• This record comes from PubMed

The Structural Integrity of the Model Lipid Membrane during Induced Lipid Peroxidation: The Role of Flavonols in the Inhibition of Lipid Peroxidation

. 2020 May 15 ; 9 (5) : . [epub] 20200515

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
IP-2016-06-8415 Hrvatska Zaklada za Znanost

The structural integrity, elasticity, and fluidity of lipid membranes are critical for cellular activities such as communication between cells, exocytosis, and endocytosis. Unsaturated lipids, the main components of biological membranes, are particularly susceptible to the oxidative attack of reactive oxygen species. The peroxidation of unsaturated lipids, in our case 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), induces the structural reorganization of the membrane. We have employed a multi-technique approach to analyze typical properties of lipid bilayers, i.e., roughness, thickness, elasticity, and fluidity. We compared the alteration of the membrane properties upon initiated lipid peroxidation and examined the ability of flavonols, namely quercetin (QUE), myricetin (MCE), and myricitrin (MCI) at different molar fractions, to inhibit this change. Using Mass Spectrometry (MS) and Fourier Transform Infrared Spectroscopy (FTIR), we identified various carbonyl products and examined the extent of the reaction. From Atomic Force Microscopy (AFM), Force Spectroscopy (FS), Small Angle X-Ray Scattering (SAXS), and Electron Paramagnetic Resonance (EPR) experiments, we concluded that the membranes with inserted flavonols exhibit resistance against the structural changes induced by the oxidative attack, which is a finding with multiple biological implications. Our approach reveals the interplay between the flavonol molecular structure and the crucial membrane properties under oxidative attack and provides insight into the pathophysiology of cellular oxidative injury.

See more in PubMed

Repetto M., Semprine J., Boveris A. Lipid Peroxidation. InTechOpen Limited; London, UK: 2012. Lipid Peroxidation: Chemical Mechanism, Biological Implications and Analytical Determination.

Devasagayam T.P.A., Boloor K.K., Ramasarma T. Methods for estimating lipid peroxidation: An analysis of merits and demerits. Indian J. Biochem. Biophys. 2003;40:300–308. PubMed

Shahidi F., Zhong Y. Measurement of antioxidant activity. J. Funct. Foods. 2015;18:757–781. doi: 10.1016/j.jff.2015.01.047. DOI

Aruoma O.I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 1998;75:199–212. doi: 10.1007/s11746-998-0032-9. PubMed DOI PMC

Parola M., Bellomo G., Robino G., Barrera G., Dianzani M.U. 4-Hydroxynonenal As a Biological Signal: Molecular Basis and Pathophysiological Implications. Antioxid. Redox Signal. 1999;1:255–284. doi: 10.1089/ars.1999.1.3-255. PubMed DOI

Cajone F., Bernelli-Zazzera A. The Action of 4-Hydroxynonenal on Heat Shock Gene Expression in Cultured Hepatoma Cells. Free Radic. Res. Commun. 1989;7:189–194. doi: 10.3109/10715768909087941. PubMed DOI

Cajone F., Crescente M. In vitro activation of heat shock transcription factor by 4-hydroxynonenal. Chem. Biol. Interact. 1992;84:97–112. doi: 10.1016/0009-2797(92)90071-R. PubMed DOI

Sies H. Oxidative stress: From basic research to clinical application. Am. J. Med. 1991;91:S31–S38. doi: 10.1016/0002-9343(91)90281-2. PubMed DOI

Sies H. Biochemistry of oxidative stress. Eur. J. Cancer Clin. Oncol. 1987;23:1798. doi: 10.1016/0277-5379(87)90716-4. DOI

Kähkönen M.P., Hopia A.I., Vuorela H.J., Rauha J.P., Pihlaja K., Kujala T.S., Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999;47:3954–3962. doi: 10.1021/jf990146l. PubMed DOI

Tsao R., Yang R. Optimization of a new mobile phase to know the complex and real polyphenolic composition: Towards a total phenolic index using high-performance liquid chromatography. J. Chromatogr. A. 2003;1018:29–40. doi: 10.1016/j.chroma.2003.08.034. PubMed DOI

Heim K.E., Tagliaferro A.R., Bobilya D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002;13:572–584. doi: 10.1016/S0955-2863(02)00208-5. PubMed DOI

Ignat I., Volf I., Popa V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011;126:1821–1835. doi: 10.1016/j.foodchem.2010.12.026. PubMed DOI

Hollman P.C.H., Katan M.B. Dietary flavonoids: Intake, health effects and bioavailability. Food Chem. Toxicol. 1999;37:937–942. doi: 10.1016/S0278-6915(99)00079-4. PubMed DOI

Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016;5:1–15. PubMed PMC

Rice-Evans C.A., Miller N.J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996;20:933–956. doi: 10.1016/0891-5849(95)02227-9. PubMed DOI

Halliwell B., Gutteridge J.M.C. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 1984;219:1–14. doi: 10.1042/bj2190001. PubMed DOI PMC

Repetto M.G., Ferrarotti N.F., Boveris A. The involvement of transition metal ions on iron-dependent lipid peroxidation. Arch. Toxicol. 2010;84:255–262. doi: 10.1007/s00204-009-0487-y. PubMed DOI

Ohyashiki T., Suzuki S., Satoh E., Uemori Y. A marked stimulation of Fe2+-initiated lipid peroxidation in phospholipid liposomes by a lipophilic aluminum complex, aluminum acetylacetonate. Biochim. Biophys. Acta Lipids Lipid Metab. 1998;1389:141–149. PubMed

Tadolini B., Hakim G. The mechanism of iron (III) stimulation of lipid peroxidation. Free Radic. Res. 1996;25:221–227. doi: 10.3109/10715769609149047. PubMed DOI

Ohyashiki T., Kadoya A., Kushida K. The role of Fe3+ on Fe2+-dependent lipid peroxidation in phospholipid liposomes. Chem. Pharm. Bull. 2002;50:203–207. doi: 10.1248/cpb.50.203. PubMed DOI

Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 1979;59:527–605. doi: 10.1152/physrev.1979.59.3.527. PubMed DOI

Oteiza P.I., Erlejman A.G., Verstraeten S.V., Keen C.L., Fraga C.G. Flavonoid-membrane interactions: A protective role of flavonoids at the membrane surface? Clin. Dev. Immunol. 2005;12:19–25. doi: 10.1080/10446670410001722168. PubMed DOI PMC

Van Dijk C., Driessen A.J.M., Recourt K. The uncoupling efficiency and affinity of flavonoids for vesicles. Biochem. Pharmacol. 2000;60:1593–1600. doi: 10.1016/S0006-2952(00)00488-3. PubMed DOI

Verstraeten S.V., Nogueira L.V., Schreier S., Oteiza P.I. Effect of trivalent metal ions on phase separation and membrane lipid packing: Role in lipid peroxidation. Arch. Biochem. Biophys. 1997;338:121–127. doi: 10.1006/abbi.1996.9810. PubMed DOI

Semwal D., Semwal R., Combrinck S., Viljoen A. Myricetin: A Dietary Molecule with Diverse Biological Activities. Nutrients. 2016;8:90. doi: 10.3390/nu8020090. PubMed DOI PMC

Pereira M., Siba I.P., Chioca L.R., Correia D., Vital M.A.B.F., Pizzolatti M.G., Santos A.R.S., Andreatini R. Myricitrin, a nitric oxide and protein kinase C inhibitor, exerts antipsychotic-like effects in animal models. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2011;35:1636–1644. doi: 10.1016/j.pnpbp.2011.06.002. PubMed DOI

Choi S.-M., Kim B.C., Cho Y.-H., Choi K.-H., Chang J., Park M.-S., Kim M.-K., Cho K.-H., Kim J.-K. Effects of Flavonoid Compounds on β-amyloid-peptide-induced Neuronal Death in Cultured Mouse Cortical Neurons. Chonnam Med. J. 2014;50:45. doi: 10.4068/cmj.2014.50.2.45. PubMed DOI PMC

Boots A.W., Haenen G.R.M.M., Bast A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol. 2008;585:325–337. doi: 10.1016/j.ejphar.2008.03.008. PubMed DOI

Lee E.-S., Lee H.-E., Shin J.-Y., Yoon S., Moon J.-O. The flavonoid quercetin inhibits dimethylnitrosamine-induced liver damage in rats. J. Pharm. Pharmacol. 2003;55:1169–1174. doi: 10.1211/0022357021396. PubMed DOI

Bucki R., Pastore T.J.J., Giraud F., Sulpicejand J.C., Janmey P.A. Flavonoid inhibition of platelet procoagulant activity and phosphoinositide synthesis. J. Thromb. Haemost. 2003;1:1820–1828. doi: 10.1046/j.1538-7836.2003.00294.x. PubMed DOI

Cushnie T.P.T., Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 2005;26:343–356. doi: 10.1016/j.ijantimicag.2005.09.002. PubMed DOI PMC

Shimosaki S., Tsurunaga Y., Itamura H., Nakamura M. Anti-allergic effect of the flavonoid myricitrin from Myrica rubra leaf extracts invitro and invivo. Nat. Prod. Res. 2011;25:374–380. doi: 10.1080/14786411003774320. PubMed DOI

Domitrović R., Rashed K., Cvijanović O., Vladimir-Knežević S., Škoda M., Višnić A. Myricitrin exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. Chem. Biol. Interact. 2015;230:21–29. doi: 10.1016/j.cbi.2015.01.030. PubMed DOI

Meotti F.C., Luiz A.P., Pizzolatti M.G., Santos A.R.S. Analysis of the Antinociceptive Effect of the Flavonoid Myricitrin: Evidence for a Role of the L-arginine-nitric oxide and protein kinase C pathways. J. Pharmacol. Exp. Ther. 2006;316:789–796. doi: 10.1124/jpet.105.092825. PubMed DOI

Reis A., Spickett C.M. Chemistry of phospholipid oxidation. Biochim. Biophys. Acta Biomembr. 2012;1818:2374–2387. doi: 10.1016/j.bbamem.2012.02.002. PubMed DOI

Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017;11:613–619. doi: 10.1016/j.redox.2016.12.035. PubMed DOI PMC

Buettner G.R. The Pecking Order of Free Radicals and Antioxidants: Lipid Peroxidation, α-Tocopherol, and Ascorbate. Arch. Biochem. Biophys. 1993;300:535–543. doi: 10.1006/abbi.1993.1074. PubMed DOI

Rehncrona S., Smith D.S., Åkesson B., Westerberg E., Siesjö B.K. Peroxidative Changes in Brain Cortical Fatty Acids and Phospholipids, as Characterized During Fe2+ and Ascorbic Acid-Stimulated Lipid Peroxidation in vitro. J. Neurochem. 1980;34:1630–1638. doi: 10.1111/j.1471-4159.1980.tb11254.x. PubMed DOI

Carr A., Frei B. Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J. 1999;13:1007–1024. doi: 10.1096/fasebj.13.9.1007. PubMed DOI

Arsov Z., Rappolt M., Grdadolnik J. Weakened Hydrogen Bonds in Water Confined between Lipid Bilayers: The Existence of a Long-Range Attractive Hydration Force. ChemPhysChem. 2009;10:1438–1441. doi: 10.1002/cphc.200900185. PubMed DOI

Oleszko A., Olsztyńska-Janus S., Walski T., Grzeszczuk-Kuć K., Bujok J., Gałecka K., Czerski A., Witkiewicz W., Komorowska M. Application of FTIR-ATR spectroscopy to determine the extent of lipid peroxidation in plasma during haemodialysis. BioMed Res. Int. 2015;2015:245607. doi: 10.1155/2015/245607. PubMed DOI PMC

Bradley M.S., Krech J.H. High-pressure Raman spectra of the acetone carbonyl stretch in acetone-methanol mixtures. J. Phys. Chem. 1993;97:575–580. doi: 10.1021/j100105a009. DOI

Bergmann A., Fritz G., Glatter O. Solving the generalized indirect Fourier transformation (GIFT) by Boltzmann simplex simulated annealing (BSSA) J. Appl. Crystallogr. 2000;33:1212–1216. doi: 10.1107/S0021889800008372. DOI

Glatter O. Convolution square root of band-limited symmetrical functions and its application to small-angle scattering data. J. Appl. Crystallogr. 1981;14:101–108. doi: 10.1107/S002188988100887X. DOI

Kriechbaum M. Electron Density Calculator for 1D-Lamellar Lattices. [(accessed on 10 April 2020)]; Available online: https://sas.neocities.org/xitami/java/lamdens.html.

Mandić L., Sadžak A., Strasser V., Baranović G., Jurašin D.D., Sikirić M.D., Šegota S. Enhanced protection of biological membranes during lipid peroxidation: Study of the interactions between flavonoid loaded mesoporous silica nanoparticles and model cell membranes. Int. J. Mol. Sci. 2019;20:2709. doi: 10.3390/ijms20112709. PubMed DOI PMC

Šegota S., Vojta D., Pletikapić G., Baranović G. Ionic strength and composition govern the elasticity of biological membranes. A study of model DMPC bilayers by force- and transmission IR spectroscopy. Chem. Phys. Lipids. 2015;186:17–29. doi: 10.1016/j.chemphyslip.2014.11.001. PubMed DOI

Jazvinšćak Jembrek M., Vlainić J., Čadež V., Šegota S. Atomic force microscopy reveals new biophysical markers for monitoring subcellular changes in oxidative injury: Neuroprotective effects of quercetin at the nanoscale. PLoS ONE. 2018;13:e0200119. doi: 10.1371/journal.pone.0200119. PubMed DOI PMC

Shahidi F., Wanasundara U. Effect of Natural Antioxidants on the Stability of Canola Oil. Elsevier; Amsterdam, The Netherlands: 1995. pp. 469–479.

Taga M.S., Miller E.E., Pratt D.E. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc. 1984;61:928–931. doi: 10.1007/BF02542169. DOI

Das N.P., Pereira T.A. Effects of flavonoids on thermal autoxidation of palm oil: Structure-activity relationships. J. Am. Oil Chem. Soc. 1990;67:255–258. doi: 10.1007/BF02540652. DOI

Chen Z.Y., Chan P.T., Ho K.Y., Fung K.P., Wang J. Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chem. Phys. Lipids. 1996;79:157–163. doi: 10.1016/0009-3084(96)02523-6. PubMed DOI

Frankel E.N., Waterhouse A.L., Teissedre P.L. Principal Phenolic Phytochemicals in Selected California Wines and Their Antioxidant Activity in Inhibiting Oxidation of Human Low-Density Lipoproteins. J. Agric. Food Chem. 1995;43:890–894. doi: 10.1021/jf00052a008. DOI

Teissedre P.L., Frankel E.N., Waterhouse A.L., Peleg H., German J.B. Inhibition of in vitro Human LDL Oxidation by Phenolic Antioxidants from Grapes and Wines. J. Sci. Food Agric. 1996;70:55–61. doi: 10.1002/(SICI)1097-0010(199601)70:1<55::AID-JSFA471>3.0.CO;2-X. DOI

Vinson J.A., Dabbagh Y.A., Serry M.M., Jang J. Plant Flavonoids, Especially Tea Flavonols, Are Powerful Antioxidants Using an in Vitro Oxidation Model for Heart Disease. J. Agric. Food Chem. 1995;43:2800–2802. doi: 10.1021/jf00059a005. DOI

Mehta A., Seshadri T.R. Flavonoids as antioxidants. J. Sci. Ind. Res. 1959;18B:24–28.

Ramanathan L., Das N.P., Li Q.-T. Studies on lipid oxidation in fish phospholipid liposomes. Biol. Trace Elem. Res. 1994;40:59–70. doi: 10.1007/BF02916821. PubMed DOI

Gordon M.H., Roedig-Penman A. Antioxidant activity of quercetin and myricetin in liposomes. Chem. Phys. Lipids. 1998;97:79–85. doi: 10.1016/S0009-3084(98)00098-X. PubMed DOI

Tai W.-Y., Yang Y.-C., Lin H.-J., Huang C.-P., Cheng Y.-L., Chen M.-F., Yen H.-L., Liau I. Interplay between Structure and Fluidity of Model Lipid Membranes under Oxidative Attack. J. Phys. Chem. B. 2010;114:15642–15649. doi: 10.1021/jp1014719. PubMed DOI

Wratten M.L., Van Ginkel G., Van’t Veld A.A., Bekker A., Van Faassen E.E., Sevanian A. Structural and dynamic effects of oxidatively modified phospholipids in unsaturated lipid membranes. Biochemistry. 1992;31:10901–10907. doi: 10.1021/bi00159a034. PubMed DOI

Beranova L., Cwiklik L., Jurkiewicz P., Hof M., Jungwirth P. Oxidation Changes Physical Properties of Phospholipid Bilayers: Fluorescence Spectroscopy and Molecular Simulations. Langmuir. 2010;26:6140–6144. doi: 10.1021/la100657a. PubMed DOI

Richter C. Biophysical consequences of lipid peroxidation in membranes. Chem. Phys. Lipids. 1987;44:175–189. doi: 10.1016/0009-3084(87)90049-1. PubMed DOI

Niki E., Yoshida Y., Saito Y., Noguchi N. Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochem. Biophys. Res. Commun. 2005;338:668–676. doi: 10.1016/j.bbrc.2005.08.072. PubMed DOI

Kelsey N.A., Wilkins H.M., Linseman D.A. Nutraceutical Antioxidants as Novel Neuroprotective Agents. Molecules. 2010;15:7792–7814. doi: 10.3390/molecules15117792. PubMed DOI PMC

Suh J.H., Niu Y.S., Hung W.-L., Ho C.-T., Wang Y. Lipidomic analysis for carbonyl species derived from fish oil using liquid chromatography–tandem mass spectrometry. Talanta. 2017;168:31–42. doi: 10.1016/j.talanta.2017.03.023. PubMed DOI

Milić I., Hoffmann R., Fedorova M. Simultaneous detection of low and high molecular weight carbonylated compounds derived from lipid peroxidation by electrospray ionization-tandem mass spectrometry. Anal. Chem. 2013;85:156–162. doi: 10.1021/ac302356z. PubMed DOI

Hollebrands B., Varvaki E., Kaal S., Janssen H.-G. Selective labeling for the identification and semi-quantification of lipid aldehydes in food products. Anal. Bioanal. Chem. 2018;410:5421–5429. doi: 10.1007/s00216-018-1101-z. PubMed DOI

Bernardes C.P., Santos N.A.G., Costa T.R., Sisti F., Amaral L., Menaldo D.L., Amstalden M.K., Ribeiro D.L., Antunes L.M.G., Sampaio S.V., et al. A Synthetic Snake-Venom-Based Tripeptide Protects PC12 Cells from the Neurotoxicity of Acrolein by Improving Axonal Plasticity and Bioenergetics. Neurotox. Res. 2020;37:227–237. doi: 10.1007/s12640-019-00111-0. PubMed DOI

Park J.H., Choi J.-Y., Jo C., Koh Y.H. Involvement of ADAM10 in acrolein-induced astrocytic inflammation. Toxicol. Lett. 2020;318:44–49. doi: 10.1016/j.toxlet.2019.10.005. PubMed DOI

Mano J.I., Biswas M., Sugimoto K. Reactive Carbonyl Species: A Missing Link in ROS Signaling. Plants. 2019;8:391. doi: 10.3390/plants8100391. PubMed DOI PMC

PubChem. [(accessed on 10 April 2020)]; Available online: https://pubchem.ncbi.nlm.nih.gov/

Toro-Uribe S., López-Giraldo L.J., Decker E.A. Relationship between the Physiochemical Properties of Cocoa Procyanidins and Their Ability to Inhibit Lipid Oxidation in Liposomes. J. Agric. Food Chem. 2018;66:4490–4502. doi: 10.1021/acs.jafc.8b01074. PubMed DOI

Sánchez-Alonso I., Carmona P., Careche M. Vibrational spectroscopic analysis of hake (Merluccius merluccius L.) lipids during frozen storage. Food Chem. 2012;132:160–167. doi: 10.1016/j.foodchem.2011.10.047. PubMed DOI

Blume A. Properties of lipid vesicles: FT-IR spectroscopy and fluorescence probe studies. Curr. Opin. Colloid Interface Sci. 1996;1:64–77. doi: 10.1016/S1359-0294(96)80046-X. DOI

Arrondo J.L.R., Goñi F.M. Infrared studies of protein-induced perturbation of lipids in lipoproteins and membranes. Chem. Phys. Lipids. 1998;96:53–68. doi: 10.1016/S0009-3084(98)00080-2. PubMed DOI

Rudolphi-Skórska E., Filek M., Zembala M. The Effects of the Structure and Composition of the Hydrophobic Parts of Phosphatidylcholine-Containing Systems on Phosphatidylcholine Oxidation by Ozone. J. Membr. Biol. 2017;250:493–505. doi: 10.1007/s00232-017-9976-8. PubMed DOI PMC

Maity P., Saha B., Kumar G.S., Karmakar S. Binding of monovalent alkali metal ions with negatively charged phospholipid membranes. Biochim. Biophys. Acta Biomembr. 2016;1858:706–714. doi: 10.1016/j.bbamem.2016.01.012. PubMed DOI

Harris C.S., Mo F., Migahed L., Chepelev L., Haddad P.S., Wright J.S., Willmore W.G., Arnason J.T., Bennett S.A.L. Plant phenolics regulate neoplastic cell growth and survival: A quantitative structure–activity and biochemical analysisThis article is one of a selection of papers published in this special issue (part 2 of 2) on the Safety and Efficacy of Natural Health. Can. J. Physiol. Pharmacol. 2007;85:1124–1138. doi: 10.1139/Y07-101. PubMed DOI

Álvarez-Diduk R., Ramírez-Silva M.T., Galano A., Merkoçi A. Deprotonation Mechanism and Acidity Constants in Aqueous Solution of Flavonols: A Combined Experimental and Theoretical Study. J. Phys. Chem. B. 2013;117:12347–12359. doi: 10.1021/jp4049617. PubMed DOI

Bi S., Wang T., Zhao T., Wang Y., Pang B. Study of the interaction of salmon sperm DNA with myricitrin–CPB based on the enhanced resonance light scattering signal and its potential application. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013;112:397–402. doi: 10.1016/j.saa.2013.04.015. PubMed DOI

Mosca M., Ceglie A., Ambrosone L. Effect of membrane composition on lipid oxidation in liposomes. Chem. Phys. Lipids. 2011;164:158–165. doi: 10.1016/j.chemphyslip.2010.12.006. PubMed DOI

Makky A., Tanaka M. Impact of Lipid Oxidization on Biophysical Properties of Model Cell Membranes. J. Phys. Chem. B. 2015;119:5857–5863. doi: 10.1021/jp512339m. PubMed DOI

Albertini R., Rindi S., Passi A., Pallavicini G., De Luca G. Heparin protection against Fe2+ -and Cu2+ -mediated oxidation of liposomes. FEBS Lett. 1996;383:155–158. doi: 10.1016/0014-5793(96)00253-0. PubMed DOI

Wong-ekkabut J., Xu Z., Triampo W., Tang I.-M., Peter Tieleman D., Monticelli L. Effect of Lipid Peroxidation on the Properties of Lipid Bilayers: A Molecular Dynamics Study. Biophys. J. 2007;93:4225–4236. doi: 10.1529/biophysj.107.112565. PubMed DOI PMC

Attwood S., Choi Y., Leonenko Z. Preparation of DOPC and DPPC Supported Planar Lipid Bilayers for Atomic Force Microscopy and Atomic Force Spectroscopy. Int. J. Mol. Sci. 2013;14:3514–3539. doi: 10.3390/ijms14023514. PubMed DOI PMC

Engel A., Schoenenberger C.A., Müller D.J. High resolution imaging of native biological sample surfaces using scanning probe microscopy. Curr. Opin. Struct. Biol. 1997;7:279–284. doi: 10.1016/S0959-440X(97)80037-1. PubMed DOI

Picas L., Rico F., Scheuring S. Direct Measurement of the Mechanical Properties of Lipid Phases in Supported Bilayers. Biophys. J. 2012;102:L01–L03. doi: 10.1016/j.bpj.2011.11.4001. PubMed DOI PMC

Ohki K., Takamura T., Nozawai Y. Effect of.ALPHA.-tocopherol on lipid peroxidation and acyl chain mobility of liver microsomes from vitamin E-difficient rat. J. Nutr. Sci. Vitaminol. 1984;30:221–234. doi: 10.3177/jnsv.30.221. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...