Prevalence, Genetic Diversity, and Temporary Shifts of Inducible Clindamycin Resistance Staphylococcus aureus Clones in Tehran, Iran: A Molecular-Epidemiological Analysis From 2013 to 2018
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32425898
PubMed Central
PMC7204094
DOI
10.3389/fmicb.2020.00663
Knihovny.cz E-zdroje
- Klíčová slova
- MLST, SCCmec, agr allotype, inducible resistance, methicillin-resistant S. aureus, methicillin-susceptible S. aureus, staphylocoagulase,
- Publikační typ
- časopisecké články MeSH
The prevalence of Staphylococcus aureus as an aggressive pathogen resistant to multiple antibiotics causing nosocomial and community-acquired infections is increasing with limited therapeutic options. Macrolide-lincosamide streptogramin B (MLSB) family of antibiotics represents an important alternative therapy for staphylococcal infections. This study was conducted over a period of five years from August 2013 to July 2018 to investigate the prevalence and molecular epidemiology in Iran of inducible resistance in S. aureus. In the current study, 126 inducible methicillin-resistant S. aureus (MRSA) (n = 106) and methicillin-sensitive S. aureus (MSSA) (n = 20) isolates were characterized by in vitro susceptibility analysis, resistance and virulence encoding gene distribution, phenotypic and genotypic analysis of biofilm formation, prophage typing, S. aureus protein A locus (spa) typing, staphylocoagulase (SC) typing, staphylococcal cassette chromosome mec (SCCmec) typing, and multilocus sequence typing. Of the 126 isolates, 76 (60.3%) were classified as hospital onset, and 50 (39.7%) were classified as community onset (CO). Biofilm formation was observed in 97 strains (77%). A total of 14 sequence types (STs), 26 spa types, 7 coagulase types, 9 prophage types, 3 agr types (no agr IV), and 9 clonal complexes (CCs) were identified in this study. The prevalence of the inducible MLSB (iMLSB) S. aureus increased from 7.5% (25/335) to 21.7% (38/175) during the study period. The iMLSB MRSA isolates were distributed in nine CCs, whereas the MSSA isolates were less diverse, which mainly belonged to CC22 (7.95%) and CC30 (7.95%). High-level mupirocin-resistant strains belonged to ST85-SCCmec IV/t008 (n = 4), ST5-SCCmec IV/t002 (n = 4), ST239-SCCmec III/t631 (n = 2), and ST8-SCCmec IV/t064 (n = 2) clones, whereas low-level mupirocin-resistant strains belonged to ST15-SCCmec IV/t084 (n = 5), ST239-SCCmec III/t860 (n = 3), and ST22-SCCmec IV/t790 (n = 3) clones. All the fusidic acid-resistant iMLSB isolates were MRSA and belonged to ST15-SCCmec IV/t084 (n = 2), ST239-SCCmec III/t030 (n = 2), ST1-SCCmec V/t6811 (n = 1), ST80-SCCmec IV/t044 (n = 1), and ST59-SCCmec IV/t437 (n = 1). The CC22 that was predominant in 2013-2014 (36% of the isolates) had almost disappeared in 2017-2018, being replaced by the CC8, which represented 39.5% of the 2017-2018 isolates. This is the first description of temporal shifts of iMLSB S. aureus isolates in Iran that identifies predominant clones and treatment options for iMLSB S. aureus-related infections.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Department of Hygiene School of Medicine Sapporo Medical University Sapporo Japan
Department of Internal Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
Department of Microbiology School of Medicine Alborz University of Medical Sciences Karaj Iran
Department of Mycology Pasteur Institute of Iran Tehran Iran
Department of Virology Pasteur Institute of Iran Tehran Iran
School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
Zobrazit více v PubMed
Abbasi-Montazeri E., Khosravi A. D., Feizabadi M. M., Goodarzi H., Khoramrooz S. S., Mirzaii M., et al. (2013). The prevalence of methicillin resistant Staphylococcus aureus (MRSA) isolates with high-level mupirocin resistance from patients and personnel in a burn center. Burns 39 650–654. 10.1016/j.burns.2013.02.005 PubMed DOI
Abimanyu N., Murugesan S., Krishnan P. (2012). Emergence of methicillin-resistant Staphylococcus aureus ST239 with high-level mupirocin and inducible clindamycin resistance in a tertiary care center in Chennai. South India. J. Clin. Microbiol. 50 3412–3413. 10.1128/JCM.01663-12 PubMed DOI PMC
Adhikari R., Shrestha S., Barakoti A., Amatya R. (2017). Inducible clindamycin and methicillin resistant Staphylococcus aureus in a tertiary care hospital. Kathmandu, Nepal. BMC. Infect. Dis. 17:483 10.1186/s12879-017-2584-5 PubMed DOI PMC
Afrough P., Pourmand M. R., Sarajian A. A., Saki M., Saremy S. (2013). Molecular investigation of Staphylococcus aureus, coa and spa genes in Ahvaz hospitals, staff nose compared with patients clinical samples. Jundishapur. J. Microbiol. 6:e5377.
Aqel A., Alzoubi H., Al-Zereini W. (2017). Prevalence of inducible clindamycin resistance in methicillin-resistant Staphylococcus aureus: the first study in Jordan. J. Infect. Dev. Ctries. 11 350–354. 10.3855/jidc.8316 PubMed DOI
Aqel A., Ibrahim A., Shehabi A. (2012). Rare occurrence of mupirocin resistance among clinical Staphylococcus isolates in Jordan. Acta Microbiol. Immun. Hung 59 239–247. 10.1556/AMicr.59.2012.2.8 PubMed DOI
Arciola C. R., Campoccia D., Gamberini S., Cervellati M., Donati E., Montanaro L. J. B. (2002). Detection of slime production by means of an optimised Congo red agar plate test based on a colourimetric scale in Staphylococcus epidermidis clinical isolates genotyped for ica locus. Biomaterials 23 4233–4239. 10.1016/S0142-9612(02)00171-0 PubMed DOI
Aydin A., Sudagidan M., Muratoglu K. (2011). Prevalence of staphylococcal enterotoxins, toxin genes and genetic-relatedness of foodborne Staphylococcus aureus strains isolated in the Marmara Region of Turkey. Int. J. Food. Microbiol. 148 99–106. 10.1016/j.ijfoodmicro.2011.05.007 PubMed DOI
Azimian A., Havaei S. A., Ghazvini K., Khosrojerdi M., Naderi M., Samiee S. M. (2014). Isolation of PVL/ACME-positive, community acquired, methicillin-resistant Staphylococcus aureus (USA300) from Iran. J. Med. Microbiol. 2 100–104.
Boswihi S. S., Udo E. E., Al-Sweih N. (2016). Shifts in the clonal distribution of methicillin-resistant Staphylococcus aureus in Kuwait hospitals: 1992-2010. PLoS One 11:e0162744 10.1371/journal.pone.0162744 PubMed DOI PMC
Bottega A., Rodrigues M. D. A., Carvalho F. A., Wagner T. F., Leal I. A. S., Santos S. O. D., et al. (2014). Evaluation of constitutive and inducible resistance to clindamycin in clinical samples of Staphylococcus aureus from a tertiary hospital. Rev. Soc. Bras. Med. Trop. 47 589–592. 10.1590/0037-8682-0140-2014 PubMed DOI
Boye K., Bartels M. D., Andersen I. S., Moeller J. A., Westh H. (2007). A new multiplex PCR for easy screening of methicillin-resistant Staphylococcus aureus SCCmec types I–V. J. Clin. Microbiol. 13 725–727. 10.1111/j.1469-0691.2007.01720.x PubMed DOI
Castanheira M., Watters A. A., Bell J. M., Turnidge J. D., Jones R. N. (2010a). Fusidic acid resistance rates and prevalence of resistance mechanisms among Staphylococcus spp. isolated in North America and Australia, 2007-2008. Antimicrob. Agents. Chemother. 54 3614–3617. 10.1128/AAC.01390-09 PubMed DOI PMC
Castanheira M., Watters A. A., Mendes R. E., Farrell D. J., Jones R. N. (2010b). Occurrence and molecular characterization of fusidic acid resistance mechanisms among Staphylococcus spp. from European countries (2008). J. Antimicrob. Chemother. 65 1353–1358. 10.1093/jac/dkq094 PubMed DOI
Chamon R. C., Iorio N. L. P., da Silva Ribeiro S., Cavalcante F. S., dos Santos K. R. N. (2015). Molecular characterization of Staphylococcus aureus isolates carrying the Panton-Valentine leukocidin genes from Rio de Janeiro hospitals. Diagn. Microbiol. Infect. Dis. 83 331–334. 10.1016/j.diagmicrobio.2015.09.004 PubMed DOI
Chavez-Bueno S., Bozdogan B., Katz K., Bowlware K. L., Cushion N., Cavuoti D., et al. (2005). Inducible clindamycin resistance and molecular epidemiologic trends of pediatric community-acquired methicillin-resistant Staphylococcus aureus in Dallas. Texas. Antimicrob. Agents. Chemother. 49 2283–2288. 10.1128/AAC.49.6.2283-2288.2005 PubMed DOI PMC
Dadashi M., Nasiri M. J., Fallah F., Owlia P., Hajikhani B., Emaneini M., et al. (2018). Methicillin-resistant Staphylococcus aureus (MRSA) in Iran: a systematic review and meta-analysis. J. Glob. Antimicrob. Resist. 12 96–103. 10.1016/j.jgar.2017.09.006 PubMed DOI
Deotale V., Mendiratta D., Raut U., Narang P. (2010). Inducible clindamycin resistance in Staphylococcus aureus isolated from clinical samples. Indian. J. Med. Microbiol. 28:124 10.4103/0255-0857.62488 PubMed DOI
Desroches M., Potier J., Laurent F., Bourrel A.-S., Doucet-Populaire F., Decousser J.-W., et al. (2013). Prevalence of mupirocin resistance among invasive coagulase-negative staphylococci and methicillin-resistant Staphylococcus aureus (MRSA) in France: emergence of a mupirocin-resistant MRSA clone harbouring mupA. J. Antimicrob. Chemother. 68 1714–1717. 10.1093/jac/dkt085 PubMed DOI
Diep B. A., Stone G. G., Basuino L., Graber C. J., Miller A., des Etages S. A., et al. (2008). The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 197 1523–1530. 10.1086/587907 PubMed DOI
Enright M. C., Day N. P., Davies C. E., Peacock S. J., Spratt B. G. (2000). Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones ofStaphylococcus aureus. J. Clin. Microbiol. 38 1008–1015. PubMed PMC
Fossum A., Bukholm G. (2006). Increased incidence of methicillin-resistant Staphylococcus aureus ST80, novel ST125 and SCCmecIV in the south-eastern part of Norway during a 12-year period. J. Clin. Microbiol. 12 627–633. 10.1111/j.1469-0691.2006.01467.x PubMed DOI
Gad G. F. M., El-Feky M. A., El-Rehewy M. S., Hassan M. A., Abolella H., El-Baky R. M. A. (2009). Detection of icaA, icaD genes and biofilm production by Staphylococcus aureus and Staphylococcus epidermidis isolated from urinary tract catheterized patients. J. Infect. Dev. Countr. 3 342–351. 10.3855/jidc.241 PubMed DOI
Gilot P., Lina G., Cochard T., Poutrel B. (2002). Analysis of the genetic variability of genes encoding the RNA III-activating components Agr and TRAP in a population of Staphylococcus aureus strains isolated from cows with mastitis. J. Clin. Microbiol. 40 4060–4067. 10.1128/jcm.40.11.4060-4067.2002 PubMed DOI PMC
González-Domínguez M., Seral C., Potel C., Sáenz Y., Álvarez M., Torres C., et al. (2016). Genotypic and phenotypic characterization of methicillin-resistant Staphylococcus aureus (MRSA) clones with high-level mupirocin resistance. Diagn. Microbiol. Infect. Dis. 85 213–217. 10.1016/j.diagmicrobio.2016.02.021 PubMed DOI
Gordon R. J., Lowy F. D. (2008). Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis. 46(Suppl. 5), S350–S359. 10.1086/533591 PubMed DOI PMC
Goudarzi M., Bahramian M., Tabrizi M. S., Udo E. E., Figueiredo A. M. S., Fazeli M., et al. (2017). Genetic diversity of methicillin resistant Staphylococcus aureus strains isolated from burn patients in Iran: ST239-SCCmec III/t037 emerges as the major clone. Microb. Pathog. 105 1–7. 10.1016/j.micpath.2017.02.004 PubMed DOI
Goudarzi M., Goudarzi H., Figueiredo A. M. S., Udo E. E., Fazeli M., Asadzadeh M., et al. (2016a). Molecular characterization of methicillin resistant Staphylococcus aureus strains isolated from intensive care units in Iran: ST22-SCCmec IV/t790 emerges as the major clone. PLoS One 11:e0155529 10.1371/journal.pone.0155529 PubMed DOI PMC
Goudarzi M., Seyedjavadi S. S., Azad M., Goudarzi H., Azimi H. (2016b). Distribution of spa types, integrons and associated gene cassettes in Staphylococcus aureus strains isolated from intensive care units of hospitals in Tehran, Iran. Arch. Clin. Infect. Dis. 11 1–11.
Gould I. M., David M. Z., Esposito S., Garau J., Lina G., Mazzei T., et al. (2012). New insights into meticillin-resistant Staphylococcus aureus (MRSA) pathogenesis, treatment and resistance. Int. J. Antimicrob. Agents 39 96–104. 10.1016/j.ijantimicag.2011.09.028 PubMed DOI
Grundmann H., Schouls L. M., Aanensen D. M., Pluister G. N., Tami A., Chlebowicz M., et al. (2014). The dynamic changes of dominant clones of Staphylococcus aureus causing bloodstream infections in the European region: results of a second structured survey. Euro. Surveill. 19:20987 10.2807/1560-7917.es2014.19.49.20987 PubMed DOI
Harmsen D., Claus H., Witte W., Rothgänger J., Claus H., Turnwald D., et al. (2003). Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J. Clin. Microbiol. 41 5442–5448. 10.1128/jcm.41.12.5442-5448.2003 PubMed DOI PMC
Hirose M., Kobayashi N., Ghosh S., Paul S. K., Shen T., Urushibara N., et al. (2010). Identification of Staphylocoagulase Genotypes I-X and Discrimination of Type IV and V Subtypes by Multiplex PCR Assay for Clinical Isolates of Staphylococcus aureus. Jpn. J. Infect. Dis. 63 257–263. PubMed
Holmes A., Ganner M., McGuane S., Pitt T., Cookson B., Kearns A. (2005). Staphylococcus aureus isolates carrying Panton-Valentine leucocidin genes in England and Wales: frequency, characterization, and association with clinical disease. J. Clin. Microbiol. 43 2384–2390. 10.1128/JCM.43.5.2384-2390.2005 PubMed DOI PMC
Ilczyszyn W. M., Sabat A. J., Akkerboom V., Szkarlat A., Klepacka J., Sowa-Sierant I., et al. (2016). Clonal structure and characterization of Staphylococcus aureus strains from invasive infections in paediatric patients from South Poland: association between age, spa types, clonal complexes, and genetic markers. PLoS One 11:e0151937 10.1371/journal.pone.0151937 PubMed DOI PMC
Imanifooladi A., Sattari M., Peerayeh S. N., Hassan Z., Hossainidoust S. (2007). Detection the Staphylococcus aureus producing enterotoxin isolated from skin infections in hospitalized patients. Pak. J. Biol. Sci. 10 502–505. PubMed
Janwithayanuchit I., Ngam-Ululert S., Paungmoung P., Rangsipanuratn W. (2006). Epidemiologic study of methicillin-resistant Staphylococcus aureus by coagulase gene polymorphism. Scienceasia 32 127–132. 10.2306/scienceasia1513-1874.2006.32.127 DOI
Kahánková J., Pantůček R., Goerke C., Růžičková V., Holochová P., Doškař J. (2010). Multilocus PCR typing strategy for differentiation of Staphylococcus aureus siphoviruses reflecting their modular genome structure. Environ. Microbiol. 12 2527–2538. 10.1111/j.1462-2920.2010.02226.x PubMed DOI
Khashei R., Malekzadegan Y., Sedigh Ebrahim-Saraie H., Razavi Z. (2018). Phenotypic and genotypic characterization of macrolide, lincosamide and streptogramin B resistance among clinical isolates of staphylococci in southwest of Iran. BMC. Res. Notes 11:711 10.1186/s13104-018-3817-4 PubMed DOI PMC
Lewis J. S., Jorgensen J. H. (2005). Inducible clindamycin resistance in staphylococci: should clinicians and microbiologists be concerned? Clin. Infect. Dis. 40 280–285. 10.1086/426894 PubMed DOI
Li J., Wang L., Ip M., Sun M., Sun J., Huang G., et al. (2013). Molecular and clinical characteristics of clonal complex 59 methicillin-resistant Staphylococcus aureus infections in Mainland China. PLoS One 8:e70602 10.1371/journal.pone.0070602 PubMed DOI PMC
Li S., Sun S., Yang C., Chen H., Yin Y., Li H., et al. (2018). The changing pattern of population structure of Staphylococcus aureus from bacteremia in China from 2013 to 2016: ST239-030-MRSA replaced by ST59-t437. Front. Microbiol. 9:332 10.3389/fmicb.2018.00332 PubMed DOI PMC
Liang B., Mai J., Liu Y., Huang Y., Zhong H., Xie Y., et al. (2018). Prevalence and Characterization of Staphylococcus aureus isolated from women and Children in Guangzhou. China. Front. Microbiol. 9:2790 10.3389/fmicb.2018.02790 PubMed DOI PMC
Luther M. K., Parente D. M., Caffrey A. R., Daffinee K. E., Lopes V. V., Martin E. T., et al. (2018). Clinical and genetic risk factors for biofilm-forming Staphylococcus aureus. Antimicrob. Agents Chemother. 62 e2252–e2217. 10.1128/AAC.02252-17 PubMed DOI PMC
Mathur T., Singhal S., Khan S., Upadhyay D., Fatma T., Rattan A. (2006). Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian J. Med. Microbiol. 24:25 10.4103/0255-0857.19890 PubMed DOI
Memariani M., Pourmand M., Shirazi M., Dallal M., Abdossamadi Z., Mardani N. (2009). The importance of inducible clindamycin resistance in enterotoxin positive S. aureus isolated from clinical samples. Tehran. Univ. Med. J. 67 250–256.
Mirzaee M., Najar-Peerayeh S., Behmanesh M., Forouzandeh-Moghadam M., Ghasemian A.-M. (2014). Detection of intracellular adhesion (ica) gene and biofilm formation Staphylococcus aureus isolates from clinical blood cultures. J. Med. Bacteriol. 3 1–7.
Monday S. R., Bohach G. A. (1999). Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J. Clin. Microbiol. 37 3411–3414. PubMed PMC
Monecke S., Coombs G., Shore A. C., Coleman D. C., Akpaka P., Borg M., et al. (2011). A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One 6:e17936 10.1371/journal.pone.0017936 PubMed DOI PMC
Nemati M., Hermans K., Devriese L. A., Maes D., Haesebrouck F. (2009). Screening of genes encoding adhesion factors and biofilm formation in Staphylococcus aureus isolates from poultry. Avian. Pathol. 38 513–517. 10.1080/03079450903349212 PubMed DOI
Nezhad R. R., Meybodi S. M., Rezaee R., Goudarzi M., Fazeli M. (2017). Molecular characterization and resistance profile of methicillin resistant Staphylococcus aureus strains isolated from hospitalized patients in intensive care unit. Tehran-Iran. Jundishapur. J. Microbiol. 10:e41666 10.5812/jjm.41666 DOI
Omar N. Y., Ali H. A. S., Harfoush R. A. H., El Khayat E. H. (2014). Molecular typing of methicillin resistant Staphylococcus aureus clinical isolates on the basis of protein A and coagulase gene polymorphisms. Int. J. Microbiol. 2014:650328 10.1155/2014/650328 PubMed DOI PMC
Pantosti A., Sanchini A., Monaco M. (2007). Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol. 2 323–334. 10.2217/17460913.2.3.323 PubMed DOI
Pantůček R., Doškař J., Růžičková V., Kašpárek P., Oráčová E., Kvardova V., et al. (2004). Identification of bacteriophage types and their carriage in Staphylococcus aureus. Arch. Virol. 149 1689–1703. 10.1007/s00705-004-0335-6 PubMed DOI
Patel M., Waites K. B., Moser S. A., Cloud G. A., Hoesley C. J. (2006). Prevalence of inducible clindamycin resistance among community-and hospital-associated Staphylococcus aureus isolates. J. Clin. Microbiol. 44 2481–2484. 10.1128/JCM.02582-05 PubMed DOI PMC
Petinaki E., Spiliopoulou I., Kontos F., Maniati M., Bersos Z., Stakias N., et al. (2004). Clonal dissemination of mupirocin-resistant staphylococci in Greek hospitals. J. Antimicrob. Chemother. 53 105–108. 10.1093/jac/dkh028 PubMed DOI
Rahimi F., Bouzari M., Katouli M., Pourshafie M. R. (2012). Prophage and antibiotic resistance profiles of methicillin-resistant Staphylococcus aureus strains in Iran. Arch. Virol. 157 1807–1811. 10.1007/s00705-012-1361-4 PubMed DOI
Rolo J., Miragaia M., Turlej-Rogacka A., Empel J., Bouchami O., Faria N. A., et al. (2012). High genetic diversity among community-associated Staphylococcus aureus in Europe: results from a multicenter study. PLoS One 7:e34768 10.1371/journal.pone.0034768 PubMed DOI PMC
Samie A., Shivambu N. (2011). Biofilm production and antibiotic susceptibility profiles of Staphylococcus aureus isolated from HIV and AIDS patients in the Limpopo Province, South Africa. Afr. J. Biotechnol. 10 14625–14636. 10.5897/AJB11.1287 DOI
Shahsavan S., Emaneini M., Khoshgnab B. N., Khoramian B., Asadollahi P., Aligholi M., et al. (2012). A high prevalence of mupirocin and macrolide resistance determinant among Staphylococcus aureus strains isolated from burnt patients. Burns 38 378–382. 10.1016/j.burns.2011.09.004 PubMed DOI
Shore A. C., Tecklenborg S. C., Brennan G. I., Ehricht R., Monecke S., Coleman D. C. (2014). Panton-Valentine leukocidin-positive Staphylococcus aureus in Ireland from 2002 to 2011: 21 clones, frequent importation of clones, temporal shifts of predominant methicillin-resistant S. aureus clones, and increasing multiresistance. J. Clin. Microbiol. 52 859–870. 10.1128/JCM.02799-13 PubMed DOI PMC
Song Y., Du X., Li T., Zhu Y., Li M. (2013). Phenotypic and molecular characterization of Staphylococcus aureus recovered from different clinical specimens of inpatients at a teaching hospital in Shanghai between 2005 and 2010. J. Med. Microbiol. 62 274–282. 10.1099/jmm.0.050971-0 PubMed DOI
Stepanović S., Vuković D., Hola V., Bonaventura G. D., Djukić S., Ćirković I., et al. (2007). Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115 891–899. 10.1111/j.1600-0463.2007.apm_630.x PubMed DOI
Wang L., Liu Y., Yang Y., Huang G., Wang C., Deng L., et al. (2012). Multidrug-resistant clones of community-associated meticillin-resistant Staphylococcus aureus isolated from Chinese children and the resistance genes to clindamycin and mupirocin. J. Med. Microbiol. 61 1240–1247. 10.1099/jmm.0.042663-0 PubMed DOI
Wang L., Yu F., Yang L., Li Q., Zeng X. Z., Xu Y. (2010). Prevalence of virulence genes and biofilm formation among Staphylococcus aureus clinical isolates associated with lower respiratory infection. Afr. J. Microbiol. Res. 4 2566–2569.
Williamson D. A., Roberts S. A., Ritchie S. R., Coombs G. W., Fraser J. D., Heffernan H. (2013). Clinical and molecular epidemiology of methicillin-resistant Staphylococcus aureus in New Zealand: rapid emergence of sequence type 5 (ST5)-SCCmec-IV as the dominant community-associated MRSA clone. PLoS One 8:e62020 10.1371/journal.pone.0062020 PubMed DOI PMC
Workman M., Nigro O. D., Steward G. F. (2006). Identification of prophagein Hawaiian coastal water isolate of Staphylococcus Aureus. J. Young. Investig. 15 1–8.
Yousefi M., Pourmand M. R., Fallah F., Hashemi A., Mashhadi R., Nazari-Alam A. (2016). Characterization of Staphylococcus aureus biofilm formation in urinary tract infection. Iran J. Public Health 45:485. PubMed PMC
Yu F., Liu Y., Lu C., Jinnan L., Qi X., Ding Y., et al. (2015). Dissemination of fusidic acid resistance among Staphylococcus aureus clinical isolates. BMC. Microbiol. 15:210 10.1186/s12866-015-0552-z PubMed DOI PMC
Yun H.-J., Lee S. W., Yoon G. M., Kim S. Y., Choi S., Lee Y. S., et al. (2003). Prevalence and mechanisms of low-and high-level mupirocin resistance in staphylococci isolated from a Korean hospital. J Antimicrob. Chemother. 51 619–623. 10.1093/jac/dkg140 PubMed DOI