The Structural Integrity of the Model Lipid Membrane during Induced Lipid Peroxidation: The Role of Flavonols in the Inhibition of Lipid Peroxidation
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
IP-2016-06-8415
Hrvatska Zaklada za Znanost
PubMed
32429305
PubMed Central
PMC7278707
DOI
10.3390/antiox9050430
PII: antiox9050430
Knihovny.cz E-resources
- Keywords
- bilayer thickness, elasticity, flavonols, fluidity, lipid peroxidation, myricetin, myricitrin, quercetin,
- Publication type
- Journal Article MeSH
The structural integrity, elasticity, and fluidity of lipid membranes are critical for cellular activities such as communication between cells, exocytosis, and endocytosis. Unsaturated lipids, the main components of biological membranes, are particularly susceptible to the oxidative attack of reactive oxygen species. The peroxidation of unsaturated lipids, in our case 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), induces the structural reorganization of the membrane. We have employed a multi-technique approach to analyze typical properties of lipid bilayers, i.e., roughness, thickness, elasticity, and fluidity. We compared the alteration of the membrane properties upon initiated lipid peroxidation and examined the ability of flavonols, namely quercetin (QUE), myricetin (MCE), and myricitrin (MCI) at different molar fractions, to inhibit this change. Using Mass Spectrometry (MS) and Fourier Transform Infrared Spectroscopy (FTIR), we identified various carbonyl products and examined the extent of the reaction. From Atomic Force Microscopy (AFM), Force Spectroscopy (FS), Small Angle X-Ray Scattering (SAXS), and Electron Paramagnetic Resonance (EPR) experiments, we concluded that the membranes with inserted flavonols exhibit resistance against the structural changes induced by the oxidative attack, which is a finding with multiple biological implications. Our approach reveals the interplay between the flavonol molecular structure and the crucial membrane properties under oxidative attack and provides insight into the pathophysiology of cellular oxidative injury.
CEITEC Masaryk University 62500 Brno Czech Republic
Faculty of Pharmacy University of Ljubljana 1000 Ljubljana Slovenia
Institute of Inorganic Chemistry Graz University of Technology 8010 Graz Austria
See more in PubMed
Repetto M., Semprine J., Boveris A. Lipid Peroxidation. InTechOpen Limited; London, UK: 2012. Lipid Peroxidation: Chemical Mechanism, Biological Implications and Analytical Determination.
Devasagayam T.P.A., Boloor K.K., Ramasarma T. Methods for estimating lipid peroxidation: An analysis of merits and demerits. Indian J. Biochem. Biophys. 2003;40:300–308. PubMed
Shahidi F., Zhong Y. Measurement of antioxidant activity. J. Funct. Foods. 2015;18:757–781. doi: 10.1016/j.jff.2015.01.047. DOI
Aruoma O.I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 1998;75:199–212. doi: 10.1007/s11746-998-0032-9. PubMed DOI PMC
Parola M., Bellomo G., Robino G., Barrera G., Dianzani M.U. 4-Hydroxynonenal As a Biological Signal: Molecular Basis and Pathophysiological Implications. Antioxid. Redox Signal. 1999;1:255–284. doi: 10.1089/ars.1999.1.3-255. PubMed DOI
Cajone F., Bernelli-Zazzera A. The Action of 4-Hydroxynonenal on Heat Shock Gene Expression in Cultured Hepatoma Cells. Free Radic. Res. Commun. 1989;7:189–194. doi: 10.3109/10715768909087941. PubMed DOI
Cajone F., Crescente M. In vitro activation of heat shock transcription factor by 4-hydroxynonenal. Chem. Biol. Interact. 1992;84:97–112. doi: 10.1016/0009-2797(92)90071-R. PubMed DOI
Sies H. Oxidative stress: From basic research to clinical application. Am. J. Med. 1991;91:S31–S38. doi: 10.1016/0002-9343(91)90281-2. PubMed DOI
Sies H. Biochemistry of oxidative stress. Eur. J. Cancer Clin. Oncol. 1987;23:1798. doi: 10.1016/0277-5379(87)90716-4. DOI
Kähkönen M.P., Hopia A.I., Vuorela H.J., Rauha J.P., Pihlaja K., Kujala T.S., Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999;47:3954–3962. doi: 10.1021/jf990146l. PubMed DOI
Tsao R., Yang R. Optimization of a new mobile phase to know the complex and real polyphenolic composition: Towards a total phenolic index using high-performance liquid chromatography. J. Chromatogr. A. 2003;1018:29–40. doi: 10.1016/j.chroma.2003.08.034. PubMed DOI
Heim K.E., Tagliaferro A.R., Bobilya D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002;13:572–584. doi: 10.1016/S0955-2863(02)00208-5. PubMed DOI
Ignat I., Volf I., Popa V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011;126:1821–1835. doi: 10.1016/j.foodchem.2010.12.026. PubMed DOI
Hollman P.C.H., Katan M.B. Dietary flavonoids: Intake, health effects and bioavailability. Food Chem. Toxicol. 1999;37:937–942. doi: 10.1016/S0278-6915(99)00079-4. PubMed DOI
Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016;5:1–15. PubMed PMC
Rice-Evans C.A., Miller N.J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996;20:933–956. doi: 10.1016/0891-5849(95)02227-9. PubMed DOI
Halliwell B., Gutteridge J.M.C. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 1984;219:1–14. doi: 10.1042/bj2190001. PubMed DOI PMC
Repetto M.G., Ferrarotti N.F., Boveris A. The involvement of transition metal ions on iron-dependent lipid peroxidation. Arch. Toxicol. 2010;84:255–262. doi: 10.1007/s00204-009-0487-y. PubMed DOI
Ohyashiki T., Suzuki S., Satoh E., Uemori Y. A marked stimulation of Fe2+-initiated lipid peroxidation in phospholipid liposomes by a lipophilic aluminum complex, aluminum acetylacetonate. Biochim. Biophys. Acta Lipids Lipid Metab. 1998;1389:141–149. PubMed
Tadolini B., Hakim G. The mechanism of iron (III) stimulation of lipid peroxidation. Free Radic. Res. 1996;25:221–227. doi: 10.3109/10715769609149047. PubMed DOI
Ohyashiki T., Kadoya A., Kushida K. The role of Fe3+ on Fe2+-dependent lipid peroxidation in phospholipid liposomes. Chem. Pharm. Bull. 2002;50:203–207. doi: 10.1248/cpb.50.203. PubMed DOI
Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 1979;59:527–605. doi: 10.1152/physrev.1979.59.3.527. PubMed DOI
Oteiza P.I., Erlejman A.G., Verstraeten S.V., Keen C.L., Fraga C.G. Flavonoid-membrane interactions: A protective role of flavonoids at the membrane surface? Clin. Dev. Immunol. 2005;12:19–25. doi: 10.1080/10446670410001722168. PubMed DOI PMC
Van Dijk C., Driessen A.J.M., Recourt K. The uncoupling efficiency and affinity of flavonoids for vesicles. Biochem. Pharmacol. 2000;60:1593–1600. doi: 10.1016/S0006-2952(00)00488-3. PubMed DOI
Verstraeten S.V., Nogueira L.V., Schreier S., Oteiza P.I. Effect of trivalent metal ions on phase separation and membrane lipid packing: Role in lipid peroxidation. Arch. Biochem. Biophys. 1997;338:121–127. doi: 10.1006/abbi.1996.9810. PubMed DOI
Semwal D., Semwal R., Combrinck S., Viljoen A. Myricetin: A Dietary Molecule with Diverse Biological Activities. Nutrients. 2016;8:90. doi: 10.3390/nu8020090. PubMed DOI PMC
Pereira M., Siba I.P., Chioca L.R., Correia D., Vital M.A.B.F., Pizzolatti M.G., Santos A.R.S., Andreatini R. Myricitrin, a nitric oxide and protein kinase C inhibitor, exerts antipsychotic-like effects in animal models. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2011;35:1636–1644. doi: 10.1016/j.pnpbp.2011.06.002. PubMed DOI
Choi S.-M., Kim B.C., Cho Y.-H., Choi K.-H., Chang J., Park M.-S., Kim M.-K., Cho K.-H., Kim J.-K. Effects of Flavonoid Compounds on β-amyloid-peptide-induced Neuronal Death in Cultured Mouse Cortical Neurons. Chonnam Med. J. 2014;50:45. doi: 10.4068/cmj.2014.50.2.45. PubMed DOI PMC
Boots A.W., Haenen G.R.M.M., Bast A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol. 2008;585:325–337. doi: 10.1016/j.ejphar.2008.03.008. PubMed DOI
Lee E.-S., Lee H.-E., Shin J.-Y., Yoon S., Moon J.-O. The flavonoid quercetin inhibits dimethylnitrosamine-induced liver damage in rats. J. Pharm. Pharmacol. 2003;55:1169–1174. doi: 10.1211/0022357021396. PubMed DOI
Bucki R., Pastore T.J.J., Giraud F., Sulpicejand J.C., Janmey P.A. Flavonoid inhibition of platelet procoagulant activity and phosphoinositide synthesis. J. Thromb. Haemost. 2003;1:1820–1828. doi: 10.1046/j.1538-7836.2003.00294.x. PubMed DOI
Cushnie T.P.T., Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 2005;26:343–356. doi: 10.1016/j.ijantimicag.2005.09.002. PubMed DOI PMC
Shimosaki S., Tsurunaga Y., Itamura H., Nakamura M. Anti-allergic effect of the flavonoid myricitrin from Myrica rubra leaf extracts invitro and invivo. Nat. Prod. Res. 2011;25:374–380. doi: 10.1080/14786411003774320. PubMed DOI
Domitrović R., Rashed K., Cvijanović O., Vladimir-Knežević S., Škoda M., Višnić A. Myricitrin exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. Chem. Biol. Interact. 2015;230:21–29. doi: 10.1016/j.cbi.2015.01.030. PubMed DOI
Meotti F.C., Luiz A.P., Pizzolatti M.G., Santos A.R.S. Analysis of the Antinociceptive Effect of the Flavonoid Myricitrin: Evidence for a Role of the L-arginine-nitric oxide and protein kinase C pathways. J. Pharmacol. Exp. Ther. 2006;316:789–796. doi: 10.1124/jpet.105.092825. PubMed DOI
Reis A., Spickett C.M. Chemistry of phospholipid oxidation. Biochim. Biophys. Acta Biomembr. 2012;1818:2374–2387. doi: 10.1016/j.bbamem.2012.02.002. PubMed DOI
Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017;11:613–619. doi: 10.1016/j.redox.2016.12.035. PubMed DOI PMC
Buettner G.R. The Pecking Order of Free Radicals and Antioxidants: Lipid Peroxidation, α-Tocopherol, and Ascorbate. Arch. Biochem. Biophys. 1993;300:535–543. doi: 10.1006/abbi.1993.1074. PubMed DOI
Rehncrona S., Smith D.S., Åkesson B., Westerberg E., Siesjö B.K. Peroxidative Changes in Brain Cortical Fatty Acids and Phospholipids, as Characterized During Fe2+ and Ascorbic Acid-Stimulated Lipid Peroxidation in vitro. J. Neurochem. 1980;34:1630–1638. doi: 10.1111/j.1471-4159.1980.tb11254.x. PubMed DOI
Carr A., Frei B. Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J. 1999;13:1007–1024. doi: 10.1096/fasebj.13.9.1007. PubMed DOI
Arsov Z., Rappolt M., Grdadolnik J. Weakened Hydrogen Bonds in Water Confined between Lipid Bilayers: The Existence of a Long-Range Attractive Hydration Force. ChemPhysChem. 2009;10:1438–1441. doi: 10.1002/cphc.200900185. PubMed DOI
Oleszko A., Olsztyńska-Janus S., Walski T., Grzeszczuk-Kuć K., Bujok J., Gałecka K., Czerski A., Witkiewicz W., Komorowska M. Application of FTIR-ATR spectroscopy to determine the extent of lipid peroxidation in plasma during haemodialysis. BioMed Res. Int. 2015;2015:245607. doi: 10.1155/2015/245607. PubMed DOI PMC
Bradley M.S., Krech J.H. High-pressure Raman spectra of the acetone carbonyl stretch in acetone-methanol mixtures. J. Phys. Chem. 1993;97:575–580. doi: 10.1021/j100105a009. DOI
Bergmann A., Fritz G., Glatter O. Solving the generalized indirect Fourier transformation (GIFT) by Boltzmann simplex simulated annealing (BSSA) J. Appl. Crystallogr. 2000;33:1212–1216. doi: 10.1107/S0021889800008372. DOI
Glatter O. Convolution square root of band-limited symmetrical functions and its application to small-angle scattering data. J. Appl. Crystallogr. 1981;14:101–108. doi: 10.1107/S002188988100887X. DOI
Kriechbaum M. Electron Density Calculator for 1D-Lamellar Lattices. [(accessed on 10 April 2020)]; Available online: https://sas.neocities.org/xitami/java/lamdens.html.
Mandić L., Sadžak A., Strasser V., Baranović G., Jurašin D.D., Sikirić M.D., Šegota S. Enhanced protection of biological membranes during lipid peroxidation: Study of the interactions between flavonoid loaded mesoporous silica nanoparticles and model cell membranes. Int. J. Mol. Sci. 2019;20:2709. doi: 10.3390/ijms20112709. PubMed DOI PMC
Šegota S., Vojta D., Pletikapić G., Baranović G. Ionic strength and composition govern the elasticity of biological membranes. A study of model DMPC bilayers by force- and transmission IR spectroscopy. Chem. Phys. Lipids. 2015;186:17–29. doi: 10.1016/j.chemphyslip.2014.11.001. PubMed DOI
Jazvinšćak Jembrek M., Vlainić J., Čadež V., Šegota S. Atomic force microscopy reveals new biophysical markers for monitoring subcellular changes in oxidative injury: Neuroprotective effects of quercetin at the nanoscale. PLoS ONE. 2018;13:e0200119. doi: 10.1371/journal.pone.0200119. PubMed DOI PMC
Shahidi F., Wanasundara U. Effect of Natural Antioxidants on the Stability of Canola Oil. Elsevier; Amsterdam, The Netherlands: 1995. pp. 469–479.
Taga M.S., Miller E.E., Pratt D.E. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc. 1984;61:928–931. doi: 10.1007/BF02542169. DOI
Das N.P., Pereira T.A. Effects of flavonoids on thermal autoxidation of palm oil: Structure-activity relationships. J. Am. Oil Chem. Soc. 1990;67:255–258. doi: 10.1007/BF02540652. DOI
Chen Z.Y., Chan P.T., Ho K.Y., Fung K.P., Wang J. Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chem. Phys. Lipids. 1996;79:157–163. doi: 10.1016/0009-3084(96)02523-6. PubMed DOI
Frankel E.N., Waterhouse A.L., Teissedre P.L. Principal Phenolic Phytochemicals in Selected California Wines and Their Antioxidant Activity in Inhibiting Oxidation of Human Low-Density Lipoproteins. J. Agric. Food Chem. 1995;43:890–894. doi: 10.1021/jf00052a008. DOI
Teissedre P.L., Frankel E.N., Waterhouse A.L., Peleg H., German J.B. Inhibition of in vitro Human LDL Oxidation by Phenolic Antioxidants from Grapes and Wines. J. Sci. Food Agric. 1996;70:55–61. doi: 10.1002/(SICI)1097-0010(199601)70:1<55::AID-JSFA471>3.0.CO;2-X. DOI
Vinson J.A., Dabbagh Y.A., Serry M.M., Jang J. Plant Flavonoids, Especially Tea Flavonols, Are Powerful Antioxidants Using an in Vitro Oxidation Model for Heart Disease. J. Agric. Food Chem. 1995;43:2800–2802. doi: 10.1021/jf00059a005. DOI
Mehta A., Seshadri T.R. Flavonoids as antioxidants. J. Sci. Ind. Res. 1959;18B:24–28.
Ramanathan L., Das N.P., Li Q.-T. Studies on lipid oxidation in fish phospholipid liposomes. Biol. Trace Elem. Res. 1994;40:59–70. doi: 10.1007/BF02916821. PubMed DOI
Gordon M.H., Roedig-Penman A. Antioxidant activity of quercetin and myricetin in liposomes. Chem. Phys. Lipids. 1998;97:79–85. doi: 10.1016/S0009-3084(98)00098-X. PubMed DOI
Tai W.-Y., Yang Y.-C., Lin H.-J., Huang C.-P., Cheng Y.-L., Chen M.-F., Yen H.-L., Liau I. Interplay between Structure and Fluidity of Model Lipid Membranes under Oxidative Attack. J. Phys. Chem. B. 2010;114:15642–15649. doi: 10.1021/jp1014719. PubMed DOI
Wratten M.L., Van Ginkel G., Van’t Veld A.A., Bekker A., Van Faassen E.E., Sevanian A. Structural and dynamic effects of oxidatively modified phospholipids in unsaturated lipid membranes. Biochemistry. 1992;31:10901–10907. doi: 10.1021/bi00159a034. PubMed DOI
Beranova L., Cwiklik L., Jurkiewicz P., Hof M., Jungwirth P. Oxidation Changes Physical Properties of Phospholipid Bilayers: Fluorescence Spectroscopy and Molecular Simulations. Langmuir. 2010;26:6140–6144. doi: 10.1021/la100657a. PubMed DOI
Richter C. Biophysical consequences of lipid peroxidation in membranes. Chem. Phys. Lipids. 1987;44:175–189. doi: 10.1016/0009-3084(87)90049-1. PubMed DOI
Niki E., Yoshida Y., Saito Y., Noguchi N. Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochem. Biophys. Res. Commun. 2005;338:668–676. doi: 10.1016/j.bbrc.2005.08.072. PubMed DOI
Kelsey N.A., Wilkins H.M., Linseman D.A. Nutraceutical Antioxidants as Novel Neuroprotective Agents. Molecules. 2010;15:7792–7814. doi: 10.3390/molecules15117792. PubMed DOI PMC
Suh J.H., Niu Y.S., Hung W.-L., Ho C.-T., Wang Y. Lipidomic analysis for carbonyl species derived from fish oil using liquid chromatography–tandem mass spectrometry. Talanta. 2017;168:31–42. doi: 10.1016/j.talanta.2017.03.023. PubMed DOI
Milić I., Hoffmann R., Fedorova M. Simultaneous detection of low and high molecular weight carbonylated compounds derived from lipid peroxidation by electrospray ionization-tandem mass spectrometry. Anal. Chem. 2013;85:156–162. doi: 10.1021/ac302356z. PubMed DOI
Hollebrands B., Varvaki E., Kaal S., Janssen H.-G. Selective labeling for the identification and semi-quantification of lipid aldehydes in food products. Anal. Bioanal. Chem. 2018;410:5421–5429. doi: 10.1007/s00216-018-1101-z. PubMed DOI
Bernardes C.P., Santos N.A.G., Costa T.R., Sisti F., Amaral L., Menaldo D.L., Amstalden M.K., Ribeiro D.L., Antunes L.M.G., Sampaio S.V., et al. A Synthetic Snake-Venom-Based Tripeptide Protects PC12 Cells from the Neurotoxicity of Acrolein by Improving Axonal Plasticity and Bioenergetics. Neurotox. Res. 2020;37:227–237. doi: 10.1007/s12640-019-00111-0. PubMed DOI
Park J.H., Choi J.-Y., Jo C., Koh Y.H. Involvement of ADAM10 in acrolein-induced astrocytic inflammation. Toxicol. Lett. 2020;318:44–49. doi: 10.1016/j.toxlet.2019.10.005. PubMed DOI
Mano J.I., Biswas M., Sugimoto K. Reactive Carbonyl Species: A Missing Link in ROS Signaling. Plants. 2019;8:391. doi: 10.3390/plants8100391. PubMed DOI PMC
PubChem. [(accessed on 10 April 2020)]; Available online: https://pubchem.ncbi.nlm.nih.gov/
Toro-Uribe S., López-Giraldo L.J., Decker E.A. Relationship between the Physiochemical Properties of Cocoa Procyanidins and Their Ability to Inhibit Lipid Oxidation in Liposomes. J. Agric. Food Chem. 2018;66:4490–4502. doi: 10.1021/acs.jafc.8b01074. PubMed DOI
Sánchez-Alonso I., Carmona P., Careche M. Vibrational spectroscopic analysis of hake (Merluccius merluccius L.) lipids during frozen storage. Food Chem. 2012;132:160–167. doi: 10.1016/j.foodchem.2011.10.047. PubMed DOI
Blume A. Properties of lipid vesicles: FT-IR spectroscopy and fluorescence probe studies. Curr. Opin. Colloid Interface Sci. 1996;1:64–77. doi: 10.1016/S1359-0294(96)80046-X. DOI
Arrondo J.L.R., Goñi F.M. Infrared studies of protein-induced perturbation of lipids in lipoproteins and membranes. Chem. Phys. Lipids. 1998;96:53–68. doi: 10.1016/S0009-3084(98)00080-2. PubMed DOI
Rudolphi-Skórska E., Filek M., Zembala M. The Effects of the Structure and Composition of the Hydrophobic Parts of Phosphatidylcholine-Containing Systems on Phosphatidylcholine Oxidation by Ozone. J. Membr. Biol. 2017;250:493–505. doi: 10.1007/s00232-017-9976-8. PubMed DOI PMC
Maity P., Saha B., Kumar G.S., Karmakar S. Binding of monovalent alkali metal ions with negatively charged phospholipid membranes. Biochim. Biophys. Acta Biomembr. 2016;1858:706–714. doi: 10.1016/j.bbamem.2016.01.012. PubMed DOI
Harris C.S., Mo F., Migahed L., Chepelev L., Haddad P.S., Wright J.S., Willmore W.G., Arnason J.T., Bennett S.A.L. Plant phenolics regulate neoplastic cell growth and survival: A quantitative structure–activity and biochemical analysisThis article is one of a selection of papers published in this special issue (part 2 of 2) on the Safety and Efficacy of Natural Health. Can. J. Physiol. Pharmacol. 2007;85:1124–1138. doi: 10.1139/Y07-101. PubMed DOI
Álvarez-Diduk R., Ramírez-Silva M.T., Galano A., Merkoçi A. Deprotonation Mechanism and Acidity Constants in Aqueous Solution of Flavonols: A Combined Experimental and Theoretical Study. J. Phys. Chem. B. 2013;117:12347–12359. doi: 10.1021/jp4049617. PubMed DOI
Bi S., Wang T., Zhao T., Wang Y., Pang B. Study of the interaction of salmon sperm DNA with myricitrin–CPB based on the enhanced resonance light scattering signal and its potential application. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013;112:397–402. doi: 10.1016/j.saa.2013.04.015. PubMed DOI
Mosca M., Ceglie A., Ambrosone L. Effect of membrane composition on lipid oxidation in liposomes. Chem. Phys. Lipids. 2011;164:158–165. doi: 10.1016/j.chemphyslip.2010.12.006. PubMed DOI
Makky A., Tanaka M. Impact of Lipid Oxidization on Biophysical Properties of Model Cell Membranes. J. Phys. Chem. B. 2015;119:5857–5863. doi: 10.1021/jp512339m. PubMed DOI
Albertini R., Rindi S., Passi A., Pallavicini G., De Luca G. Heparin protection against Fe2+ -and Cu2+ -mediated oxidation of liposomes. FEBS Lett. 1996;383:155–158. doi: 10.1016/0014-5793(96)00253-0. PubMed DOI
Wong-ekkabut J., Xu Z., Triampo W., Tang I.-M., Peter Tieleman D., Monticelli L. Effect of Lipid Peroxidation on the Properties of Lipid Bilayers: A Molecular Dynamics Study. Biophys. J. 2007;93:4225–4236. doi: 10.1529/biophysj.107.112565. PubMed DOI PMC
Attwood S., Choi Y., Leonenko Z. Preparation of DOPC and DPPC Supported Planar Lipid Bilayers for Atomic Force Microscopy and Atomic Force Spectroscopy. Int. J. Mol. Sci. 2013;14:3514–3539. doi: 10.3390/ijms14023514. PubMed DOI PMC
Engel A., Schoenenberger C.A., Müller D.J. High resolution imaging of native biological sample surfaces using scanning probe microscopy. Curr. Opin. Struct. Biol. 1997;7:279–284. doi: 10.1016/S0959-440X(97)80037-1. PubMed DOI
Picas L., Rico F., Scheuring S. Direct Measurement of the Mechanical Properties of Lipid Phases in Supported Bilayers. Biophys. J. 2012;102:L01–L03. doi: 10.1016/j.bpj.2011.11.4001. PubMed DOI PMC
Ohki K., Takamura T., Nozawai Y. Effect of.ALPHA.-tocopherol on lipid peroxidation and acyl chain mobility of liver microsomes from vitamin E-difficient rat. J. Nutr. Sci. Vitaminol. 1984;30:221–234. doi: 10.3177/jnsv.30.221. PubMed DOI