Puncturing lipid membranes: onset of pore formation and the role of hydrogen bonding in the presence of flavonoids
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37611869
PubMed Central
PMC10518586
DOI
10.1016/j.jlr.2023.100430
PII: S0022-2275(23)00103-7
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant, dicarboxylic acid, flavone, flavonol, lipid/peroxidation, oxidized lipid, phospholipid/phosphatidylcholine, physical biochemistry,
- Publikační typ
- časopisecké články MeSH
Products of lipid peroxidation induce detrimental structural changes in cell membranes, such as the formation of water pores, which occur in the presence of lipids with partially oxidized chains. However, the influence of another class of products, dicarboxylic acids, is still unclear. These products have greater mobility in the lipid bilayer, which enables their aggregation and the formation of favorable sites for the appearance of pores. Therefore, dodecanedioic acid (DDA) was selected as a model product. Additionally, the influence of several structurally different flavonoids on DDA aggregation via formation of hydrogen bonds with carboxyl groups was investigated. The molecular dynamics of DDA in DOPC lipid bilayer revealed the formation of aggregates extending over the hydrophobic region of the bilayer and increasing its polarity. Consequently, water penetration and the appearance of water wires was observed, representing a new step in the mechanism of pore formation. Furthermore, DDA molecules were found to interact with lipid polar groups, causing them to be buried in the bilayer. The addition of flavonoids to the system disrupted aggregate formation, resulting in the displacement of DDA molecules from the center of the bilayer. The placement of DDA and flavonoids in the lipid bilayer was confirmed by small-angle X-ray scattering. Atomic force microscopy and electron paramagnetic resonance were used to characterize the structural properties. The presence of DDA increased bilayer roughness and decreased the ordering of lipid chains, confirming its detrimental effects on the membrane surface, while flavonoids were found to reduce or reverse these changes.
CEITEC MU Masaryk University Brno Czech Republic
Division of Organic Chemistry and Biochemistry Ruđer Bošković Institute Zagreb Croatia
Division of Physical Chemistry Ruđer Bošković Institute Zagreb Croatia
Institute of Inorganic Chemistry Graz University of Technology Graz Austria
Zobrazit více v PubMed
Sabatini K., Mattila J.P., Megli F.M., Kinnunen P.K.J. Characterization of two oxidatively modified phospholipids in mixed monolayers with DPPC. Biophys. J. 2006;90:4488–4499. PubMed PMC
Chabanon M., Stachowiak J.C., Rangamani P. Systems biology of cellular membranes: a convergence with biophysics. Wiley Interdiscip. Rev. Syst. Biol. Med. 2017;9:20–22. PubMed PMC
Fruhwirth G.O., Loidl A., Hermetter A. Oxidized phospholipids: from molecular properties to disease. Biochim. Biophys. Acta Mol. Basis Dis. 2007;1772:718–736. PubMed
McIntyre T.M., Zimmerman G.A., Prescott S.M. Biologically active oxidized phospholipids. J. Biol. Chem. 1999;274:25189–25192. PubMed
Schnitzer E., Pinchuk I., Lichtenberg D. Peroxidation of liposomal lipids. Eur. Biophys. J. 2007;36:499–515. PubMed
Parola M., Robino G. Oxidative stress-related molecules and liver fibrosis. J. Hepatol. 2001;35:297–306. PubMed
Repetto M., Semprine J., Boveris A. In: Lipid Peroxidation. Catala A., editor. InTech; 2012. (3–31).
Girotti A.W. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 1998;39:1529–1542. PubMed
Stemmer U., Dunai Z.A., Koller D., Pürstinger G., Zenzmaier E., Deigner H.P., et al. Toxicity of oxidized phospholipids in cultured macrophages. Lipids Health Dis. 2012;11:110. PubMed PMC
Mitchell A.E., Morin D., Lame M.W., Jones A.D. Purification, mass spectrometric characterization, and covalent modification of murine glutathione S-transferases. Chem. Res. Toxicol. 1995;8:1054–1062. PubMed
Vander Jagt D.L., Hunsaker L.A., Vander Jagt T.J., Gomez M.S., Gonzales D.M., Deck L.M., et al. Inactivation of glutathione reductase by 4-hydroxynonenal and other endogenous aldehydes. Biochem. Pharmacol. 1997;53:1133–1140. PubMed
Pospíšil P., Yamamoto Y. Damage to photosystem II by lipid peroxidation products. Biochim. Biophys. Acta Gen. Subj. 2017;1861:457–466. PubMed
Song H., Amati A., Pannwitz A., Bonnet S., Hammarström L. Mechanistic insights into the charge transfer dynamics of photocatalytic water oxidation at the lipid bilayer–water interface. J. Am. Chem. Soc. 2022;144:19353–19364. PubMed PMC
Van Der Paal J., Neyts E.C., Verlackt C.C.W., Bogaerts A. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem. Sci. 2016;7:489–498. PubMed PMC
Caetano W., Haddad P.S., Itri R., Severino D., Vieira V.C., Baptista M.S., et al. Photo-induced destruction of giant vesicles in methylene blue solutions. Langmuir. 2007;23:1307–1314. PubMed
Haluska C.K., Baptista M.S., Fernandes A.U., Schroder A.P., Marques C.M., Itri R. Photo-activated phase separation in giant vesicles made from different lipid mixtures. Biochim. Biophys. Acta Biomembr. 2012;1818:666–672. PubMed
Volinsky R., Paananen R., Kinnunen P.K.J. Oxidized phosphatidylcholines promote phase separation of cholesterol-sphingomyelin domains. Biophys. J. 2012;103:247–254. PubMed PMC
Domínguez R.O., Marschoff E.R., Guareschi E.M., Repetto M.G., Famulari A.L., Pagano M.A., et al. Insulin, glucose and glycated hemoglobin in Alzheimer’s and vascular dementia with and without superimposed Type II diabetes mellitus condition. J. Neural Transm. 2008;115:77–84. PubMed
Famulari A.L., Marschoff E.R., Llesuy S.F., Kohan S., Serra J.A., Dominguez R.O., et al. The antioxidant enzymatic blood profile in Alzheimer’s and vascular diseases. Their association and a possible assay to differentiate demented subjects and controls. J. Neurol. Sci. 1996;141:69–78. PubMed
Blesa J., Trigo-Damas I., Quiroga-Varela A., Jackson-Lewis V.R. Oxidative stress and Parkinson’s disease. Front. Neuroanat. 2015;9:1–9. PubMed PMC
Repetto M., Maria A., Guzmán J., Giordano O., Llesuy S. Protective effect of Artemisia douglasiana Besser extracts in gastric mucosal injury. J. Pharm. Pharmacol. 2010;55:551–557. PubMed
Repetto M.G., Ossani G., Monserrat A.J., Boveris A. Oxidative damage: the biochemical mechanism of cellular injury and necrosis in choline deficiency. Exp. Mol. Pathol. 2010;88:143–149. PubMed
Reis A., Domingues P., Ferrer-Correia A.J.V., Domingues M.R.M. Fragmentation study of short-chain products derived from oxidation of diacylphosphatidylcholines by electrospray tandem mass spectrometry: identification of novel short-chain products. Rapid Commun. Mass Spectrom. 2004;18:2849–2858. PubMed
Sadžak A., Mravljak J., Maltar-Strmečki N., Arsov Z., Baranović G., Erceg I., et al. The structural integrity of the model lipid membrane during induced lipid peroxidation: the role of flavonols in the inhibition of lipid peroxidation. Antioxidants. 2020;9:1–30. PubMed PMC
Parra-Ortiz E., Browning K.L., Damgaard L.S.E., Nordström R., Micciulla S., Bucciarelli S., et al. Effects of oxidation on the physicochemical properties of polyunsaturated lipid membranes. J. Colloid Interf. Sci. 2019;538:404–419. PubMed
Megli F.M., Russo L. Different oxidized phospholipid molecules unequally affect bilayer packing. Biochim. Biophys. Acta Biomembr. 2008;1778:143–152. PubMed
Itri R., Junqueira H.C., Mertins O., Baptista M.S. Membrane changes under oxidative stress: the impact of oxidized lipids. Biophys. Rev. 2014;6:47–61. PubMed PMC
Siani P., de Souza R.M., Dias L.G., Itri R., Khandelia H. An overview of molecular dynamics simulations of oxidized lipid systems, with a comparison of ELBA and MARTINI force fields for coarse grained lipid simulations. Biochim. Biophys. Acta Biomembr. 2016;1858:2498–2511. PubMed
Mason R.P., Walter M.F., Mason P.E. Effect of oxidative stress on membrane structure: small-Angle X-Ray diffraction analysis. Free Radic. Biol. Med. 1997;23:419–425. PubMed
Wong-ekkabut J., Xu Z., Triampo W., Tang I.-M., Peter Tieleman D., Monticelli L. Effect of lipid Peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys. J. 2007;93:4225–4236. PubMed PMC
Runas K.A., Malmstadt N. Low levels of lipid oxidation radically increase the passive permeability of lipid bilayers. Soft Matter. 2015;11:499–505. PubMed PMC
Cwiklik L., Jungwirth P. Massive oxidation of phospholipid membranes leads to pore creation and bilayer disintegration. Chem. Phys. Lett. 2010;486:99–103.
Conte E., Megli F.M., Khandelia H., Jeschke G., Bordignon E. Lipid peroxidation and water penetration in lipid bilayers: a W-band EPR study. Biochim. Biophys. Acta Biomembr. 2013;1828:510–517. PubMed
Lis M., Wizert A., Przybylo M., Langner M., Swiatek J., Jungwirth P., et al. The effect of lipid oxidation on the water permeability of phospholipids bilayers. Phys. Chem. Chem. Phys. 2011;13 PubMed
Vernier P.T., Levine Z.A., Wu Y.H., Joubert V., Ziegler M.J., Mir L.M., et al. Electroporating fields target oxidatively damaged areas in the cell membrane. PLoS One. 2009;4 PubMed PMC
Reis A., Domingues M.R.M., Amado F.M.L., Ferrer-Correia A.J.V., Domingues P. Separation of peroxidation products of diacyl-phosphatidylcholines by reversed-phase liquid chromatography-mass spectrometry. Biomed. Chromatogr. 2005;19:129–137. PubMed
Inouye M., Mio T., Sumino K. Dicarboxylic acids as markers of fatty acid peroxidation in diabetes. Atherosclerosis. 2000;148:197–202. PubMed
Passi S., Picardo M., De Luca C., Nazzaro-Porro M., Rossi L., Rotilio G. Saturated dicarboxylic acids as products of unsaturated fatty acid oxidation. Biochim. Biophys. Acta Lipids Lipid Metab. 1993;1168:190–198. PubMed
Reis A., Spickett C.M. Chemistry of phospholipid oxidation. Biochim. Biophys. Acta Biomembr. 2012;1818:2374–2387. PubMed
Havsteen B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002;96:67–202. PubMed
Valko M., Morris H., Cronin M. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005;12:1161–1208. PubMed
El-Beltagi H.S., Mohamed H.I. Reactive oxygen species, lipid peroxidation and antioxidative defense mechanism. Not Bot. Horti Agrobot Cluj Napoca. 2013;41:44–57.
Terao J., Piskula M., Yao Q. Protective effect of epicatechin, epicatechin gallate, and quercetin on lipid peroxidation in phospholipid bilayers. Arch. Biochem. Biophys. 1994;308:278–284. PubMed
Afanas’ev I.B., Dcrozhko A.I., Brodskii A.V., Kostyuk V.A., Potapovitch A.I. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem. Pharmacol. 1989;38:1763–1769. PubMed
Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: an overview. J. Nutr. Sci. 2016;5 PubMed PMC
Sinha R., Joshi A., Joshi U.J., Srivastava S., Govil G. Localization and interaction of hydroxyflavones with lipid bilayer model membranes: a study using DSC and multinuclear NMR. Eur. J. Med. Chem. 2014;80:285–294. PubMed
Saija A., Scalese M., Lanza M., Marzullo D., Bonina F., Castelli F. Flavonoids as antioxidant agents: importance of their interaction with biomembranes. Free Radic. Biol. Med. 1995;19:481–486. PubMed
Košinová P., Berka K., Wykes M., Otyepka M., Trouillas P. Positioning of antioxidant quercetin and its metabolites in lipid bilayer membranes: implication for their lipid-peroxidation inhibition. J. Phys. Chem. B. 2012;116:1309–1318. PubMed
Ollila F., Halling K., Vuorela P., Vuorela H., Slotte J.P. Characterization of flavonoid-biomembrane interactions. Arch. Biochem. Biophys. 2002;399:103–108. PubMed
Oteiza P.I., Erlejman A.G., Verstraeten S.V., Keen C.L., Fraga C.G. Flavonoid-membrane interactions: a protective role of flavonoids at the membrane surface? Clin. Dev. Immunol. 2005;12:19–25. PubMed PMC
Sadžak A., Brkljača Z., Crnolatac I., Baranović G., Šegota S. Flavonol clustering in model lipid membranes: DSC, AFM, force spectroscopy and MD simulations study. Colloids Surf. B Biointer. 2020;193 PubMed
Pohjala L., Tammela P. Aggregating behavior of phenolic compounds — a source of false bioassay results? Molecules. 2012;17:10774–10790. PubMed PMC
Sirk T.W., Brown E.F., Friedman M., Sum A.K. Molecular binding of catechins to biomembranes: relationship to biological activity. J. Agric. Food Chem. 2009;57:6720–6728. PubMed
Chung M.Y., Hwang J.T., Lee J., Choi H.K. Applied Sciences; Switzerland: 2022. The Anti-Cancer Effects of Red-Pigmented Foods: Biomarker Modulation and Mechanisms Underlying Cancer Progression.
Dabeek W.M., Marra M.V. Dietary quercetin and Kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients. 2019;11:2288. PubMed PMC
Formica J.V., Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol. 1995;33:1061–1080. PubMed
Liu S., Zhu Y., Liu N., Fan D., Wang M., Zhao Y. Antioxidative properties and chemical changes of quercetin in fish oil: quercetin reacts with free fatty acids to form its ester derivatives. J. Agric. Food Chem. 2021;69:1057–1067. PubMed
Pham T.N.D., Stempel S., Shields M.A., Spaulding C., Kumar K., Bentrem D.J., et al. Quercetin enhances the anti-tumor effects of BET inhibitors by suppressing hnRNPA1. Int. J. Mol. Sci. 2019;20:4293. PubMed PMC
Sekher Pannala A., Chan T.S., O’Brien P.J., Rice-Evans C.A. Flavonoid B-Ring chemistry and antioxidant activity: fast reaction kinetics. Biochem. Biophys. Res. Commun. 2001;282:1161–1168. PubMed
Lefort É.C., Blay J. Apigenin and its impact on gastrointestinal cancers. Mol. Nutr. Food Res. 2013;57:126–144. PubMed
Majma Sanaye P., Mojaveri M.R., Ahmadian R., Sabet Jahromi M., Bahramsoltani R. Apigenin and its dermatological applications: a comprehensive review. Phytochemistry. 2022;203 PubMed
Zhu L.-H., Bi W., Qi R.-B., Wang H.-D., Wang Z.-G., Zeng Q., et al. Luteolin reduces primary hippocampal neurons death induced by neuroinflammation. Neurol. Res. 2011;33:927–934. PubMed
Seelinger G., Merfort I., Wölfle U., Schempp C. Anti-carcinogenic effects of the flavonoid Luteolin. Molecules. 2008;13:2628–2651. PubMed PMC
Bangham A.D., De Gier J., Greville G.D. Osmotic properties and water permeability of phospholipid liquid crystals. Chem. Phys. Lipids. 1967;1:225–246.
Fukumoto L.R., Mazza G. Assessing antioxidant and prooxidant activities of phenolic Compounds. J. Agric. Food Chem. 2000;48:3597–3604. PubMed
Ermilova I., Lyubartsev A.P. Extension of the Slipids force field to polyunsaturated lipids. J. Phys. Chem. B. 2016;120:12826–12842. PubMed
Jämbeck J.P.M., Lyubartsev A.P. Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J. Phys. Chem. B. 2012;116:3164–3179. PubMed PMC
Jämbeck J.P.M., Lyubartsev A.P. An extension and further validation of an all-atomistic force field for biological membranes. J. Chem. Theor. Comput. 2012;8:2938–2948. PubMed
Jämbeck J.P.M., Lyubartsev A.P. Another piece of the membrane puzzle: extending Slipids further. J. Chem. Theor. Comput. 2013;9:774–784. PubMed
Martínez L., Andrade R., Birgin E.G., Martínez J.M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009;30:2157–2164. PubMed
Spinozzi F., Ferrero C., Ortore M.G., De Maria Antolinos A., Mariani P. GENFIT: software for the analysis of small-angle X-ray and neutron scattering data of macromolecules in solution. J. Appl. Crystallogr. 2014;47:1132–1139. PubMed PMC
Zhang R., Suter R.M., Nagle J.F. Theory of the structure factor of lipid bilayers. Phys. Rev. E. 1994;50:5047–5060. PubMed
Stoll S., Schweiger A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006;178:42–55. PubMed
MATLAB, R2011b. The MathWorks, Inc.; Natick, MA: 2011.
Bruker . Nanoscope Analysis 1.50 User Manual. Bruker Corporation; Billerica, MA: 2011.
Jazvinšćak Jembrek M., Šimić G., Hof P.R., Šegota S. Atomic force microscopy as an advanced tool in neuroscience. Transl. Neurosci. 2015;6:117–130. PubMed PMC
Jazvinšćak Jembrek M., Vlainić J., Čadež V., Šegota S. Atomic force microscopy reveals new biophysical markers for monitoring subcellular changes in oxidative injury: neuroprotective effects of quercetin at the nanoscale. PLoS One. 2018;13 PubMed PMC
Jurkiewicz P., Olżyńska A., Cwiklik L., Conte E., Jungwirth P., Megli F.M., et al. Biophysics of lipid bilayers containing oxidatively modified phospholipids: insights from fluorescence and EPR experiments and from MD simulations. Biochim. Biophys. Acta Biomembr. 2012;1818:2388–2402. PubMed
Gaffney B.J. In: Spin labeling: Theory and applications. Berliner L.J., editor. Academic Press; New York: 1976. pp. 567–571.
Broido M.S., Meirovitch E. Doxyl nitroxide probes and the intrinsic flexibility gradient. A slow-motional line shape analysis study. J. Phys. Chem. 1983;87:1635–1643.
Chede L.S., Wagner B.A., Buettner G.R., Donovan M.D. Electron spin resonance evaluation of buccal membrane fluidity alterations by sodium caprylate and L-menthol. Int. J. Mol. Sci. 2021;22 PubMed PMC
Hubbel W., McConnell H. Molecular motion in spin-labeled phospholipids and membranes. J. Am. Chem. Soc. 1971;93:314–326. PubMed
Eid J., Jraij A., Greige-Gerges H., Monticelli L. Effect of quercetin on lipid membrane rigidity: assessment by atomic force microscopy and molecular dynamics simulations. BBA Adv. 2021;1 PubMed PMC
Ungureanu A.-A., Benilova I., Krylychkina O., Braeken D., De Strooper B., Van Haesendonck C., et al. Amyloid beta oligomers induce neuronal elasticity changes in age-dependent manner: a force spectroscopy study on living hippocampal neurons. Sci. Rep. 2016;6 PubMed PMC
Londoño-Londoño J., De Lima V.R., Jaramillo C., Creczynski-pasa T. Hesperidin and hesperetin membrane interaction: understanding the role of 7-O-glycoside moiety in flavonoids. Arch. Biochem. Biophys. 2010;499:6–16. PubMed
De Rosa R., Spinozzi F., Itri R. Hydroperoxide and carboxyl groups preferential location in oxidized biomembranes experimentally determined by small angle X-ray scattering: implications in membrane structure. Biochim. Biophys. Acta Biomembr. 2018;1860:2299–2307. PubMed
Narayanan T., Weerakkody D., Karabadzhak A.G., Anderson M., Andreev O.A., Reshetnyak Y.K. pHLIP peptide interaction with a membrane monitored by SAXS. J. Phys. Chem. B. 2016;120:11484–11491. PubMed PMC
Tai W.Y., Yang Y.C., Lin H.J., Huang C.P., Cheng Y.L., Chen M.F., et al. Interplay between structure and fluidity of model lipid membranes under oxidative attack. J. Phys. Chem. B. 2010;114:15642–15649. PubMed
Beranova L., Cwiklik L., Jurkiewicz P., Hof M., Jungwirth P. Oxidation changes physical properties of phospholipid bilayers: fluorescence spectroscopy and molecular simulations. Langmuir. 2010;26:6140–6144. PubMed