Global radiation in a rare biosphere soil diatom

. 2020 May 13 ; 11 (1) : 2382. [epub] 20200513

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid32404869
Odkazy

PubMed 32404869
PubMed Central PMC7221085
DOI 10.1038/s41467-020-16181-0
PII: 10.1038/s41467-020-16181-0
Knihovny.cz E-zdroje

Soil micro-organisms drive the global carbon and nutrient cycles that underlie essential ecosystem functions. Yet, we are only beginning to grasp the drivers of terrestrial microbial diversity and biogeography, which presents a substantial barrier to understanding community dynamics and ecosystem functioning. This is especially true for soil protists, which despite their functional significance have received comparatively less interest than their bacterial counterparts. Here, we investigate the diversification of Pinnularia borealis, a rare biosphere soil diatom species complex, using a global sampling of >800 strains. We document unprecedented high levels of species-diversity, reflecting a global radiation since the Eocene/Oligocene global cooling. Our analyses suggest diversification was largely driven by colonization of novel geographic areas and subsequent evolution in isolation. These results illuminate our understanding of how protist diversity, biogeographical patterns, and members of the rare biosphere are generated, and suggest allopatric speciation to be a powerful mechanism for diversification of micro-organisms.

Zobrazit více v PubMed

Finlay BJ. Global dispersal of free-living microbial eukaryote species. Science. 2002;296:1061–1063. doi: 10.1126/science.1070710. PubMed DOI

Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 2012;10:497–506. doi: 10.1038/nrmicro2795. PubMed DOI

Bendif EM, et al. Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa. Nat. Commun. 2019;10:4234. doi: 10.1038/s41467-019-12169-7. PubMed DOI PMC

Casteleyn G, et al. Limits to gene flow in a cosmopolitan marine planktonic diatom. Proc. Natl Acad. Sci. USA. 2010;107:12952–12957. doi: 10.1073/pnas.1001380107. PubMed DOI PMC

Singer D, et al. Dispersal limitations and historical factors determine the biogeography of specialized terrestrial protists. Mol. Ecol. 2019;28:3089–3100. doi: 10.1111/mec.15117. PubMed DOI

de Vargas C, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605–1261605. doi: 10.1126/science.1261605. PubMed DOI

Lynch MDJ, Neufeld JD. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 2015;13:217–229. doi: 10.1038/nrmicro3400. PubMed DOI

Debroas D, Hugoni M, Domaizon I. Evidence for an active rare biosphere within freshwater protists community. Mol. Ecol. 2015;24:1236–1247. doi: 10.1111/mec.13116. PubMed DOI

Oliverio AM, et al. The global-scale distributions of soil protists and their contributions to belowground systems. Sci. Adv. 2020;6:eaax8787. doi: 10.1126/sciadv.aax8787. PubMed DOI PMC

Worden AZ, et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science. 2015;347:1257594. doi: 10.1126/science.1257594. PubMed DOI

Crowther TW, et al. The global soil community and its influence on biogeochemistry. Science. 2019;772:eaav0550. doi: 10.1126/science.aav0550. PubMed DOI

Mann DG, Vanormelingen P. An inordinate fondness? The number, distributions, and origins of diatom species. J. Eukaryot. Microbiol. 2013;60:414–420. doi: 10.1111/jeu.12047. PubMed DOI

Nakov T, Beaulieu JM, Alverson AJ. Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta) N. Phytol. 2018;219:462–473. doi: 10.1111/nph.15137. PubMed DOI PMC

Armbrust EV. The life of diatoms in the world’s oceans. Nature. 2009;459:185–192. doi: 10.1038/nature08057. PubMed DOI

Rodriguez-Caballero E, et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 2018;11:185–189. doi: 10.1038/s41561-018-0072-1. DOI

Krammer, K. Diatoms of Europe. Volume 1. The genus Pinnularia. (A.R.G. Gantner Verlag K.G., 2000).

Pinseel E, et al. Extensive cryptic diversity in the terrestrial diatom Pinnularia borealis (Bacillariophyceae) Protist. 2019;170:121–140. doi: 10.1016/j.protis.2018.10.001. PubMed DOI

Souffreau C, et al. Molecular evidence for distinct Antarctic lineages in the cosmopolitan terrestrial diatoms Pinnularia borealis and Hantzschia amphioxys. Protist. 2013;164:101–115. doi: 10.1016/j.protis.2012.04.001. PubMed DOI

Kollár J, et al. A polyphasic approach to the delimitation of diatom species: a case study for the genus Pinnularia (Bacillariophyta) J. Phycol. 2019;55:365–379. doi: 10.1111/jpy.12825. PubMed DOI

Pinseel E, et al. Pinnularia catenaborealis sp. nov. (Bacillariophyceae), a unique chain-forming diatom species from James Ross Island and Vega Island (Maritime Antarctica) Phycologia. 2017;56:94–107. doi: 10.2216/16-18.1. DOI

Liu Z, et al. Global cooling during Eocene-Oligocene Climate Transition. Science. 2009;323:1187–1190. doi: 10.1126/science.1166368. PubMed DOI

Pointing SB, et al. Biogeography of photoautotrophs in the high polar biome. Front. Plant Sci. 2015;6:692. doi: 10.3389/fpls.2015.00692. PubMed DOI PMC

Strömberg CAE. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 2011;39:517–544. doi: 10.1146/annurev-earth-040809-152402. DOI

Sun J, Windley BF. Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia. Geology. 2015;43:1015–1018. doi: 10.1130/G37165.1. DOI

Marshall CR. Five palaeobiological laws needed to understand the evolution of the living biota. Nat. Ecol. Evol. 2017;1:0165. doi: 10.1038/s41559-017-0165. PubMed DOI

Magallon S, Sanderson MJ. Absolute diversification rates in angiosperm clades. Evolution. 2001;55:1762–1780. doi: 10.1111/j.0014-3820.2001.tb00826.x. PubMed DOI

Rabosky DL, et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 2014;5:701–707. doi: 10.1111/2041-210X.12199. DOI

Höhna S, May M, Moore B. TESS: an R package for efficiently simulating phylogenetic trees and performing Bayesian inference of lineage diversification rates. Bioinformatics. 2015;32:789–791. doi: 10.1093/bioinformatics/btv651. PubMed DOI

Beaulieu JM, O’Meara BC. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 2016;64:583–601. doi: 10.1093/sysbio/syw022. PubMed DOI

Maliet O, Hartig F, Morlon H. A model with many small shifts for estimating species-specific diversification rates. Nat. Ecol. Evol. 2019;3:1086–1092. doi: 10.1038/s41559-019-0908-0. PubMed DOI

Van Bocxlaer I, et al. Gradual adaptation toward a range-expansion phenotype initiated the global radiation of toads. Science. 2010;327:679–682. doi: 10.1126/science.1181707. PubMed DOI

Lewitus E, Bittner L, Malviya S, Bowler C, Morlon H. Clade-specific diversification dynamics of marine diatoms since the Jurassic. Nat. Ecol. Evol. 2018;2:1715–1723. doi: 10.1038/s41559-018-0691-3. PubMed DOI PMC

Hejduková E, et al. Tolerance of pennate diatoms (Bacillariophyceae) to experimental freezing: comparison of polar and temperate strains. Phycologia. 2019;58:382–392. doi: 10.1080/00318884.2019.1591835. DOI

Souffreau C, Vanormelingen P, Sabbe K, Vyverman W. Tolerance of resting cells of freshwater and terrestrial benthic diatoms to experimental desiccation and freezing is habitat-dependent. Phycologia. 2013;52:246–255. doi: 10.2216/12-087.1. DOI

Callahan BJ, et al. DADA2: High resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC

Segawa T, et al. Bipolar dispersal of red-snow algae. Nat. Commun. 2018;9:3094. doi: 10.1038/s41467-018-05521-w. PubMed DOI PMC

Matzke NJ. Probabilistic historical biogeography: new models of founder-event speciation, imperfect detection, and fossils alow improved accuracy and model-testing. Front. Biogeogr. 2013;5:242–248. doi: 10.21425/F55419694. DOI

Škaloud P, et al. Speciation in protists: spatial and ecological divergence processes cause rapid species diversification in a freshwater chrysophyte. Mol. Ecol. 2019;28:1085–1095. doi: 10.1111/mec.15011. PubMed DOI

Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992;131:479–491. PubMed PMC

Martínez-Botí MA, et al. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature. 2015;518:49–54. doi: 10.1038/nature14145. PubMed DOI

Simões M, et al. The evolving theory of evolutionary radiations. Trends Ecol. Evol. 2016;31:27–34. doi: 10.1016/j.tree.2015.10.007. PubMed DOI

Weeks BC, Claramunt S. Dispersal has inhibited avian diversification in Australasian archipelagoes. Proc. R. Soc. B Biol. Sci. 2014;281:2–8. doi: 10.1098/rspb.2014.1257. PubMed DOI PMC

Eldrett JS, Greenwood DR, Harding IC, Huber M. Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature. 2009;459:969–973. doi: 10.1038/nature08069. PubMed DOI

Stelbrink B, et al. Diatoms do radiate: evidence for a freshwater species flock. J. Evol. Biol. 2018;31:1969–1975. doi: 10.1111/jeb.13368. PubMed DOI

Morlon H, Kemps BD, Plotkin JB, Brisson D. Explosive radiation of a bacterial species group. Evolution. 2012;66:2577–2586. doi: 10.1111/j.1558-5646.2012.01598.x. PubMed DOI PMC

Zwart G, et al. Divergent members of the bacterial division Verrucomicrobiales in a temperate freshwater lake. FEMS Microbiol. Ecol. 1998;25:159–169. doi: 10.1111/j.1574-6941.1998.tb00469.x. DOI

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.

Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods. 2012;9:772. doi: 10.1038/nmeth.2109. PubMed DOI PMC

Lanfear R, Calcott B, Ho SYW, Guindo S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 2012;29:1695–1701. doi: 10.1093/molbev/mss020. PubMed DOI

Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. in Proc. Gateway Computing Environments Workshop (GCE), 1–8 http://www.phylo.org/sub_sections/portal/cite.php (2010).

Trifinopoulos J, Nguyen L, Haeseler AVon, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:232–235. doi: 10.1093/nar/gkw256. PubMed DOI PMC

Templeton AR, Crandall KA, Sing F. Cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA Sequence Data. III. Cladogram Estimation. Genetics. 1992;132:619–633. PubMed PMC

Puillandre N, Lambert A, Brouillet S, Achaz G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 2012;21:1864–1877. doi: 10.1111/j.1365-294X.2011.05239.x. PubMed DOI

Pons J, et al. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 2006;55:595–609. doi: 10.1080/10635150600852011. PubMed DOI

Zhang J, Kapli P, Pavlidis P, Stamatakis A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics. 2013;29:2869–2876. doi: 10.1093/bioinformatics/btt499. PubMed DOI PMC

Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 2000;9:1657–1659. doi: 10.1046/j.1365-294x.2000.01020.x. PubMed DOI

Ronquist F, et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC

Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1.6, http://beast.bio.ed.ac.uk/Tracer (2014).

Ezard, T., Fujisawa, T. & Barraclough, T. splits: SPecies’ LImits by Threshold Statistics. R package version 1.0-19/r52. https://R-Forge.R-project.org/projects/splits/ (2017).

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. PubMed PMC

Nguyen L, Schmidt HA, Haeseler AVon, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Bouckaert R, et al. BEAST2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019;15:e1006650. doi: 10.1371/journal.pcbi.1006650. PubMed DOI PMC

Colwell, R. K. EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application. http://purl.oclc.org/estimates (2013).

Suchard M, et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4:vey016. doi: 10.1093/ve/vey016. PubMed DOI PMC

Souffreau C, et al. A time-calibrated multi-gene phylogeny of the diatom genus Pinnularia. Mol. Phylogenet. Evol. 2011;61:866–879. doi: 10.1016/j.ympev.2011.08.031. PubMed DOI

Revell L. J. phytools: an R package for phylogenetic comparative biology (and other things) Methods Ecol. Evol. 2012;3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI

Luke HJ, Weir JT, Brock CD, Glor RE, Challenger W. GEIGER: investigating evolutionary radiations. Bioinformatics. 2008;24:129–131. doi: 10.1093/bioinformatics/btm538. PubMed DOI

May MR, Höhna S, Moore BR. A Bayesian approach for detecting mass extinction events when rates of lineage diversification vary. Methods Ecol. Evol. 2016;7:947–959. doi: 10.1111/2041-210X.12563. DOI

Morlon H, et al. RPANDA: an R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 2016;7:589–597. doi: 10.1111/2041-210X.12526. DOI

Ree RH, Sanmartín I. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 2018;45:741–749. doi: 10.1111/jbi.13173. DOI

Klaus K, Matzke NJ. Statistical comparison of trait-dependent biogeographical models indicates that Podocarpaceae dispersal is influenced by both seed cone traits and geographical distance. Syst. Biol. 2019;69:61–75. doi: 10.1093/sysbio/syz034. PubMed DOI

Holt BG, et al. An update of Wallace’s zoogeographic regions of the world. Science. 2013;339:74–79. doi: 10.1126/science.1228282. PubMed DOI

Van Dam MH, Matzke NJ. Evaluating the influence of connectivity and distance on bigeographical patterns in the south-western deserts of North America. J. Biogeogr. 2016;43:1514–1532. doi: 10.1111/jbi.12727. DOI

Dupin J, et al. Bayesian estimation of the global biogeographical history of the Solanaceae. J. Biogeogr. 2017;44:887–899. doi: 10.1111/jbi.12898. DOI

Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Version 3.6. http://mesquiteproject.org. (2018).

Dray S, Dufour A. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 2007;22:1–20. doi: 10.18637/jss.v022.i04. DOI

Leigh JW, Bryant D. popart: full-feature software for haplotype network construction. Methods Ecol. Evol. 2015;6:1110–1116. doi: 10.1111/2041-210X.12410. DOI

Crinaldesi C, Danovaro R, Dell'Anno A. Simultaneous Recovery of Extracellular and Intracellular DNA Suitable for Molecular Studies from Marine Sediments. Appl. Environ. Microbiol. 2005;71:46–50. doi: 10.1128/AEM.71.1.46-50.2005. PubMed DOI PMC

Stoeck T, Bass D, Nebel M, Christen R, Meredith D. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 2010;19:21–31. doi: 10.1111/j.1365-294X.2009.04480.x. PubMed DOI

Schloss P, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09. PubMed DOI PMC

Guillou L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:597–604. doi: 10.1093/nar/gks1160. PubMed DOI PMC

Zachos J, Pagani H, Sloan L, Thomas E, Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 2001;292:686–693. doi: 10.1126/science.1059412. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...