks1160. PubMed DOI PMC
Zachos J, Pagani H, Sloan L, Thomas E, Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 2001;292:686–693. doi: 10.1126/science.1059412. PubMed DOI