Puncturing lipid membranes: onset of pore formation and the role of hydrogen bonding in the presence of flavonoids

. 2023 Oct ; 64 (10) : 100430. [epub] 20230822

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37611869
Odkazy

PubMed 37611869
PubMed Central PMC10518586
DOI 10.1016/j.jlr.2023.100430
PII: S0022-2275(23)00103-7
Knihovny.cz E-zdroje

Products of lipid peroxidation induce detrimental structural changes in cell membranes, such as the formation of water pores, which occur in the presence of lipids with partially oxidized chains. However, the influence of another class of products, dicarboxylic acids, is still unclear. These products have greater mobility in the lipid bilayer, which enables their aggregation and the formation of favorable sites for the appearance of pores. Therefore, dodecanedioic acid (DDA) was selected as a model product. Additionally, the influence of several structurally different flavonoids on DDA aggregation via formation of hydrogen bonds with carboxyl groups was investigated. The molecular dynamics of DDA in DOPC lipid bilayer revealed the formation of aggregates extending over the hydrophobic region of the bilayer and increasing its polarity. Consequently, water penetration and the appearance of water wires was observed, representing a new step in the mechanism of pore formation. Furthermore, DDA molecules were found to interact with lipid polar groups, causing them to be buried in the bilayer. The addition of flavonoids to the system disrupted aggregate formation, resulting in the displacement of DDA molecules from the center of the bilayer. The placement of DDA and flavonoids in the lipid bilayer was confirmed by small-angle X-ray scattering. Atomic force microscopy and electron paramagnetic resonance were used to characterize the structural properties. The presence of DDA increased bilayer roughness and decreased the ordering of lipid chains, confirming its detrimental effects on the membrane surface, while flavonoids were found to reduce or reverse these changes.

Zobrazit více v PubMed

Sabatini K., Mattila J.P., Megli F.M., Kinnunen P.K.J. Characterization of two oxidatively modified phospholipids in mixed monolayers with DPPC. Biophys. J. 2006;90:4488–4499. PubMed PMC

Chabanon M., Stachowiak J.C., Rangamani P. Systems biology of cellular membranes: a convergence with biophysics. Wiley Interdiscip. Rev. Syst. Biol. Med. 2017;9:20–22. PubMed PMC

Fruhwirth G.O., Loidl A., Hermetter A. Oxidized phospholipids: from molecular properties to disease. Biochim. Biophys. Acta Mol. Basis Dis. 2007;1772:718–736. PubMed

McIntyre T.M., Zimmerman G.A., Prescott S.M. Biologically active oxidized phospholipids. J. Biol. Chem. 1999;274:25189–25192. PubMed

Schnitzer E., Pinchuk I., Lichtenberg D. Peroxidation of liposomal lipids. Eur. Biophys. J. 2007;36:499–515. PubMed

Parola M., Robino G. Oxidative stress-related molecules and liver fibrosis. J. Hepatol. 2001;35:297–306. PubMed

Repetto M., Semprine J., Boveris A. In: Lipid Peroxidation. Catala A., editor. InTech; 2012. (3–31).

Girotti A.W. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 1998;39:1529–1542. PubMed

Stemmer U., Dunai Z.A., Koller D., Pürstinger G., Zenzmaier E., Deigner H.P., et al. Toxicity of oxidized phospholipids in cultured macrophages. Lipids Health Dis. 2012;11:110. PubMed PMC

Mitchell A.E., Morin D., Lame M.W., Jones A.D. Purification, mass spectrometric characterization, and covalent modification of murine glutathione S-transferases. Chem. Res. Toxicol. 1995;8:1054–1062. PubMed

Vander Jagt D.L., Hunsaker L.A., Vander Jagt T.J., Gomez M.S., Gonzales D.M., Deck L.M., et al. Inactivation of glutathione reductase by 4-hydroxynonenal and other endogenous aldehydes. Biochem. Pharmacol. 1997;53:1133–1140. PubMed

Pospíšil P., Yamamoto Y. Damage to photosystem II by lipid peroxidation products. Biochim. Biophys. Acta Gen. Subj. 2017;1861:457–466. PubMed

Song H., Amati A., Pannwitz A., Bonnet S., Hammarström L. Mechanistic insights into the charge transfer dynamics of photocatalytic water oxidation at the lipid bilayer–water interface. J. Am. Chem. Soc. 2022;144:19353–19364. PubMed PMC

Van Der Paal J., Neyts E.C., Verlackt C.C.W., Bogaerts A. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem. Sci. 2016;7:489–498. PubMed PMC

Caetano W., Haddad P.S., Itri R., Severino D., Vieira V.C., Baptista M.S., et al. Photo-induced destruction of giant vesicles in methylene blue solutions. Langmuir. 2007;23:1307–1314. PubMed

Haluska C.K., Baptista M.S., Fernandes A.U., Schroder A.P., Marques C.M., Itri R. Photo-activated phase separation in giant vesicles made from different lipid mixtures. Biochim. Biophys. Acta Biomembr. 2012;1818:666–672. PubMed

Volinsky R., Paananen R., Kinnunen P.K.J. Oxidized phosphatidylcholines promote phase separation of cholesterol-sphingomyelin domains. Biophys. J. 2012;103:247–254. PubMed PMC

Domínguez R.O., Marschoff E.R., Guareschi E.M., Repetto M.G., Famulari A.L., Pagano M.A., et al. Insulin, glucose and glycated hemoglobin in Alzheimer’s and vascular dementia with and without superimposed Type II diabetes mellitus condition. J. Neural Transm. 2008;115:77–84. PubMed

Famulari A.L., Marschoff E.R., Llesuy S.F., Kohan S., Serra J.A., Dominguez R.O., et al. The antioxidant enzymatic blood profile in Alzheimer’s and vascular diseases. Their association and a possible assay to differentiate demented subjects and controls. J. Neurol. Sci. 1996;141:69–78. PubMed

Blesa J., Trigo-Damas I., Quiroga-Varela A., Jackson-Lewis V.R. Oxidative stress and Parkinson’s disease. Front. Neuroanat. 2015;9:1–9. PubMed PMC

Repetto M., Maria A., Guzmán J., Giordano O., Llesuy S. Protective effect of Artemisia douglasiana Besser extracts in gastric mucosal injury. J. Pharm. Pharmacol. 2010;55:551–557. PubMed

Repetto M.G., Ossani G., Monserrat A.J., Boveris A. Oxidative damage: the biochemical mechanism of cellular injury and necrosis in choline deficiency. Exp. Mol. Pathol. 2010;88:143–149. PubMed

Reis A., Domingues P., Ferrer-Correia A.J.V., Domingues M.R.M. Fragmentation study of short-chain products derived from oxidation of diacylphosphatidylcholines by electrospray tandem mass spectrometry: identification of novel short-chain products. Rapid Commun. Mass Spectrom. 2004;18:2849–2858. PubMed

Sadžak A., Mravljak J., Maltar-Strmečki N., Arsov Z., Baranović G., Erceg I., et al. The structural integrity of the model lipid membrane during induced lipid peroxidation: the role of flavonols in the inhibition of lipid peroxidation. Antioxidants. 2020;9:1–30. PubMed PMC

Parra-Ortiz E., Browning K.L., Damgaard L.S.E., Nordström R., Micciulla S., Bucciarelli S., et al. Effects of oxidation on the physicochemical properties of polyunsaturated lipid membranes. J. Colloid Interf. Sci. 2019;538:404–419. PubMed

Megli F.M., Russo L. Different oxidized phospholipid molecules unequally affect bilayer packing. Biochim. Biophys. Acta Biomembr. 2008;1778:143–152. PubMed

Itri R., Junqueira H.C., Mertins O., Baptista M.S. Membrane changes under oxidative stress: the impact of oxidized lipids. Biophys. Rev. 2014;6:47–61. PubMed PMC

Siani P., de Souza R.M., Dias L.G., Itri R., Khandelia H. An overview of molecular dynamics simulations of oxidized lipid systems, with a comparison of ELBA and MARTINI force fields for coarse grained lipid simulations. Biochim. Biophys. Acta Biomembr. 2016;1858:2498–2511. PubMed

Mason R.P., Walter M.F., Mason P.E. Effect of oxidative stress on membrane structure: small-Angle X-Ray diffraction analysis. Free Radic. Biol. Med. 1997;23:419–425. PubMed

Wong-ekkabut J., Xu Z., Triampo W., Tang I.-M., Peter Tieleman D., Monticelli L. Effect of lipid Peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys. J. 2007;93:4225–4236. PubMed PMC

Runas K.A., Malmstadt N. Low levels of lipid oxidation radically increase the passive permeability of lipid bilayers. Soft Matter. 2015;11:499–505. PubMed PMC

Cwiklik L., Jungwirth P. Massive oxidation of phospholipid membranes leads to pore creation and bilayer disintegration. Chem. Phys. Lett. 2010;486:99–103.

Conte E., Megli F.M., Khandelia H., Jeschke G., Bordignon E. Lipid peroxidation and water penetration in lipid bilayers: a W-band EPR study. Biochim. Biophys. Acta Biomembr. 2013;1828:510–517. PubMed

Lis M., Wizert A., Przybylo M., Langner M., Swiatek J., Jungwirth P., et al. The effect of lipid oxidation on the water permeability of phospholipids bilayers. Phys. Chem. Chem. Phys. 2011;13 PubMed

Vernier P.T., Levine Z.A., Wu Y.H., Joubert V., Ziegler M.J., Mir L.M., et al. Electroporating fields target oxidatively damaged areas in the cell membrane. PLoS One. 2009;4 PubMed PMC

Reis A., Domingues M.R.M., Amado F.M.L., Ferrer-Correia A.J.V., Domingues P. Separation of peroxidation products of diacyl-phosphatidylcholines by reversed-phase liquid chromatography-mass spectrometry. Biomed. Chromatogr. 2005;19:129–137. PubMed

Inouye M., Mio T., Sumino K. Dicarboxylic acids as markers of fatty acid peroxidation in diabetes. Atherosclerosis. 2000;148:197–202. PubMed

Passi S., Picardo M., De Luca C., Nazzaro-Porro M., Rossi L., Rotilio G. Saturated dicarboxylic acids as products of unsaturated fatty acid oxidation. Biochim. Biophys. Acta Lipids Lipid Metab. 1993;1168:190–198. PubMed

Reis A., Spickett C.M. Chemistry of phospholipid oxidation. Biochim. Biophys. Acta Biomembr. 2012;1818:2374–2387. PubMed

Havsteen B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002;96:67–202. PubMed

Valko M., Morris H., Cronin M. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005;12:1161–1208. PubMed

El-Beltagi H.S., Mohamed H.I. Reactive oxygen species, lipid peroxidation and antioxidative defense mechanism. Not Bot. Horti Agrobot Cluj Napoca. 2013;41:44–57.

Terao J., Piskula M., Yao Q. Protective effect of epicatechin, epicatechin gallate, and quercetin on lipid peroxidation in phospholipid bilayers. Arch. Biochem. Biophys. 1994;308:278–284. PubMed

Afanas’ev I.B., Dcrozhko A.I., Brodskii A.V., Kostyuk V.A., Potapovitch A.I. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem. Pharmacol. 1989;38:1763–1769. PubMed

Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: an overview. J. Nutr. Sci. 2016;5 PubMed PMC

Sinha R., Joshi A., Joshi U.J., Srivastava S., Govil G. Localization and interaction of hydroxyflavones with lipid bilayer model membranes: a study using DSC and multinuclear NMR. Eur. J. Med. Chem. 2014;80:285–294. PubMed

Saija A., Scalese M., Lanza M., Marzullo D., Bonina F., Castelli F. Flavonoids as antioxidant agents: importance of their interaction with biomembranes. Free Radic. Biol. Med. 1995;19:481–486. PubMed

Košinová P., Berka K., Wykes M., Otyepka M., Trouillas P. Positioning of antioxidant quercetin and its metabolites in lipid bilayer membranes: implication for their lipid-peroxidation inhibition. J. Phys. Chem. B. 2012;116:1309–1318. PubMed

Ollila F., Halling K., Vuorela P., Vuorela H., Slotte J.P. Characterization of flavonoid-biomembrane interactions. Arch. Biochem. Biophys. 2002;399:103–108. PubMed

Oteiza P.I., Erlejman A.G., Verstraeten S.V., Keen C.L., Fraga C.G. Flavonoid-membrane interactions: a protective role of flavonoids at the membrane surface? Clin. Dev. Immunol. 2005;12:19–25. PubMed PMC

Sadžak A., Brkljača Z., Crnolatac I., Baranović G., Šegota S. Flavonol clustering in model lipid membranes: DSC, AFM, force spectroscopy and MD simulations study. Colloids Surf. B Biointer. 2020;193 PubMed

Pohjala L., Tammela P. Aggregating behavior of phenolic compounds — a source of false bioassay results? Molecules. 2012;17:10774–10790. PubMed PMC

Sirk T.W., Brown E.F., Friedman M., Sum A.K. Molecular binding of catechins to biomembranes: relationship to biological activity. J. Agric. Food Chem. 2009;57:6720–6728. PubMed

Chung M.Y., Hwang J.T., Lee J., Choi H.K. Applied Sciences; Switzerland: 2022. The Anti-Cancer Effects of Red-Pigmented Foods: Biomarker Modulation and Mechanisms Underlying Cancer Progression.

Dabeek W.M., Marra M.V. Dietary quercetin and Kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients. 2019;11:2288. PubMed PMC

Formica J.V., Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol. 1995;33:1061–1080. PubMed

Liu S., Zhu Y., Liu N., Fan D., Wang M., Zhao Y. Antioxidative properties and chemical changes of quercetin in fish oil: quercetin reacts with free fatty acids to form its ester derivatives. J. Agric. Food Chem. 2021;69:1057–1067. PubMed

Pham T.N.D., Stempel S., Shields M.A., Spaulding C., Kumar K., Bentrem D.J., et al. Quercetin enhances the anti-tumor effects of BET inhibitors by suppressing hnRNPA1. Int. J. Mol. Sci. 2019;20:4293. PubMed PMC

Sekher Pannala A., Chan T.S., O’Brien P.J., Rice-Evans C.A. Flavonoid B-Ring chemistry and antioxidant activity: fast reaction kinetics. Biochem. Biophys. Res. Commun. 2001;282:1161–1168. PubMed

Lefort É.C., Blay J. Apigenin and its impact on gastrointestinal cancers. Mol. Nutr. Food Res. 2013;57:126–144. PubMed

Majma Sanaye P., Mojaveri M.R., Ahmadian R., Sabet Jahromi M., Bahramsoltani R. Apigenin and its dermatological applications: a comprehensive review. Phytochemistry. 2022;203 PubMed

Zhu L.-H., Bi W., Qi R.-B., Wang H.-D., Wang Z.-G., Zeng Q., et al. Luteolin reduces primary hippocampal neurons death induced by neuroinflammation. Neurol. Res. 2011;33:927–934. PubMed

Seelinger G., Merfort I., Wölfle U., Schempp C. Anti-carcinogenic effects of the flavonoid Luteolin. Molecules. 2008;13:2628–2651. PubMed PMC

Bangham A.D., De Gier J., Greville G.D. Osmotic properties and water permeability of phospholipid liquid crystals. Chem. Phys. Lipids. 1967;1:225–246.

Fukumoto L.R., Mazza G. Assessing antioxidant and prooxidant activities of phenolic Compounds. J. Agric. Food Chem. 2000;48:3597–3604. PubMed

Ermilova I., Lyubartsev A.P. Extension of the Slipids force field to polyunsaturated lipids. J. Phys. Chem. B. 2016;120:12826–12842. PubMed

Jämbeck J.P.M., Lyubartsev A.P. Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J. Phys. Chem. B. 2012;116:3164–3179. PubMed PMC

Jämbeck J.P.M., Lyubartsev A.P. An extension and further validation of an all-atomistic force field for biological membranes. J. Chem. Theor. Comput. 2012;8:2938–2948. PubMed

Jämbeck J.P.M., Lyubartsev A.P. Another piece of the membrane puzzle: extending Slipids further. J. Chem. Theor. Comput. 2013;9:774–784. PubMed

Martínez L., Andrade R., Birgin E.G., Martínez J.M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009;30:2157–2164. PubMed

Spinozzi F., Ferrero C., Ortore M.G., De Maria Antolinos A., Mariani P. GENFIT: software for the analysis of small-angle X-ray and neutron scattering data of macromolecules in solution. J. Appl. Crystallogr. 2014;47:1132–1139. PubMed PMC

Zhang R., Suter R.M., Nagle J.F. Theory of the structure factor of lipid bilayers. Phys. Rev. E. 1994;50:5047–5060. PubMed

Stoll S., Schweiger A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006;178:42–55. PubMed

MATLAB, R2011b. The MathWorks, Inc.; Natick, MA: 2011.

Bruker . Nanoscope Analysis 1.50 User Manual. Bruker Corporation; Billerica, MA: 2011.

Jazvinšćak Jembrek M., Šimić G., Hof P.R., Šegota S. Atomic force microscopy as an advanced tool in neuroscience. Transl. Neurosci. 2015;6:117–130. PubMed PMC

Jazvinšćak Jembrek M., Vlainić J., Čadež V., Šegota S. Atomic force microscopy reveals new biophysical markers for monitoring subcellular changes in oxidative injury: neuroprotective effects of quercetin at the nanoscale. PLoS One. 2018;13 PubMed PMC

Jurkiewicz P., Olżyńska A., Cwiklik L., Conte E., Jungwirth P., Megli F.M., et al. Biophysics of lipid bilayers containing oxidatively modified phospholipids: insights from fluorescence and EPR experiments and from MD simulations. Biochim. Biophys. Acta Biomembr. 2012;1818:2388–2402. PubMed

Gaffney B.J. In: Spin labeling: Theory and applications. Berliner L.J., editor. Academic Press; New York: 1976. pp. 567–571.

Broido M.S., Meirovitch E. Doxyl nitroxide probes and the intrinsic flexibility gradient. A slow-motional line shape analysis study. J. Phys. Chem. 1983;87:1635–1643.

Chede L.S., Wagner B.A., Buettner G.R., Donovan M.D. Electron spin resonance evaluation of buccal membrane fluidity alterations by sodium caprylate and L-menthol. Int. J. Mol. Sci. 2021;22 PubMed PMC

Hubbel W., McConnell H. Molecular motion in spin-labeled phospholipids and membranes. J. Am. Chem. Soc. 1971;93:314–326. PubMed

Eid J., Jraij A., Greige-Gerges H., Monticelli L. Effect of quercetin on lipid membrane rigidity: assessment by atomic force microscopy and molecular dynamics simulations. BBA Adv. 2021;1 PubMed PMC

Ungureanu A.-A., Benilova I., Krylychkina O., Braeken D., De Strooper B., Van Haesendonck C., et al. Amyloid beta oligomers induce neuronal elasticity changes in age-dependent manner: a force spectroscopy study on living hippocampal neurons. Sci. Rep. 2016;6 PubMed PMC

Londoño-Londoño J., De Lima V.R., Jaramillo C., Creczynski-pasa T. Hesperidin and hesperetin membrane interaction: understanding the role of 7-O-glycoside moiety in flavonoids. Arch. Biochem. Biophys. 2010;499:6–16. PubMed

De Rosa R., Spinozzi F., Itri R. Hydroperoxide and carboxyl groups preferential location in oxidized biomembranes experimentally determined by small angle X-ray scattering: implications in membrane structure. Biochim. Biophys. Acta Biomembr. 2018;1860:2299–2307. PubMed

Narayanan T., Weerakkody D., Karabadzhak A.G., Anderson M., Andreev O.A., Reshetnyak Y.K. pHLIP peptide interaction with a membrane monitored by SAXS. J. Phys. Chem. B. 2016;120:11484–11491. PubMed PMC

Tai W.Y., Yang Y.C., Lin H.J., Huang C.P., Cheng Y.L., Chen M.F., et al. Interplay between structure and fluidity of model lipid membranes under oxidative attack. J. Phys. Chem. B. 2010;114:15642–15649. PubMed

Beranova L., Cwiklik L., Jurkiewicz P., Hof M., Jungwirth P. Oxidation changes physical properties of phospholipid bilayers: fluorescence spectroscopy and molecular simulations. Langmuir. 2010;26:6140–6144. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Magnesium sulfate in oxidative stress-associated pathologies: clinical, cellular, and molecular perspectives

. 2025 Apr ; 17 (2) : 511-535. [epub] 20250301

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...