Mitochondrial Function in Modulating Human Granulosa Cell Steroidogenesis and Female Fertility

. 2020 May 19 ; 21 (10) : . [epub] 20200519

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32438750

Grantová podpora
MOST 108-2314-B-038-003 Ministry of Science and Technology, Taiwan
GA-18-11275S European Regional Development Fund

Ovarian follicle steroidogenesis associated with embryo quality results in a successful pregnancy. Each follicle consists of an oocyte surrounded by granulosa cells, which secrete several steroid and peptide hormones. Follicles harvested from women who conceived after assisted reproductive therapy (ART) had significantly higher estradiol levels in follicular fluids than the follicles from women who failed to conceive after ART. The higher follicular estradiol levels correlate well with successful fertilization following ART. Mitochondria are the central sites for steroid hormone biosynthesis. The first and rate-limiting step in the biosynthesis of steroid hormones occurs in the mitochondria of granulosa cells. In the present study, we hypothesized that the mitochondria in granulosa cells are critical for maintaining oocyte quality and fertility capacity. This study aims to clarify the relationship between mitochondrial function and granulosa cell steroidogenesis, and the relationship between hormone levels and fertility capacity. Sera, follicular fluids and granulosa cells were obtained from individuals undergoing IVF-ET treatment. The oocyte numbers, oocyte quality, fertilization rate, and pregnancy rate were also recorded. The patients who provided the granulosa cells were further classified into four groups: endometriosis, ovarian endometrioma, endometriosis without ovarian endometrioma, and polycystic ovary syndrome (PCOS); patients with other female factor infertility and male factor infertility were used as controls. We measured the levels of estradiol (E2) by radioimmunoassay. Concurrently, we analyzed the mitochondrial mass and membrane potential, and apoptosis by flow cytometry using nonyl acridine orange, TMRE, Annexin V-FITC and PI. Mitochondrial morphology was visualized by transfection with pLV-mitoDsRed. In addition, we assessed the protein levels of steroidogenic enzymes, steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) by Western blot. The results showed significantly decreased serum E2 and follicular E2 levels, and decreased IVF outcomes, in the patients with endometriosis. Reduced mitochondrial mass and decreased mitochondrial membrane potential were correlated with lower E2. Furthermore, a significant decrease in StAR and 3β-HSD was found in patients with ovarian endometrioma. The enzyme levels of StAR and 3β-HSD were highly correlated with E2 levels. Finally, elevated cumulus cell apoptosis was found in the patient group with ovarian endometrioma and PCOS. In conclusion, mitochondrial dysfunction of human granulosa cells may contribute to the decline of steroidogenesis, decreased fertilization rate, oocyte maturation rate, and oocyte quality, and it can ultimately jeopardize fertility.

Zobrazit více v PubMed

Practice Committee of American Society for Reproductive Medicine Definitions of infertility and recurrent pregnancy loss: A committee opinion. Fertil. Steril. 2013;99:63. doi: 10.1016/j.fertnstert.2012.09.023. PubMed DOI

Practice Committee of the American Society for Reproductive Medicine Testing and interpreting measures of ovarian reserve: A committee opinion. Fertil. Steril. 2015;103:e9–e17. doi: 10.1016/j.fertnstert.2014.12.093. PubMed DOI

Committee on Gynecologic Practice Committee opinion no. 618: Ovarian reserve testing. Obstet. Gynecol. 2015;125:268–273. PubMed

Smith S., Pfeifer S.M., Collins J.A. Diagnosis and management of female infertility. JAMA. 2003;290:1767–1770. doi: 10.1001/jama.290.13.1767. PubMed DOI

Chattopadhyay A.B., Rath S.K. Understanding male factor in infertility. Med. J. Armed Forces India. 1999;55:181–182. doi: 10.1016/S0377-1237(17)30435-5. PubMed DOI PMC

Niederberger C. WHO manual for the standardized investigation, diagnosis and management of the infertile male. Urology. 2001;57:208. doi: 10.1016/S0090-4295(00)00803-7. DOI

Farquhar C. Endometriosis. BMJ. 2007;334:249–253. doi: 10.1136/bmj.39073.736829.BE. PubMed DOI PMC

Brosens I., Benagiano G. Endometriosis, a modern syndrome. Indian J. Med. Res. 2011;133:581–593. PubMed PMC

Lagana A.S., Garzon S., Gotte M., Vigano P., Franchi M., Ghezzi F., Martin D.C. The pathogenesis of endometriosis: Molecular and cell biology insights. Int. J. Mol. Sci. 2019;20:5615. doi: 10.3390/ijms20225615. PubMed DOI PMC

Vercellini P., Vigano P., Somigliana E., Fedele L. Endometriosis: Pathogenesis and treatment. Nat. Rev. Endocrinol. 2014;10:261–275. doi: 10.1038/nrendo.2013.255. PubMed DOI

Brosens I.A., Puttemans P.J., Deprest J. The endoscopic localization of endometrial implants in the ovarian chocolate cyst. Fertil. Steril. 1994;61:1034–1038. doi: 10.1016/S0015-0282(16)56752-1. PubMed DOI

Zhang J., Bao Y., Zhou X., Zheng L. Polycystic ovary syndrome and mitochondrial dysfunction. Reprod. Biol. Endocrinol. 2019;17:67. doi: 10.1186/s12958-019-0509-4. PubMed DOI PMC

Teede H.J., Misso M.L., Costello M.F., Dokras A., Laven J., Moran L., Piltonen T., Norman R.J., International P.N. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil. Steril. 2018;110:364–379. doi: 10.1016/j.fertnstert.2018.05.004. PubMed DOI PMC

Uyar A., Torrealday S., Seli E. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil. Steril. 2013;99:979–997. doi: 10.1016/j.fertnstert.2013.01.129. PubMed DOI PMC

Wyndham N., Marin Figueira P.G., Patrizio P. A persistent misperception: Assisted reproductive technology can reverse the aged biological clock. Fertil. Steril. 2012;97:1044–1047. doi: 10.1016/j.fertnstert.2012.02.015. PubMed DOI

Cakmak H., Franciosi F., Zamah A.M., Cedars M.I., Conti M. Dynamic secretion during meiotic reentry integrates the function of the oocyte and cumulus cells. Proc. Natl. Acad. Sci. USA. 2016;113:2424–2429. doi: 10.1073/pnas.1519990113. PubMed DOI PMC

Hillier S.G., Whitelaw P.F., Smyth C.D. Follicular oestrogen synthesis: The two-cell, two-gonadotrophin model revisited. Mol. Cell. Endocrinol. 1994;100:51–54. doi: 10.1016/0303-7207(94)90278-X. PubMed DOI

Ting A.Y., Xu J., Stouffer R.L. Differential effects of estrogen and progesterone on development of primate secondary follicles in a steroid-depleted milieu in vitro. Hum. Reprod. 2015;30:1907–1917. doi: 10.1093/humrep/dev119. PubMed DOI PMC

Hamel M., Dufort I., Robert C., Gravel C., Leveille M.C., Leader A., Sirard M.A. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum. Reprod. 2008;23:1118–1127. doi: 10.1093/humrep/den048. PubMed DOI

Wathlet S., Adriaenssens T., Segers I., Verheyen G., Janssens R., Coucke W., Devroey P., Smitz J. New candidate genes to predict pregnancy outcome in single embryo transfer cycles when using cumulus cell gene expression. Fertil. Steril. 2012;98:432–439.e4. doi: 10.1016/j.fertnstert.2012.05.007. PubMed DOI

Feuerstein P., Cadoret V., Dalbies-Tran R., Guerif F., Bidault R., Royere D. Gene expression in human cumulus cells: One approach to oocyte competence. Hum. Reprod. 2007;22:3069–3077. doi: 10.1093/humrep/dem336. PubMed DOI

Miller W.L. Disorders in the initial steps of steroid hormone synthesis. J. Steroid. Biochem. Mol. Biol. 2017;165:18–37. doi: 10.1016/j.jsbmb.2016.03.009. PubMed DOI

Miller W.L. Steroid hormone synthesis in mitochondria. Mol. Cell. Endocrinol. 2013;379:62–73. doi: 10.1016/j.mce.2013.04.014. PubMed DOI

Allen J.A., Shankara T., Janus P., Buck S., Diemer T., Hales K.H., Hales D.B. Energized, polarized, and actively respiring mitochondria are required for acute Leydig cell steroidogenesis. Endocrinology. 2006;147:3924–3935. doi: 10.1210/en.2005-1204. PubMed DOI

Artemenko I.P., Zhao D., Hales D.B., Hales K.H., Jefcoate C.R. Mitochondrial processing of newly synthesized steroidogenic acute regulatory protein (StAR), but not total StAR, mediates cholesterol transfer to cytochrome P450 side chain cleavage enzyme in adrenal cells. J. Biol. Chem. 2001;276:46583–46596. doi: 10.1074/jbc.M107815200. PubMed DOI

Au H.K., Lin S.H., Huang S.Y., Yeh T.S., Tzeng C.R., Hsieh R.H. Deleted mitochondrial DNA in human luteinized granulosa cells. Ann. N. Y. Acad. Sci. 2005;1042:136–141. doi: 10.1196/annals.1338.014. PubMed DOI

Von Mengden L., Klamt F., Smitz J. Redox biology of human cumulus cells: Basic concepts, impact on oocyte quality, and potential clinical use. Antioxid. Redox Signal. 2020;32:522–535. doi: 10.1089/ars.2019.7984. PubMed DOI PMC

Karuputhula N.B., Chattopadhyay R., Chakravarty B., Chaudhury K. Oxidative status in granulosa cells of infertile women undergoing IVF. Syst. Biol. Reprod. Med. 2013;59:91–98. doi: 10.3109/19396368.2012.743197. PubMed DOI

Hsu A.L., Townsend P.M., Oehninger S., Castora F.J. Endometriosis may be associated with mitochondrial dysfunction in cumulus cells from subjects undergoing in vitro fertilization-intracytoplasmic sperm injection, as reflected by decreased adenosine triphosphate production. Fertil. Steril. 2015;103:347–352.e1. doi: 10.1016/j.fertnstert.2014.11.002. PubMed DOI

Hoshino Y. Updating the markers for oocyte quality evaluation: Intracellular temperature as a new index. Reprod. Med. Biol. 2018;17:434–441. doi: 10.1002/rmb2.12245. PubMed DOI PMC

Tanghe S., Van Soom A., Nauwynck H., Coryn M., de Kruif A. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 2002;61:414–424. doi: 10.1002/mrd.10102. PubMed DOI

Huang Z., Wells D. The human oocyte and cumulus cells relationship: New insights from the cumulus cell transcriptome. Mol. Hum. Reprod. 2010;16:715–725. doi: 10.1093/molehr/gaq031. PubMed DOI

Boucret L., Chao de la Barca J.M., Moriniere C., Desquiret V., Ferre-L’Hotellier V., Descamps P., Marcaillou C., Reynier P., Procaccio V., May-Panloup P. Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells. Hum. Reprod. 2015;30:1653–1664. doi: 10.1093/humrep/dev114. PubMed DOI

Senapati S., Sammel M.D., Morse C., Barnhart K.T. Impact of endometriosis on in vitro fertilization outcomes: An evaluation of the Society for Assisted Reproductive Technologies Database. Fertil. Steril. 2016;106:164–171.e1. doi: 10.1016/j.fertnstert.2016.03.037. PubMed DOI PMC

Harb H.M., Gallos I.D., Chu J., Harb M., Coomarasamy A. The effect of endometriosis on in vitro fertilization outcome: A systematic review and meta-analysis. BJOG. 2013;120:1308–1320. doi: 10.1111/1471-0528.12366. PubMed DOI

Coccia M.E., Rizzello F., Mariani G., Bulletti C., Palagiano A., Scarselli G. Impact of endometriosis on in vitro fertilization and embryo transfer cycles in young women: A stage-dependent interference. Acta Obstet. Gynecol. Scand. 2011;90:1232–1238. doi: 10.1111/j.1600-0412.2011.01247.x. PubMed DOI

Suzuki T., Izumi S., Matsubayashi H., Awaji H., Yoshikata K., Makino T. Impact of ovarian endometrioma on oocytes and pregnancy outcome in in vitro fertilization. Fertil. Steril. 2005;83:908–913. doi: 10.1016/j.fertnstert.2004.11.028. PubMed DOI

Opoien H.K., Fedorcsak P., Omland A.K., Abyholm T., Bjercke S., Ertzeid G., Oldereid N., Mellembakken J.R., Tanbo T. In vitro fertilization is a successful treatment in endometriosis-associated infertility. Fertil. Steril. 2012;97:912–918. doi: 10.1016/j.fertnstert.2012.01.112. PubMed DOI

Zamah A.M., Hassis M.E., Albertolle M.E., Williams K.E. Proteomic analysis of human follicular fluid from fertile women. Clin. Proteomics. 2015;12:5. doi: 10.1186/s12014-015-9077-6. PubMed DOI PMC

Rodgers R.J., Irving-Rodgers H.F. Formation of the ovarian follicular antrum and follicular fluid. Biol. Reprod. 2010;82:1021–1029. doi: 10.1095/biolreprod.109.082941. PubMed DOI

Sanchez A.M., Vanni V.S., Bartiromo L., Papaleo E., Zilberberg E., Candiani M., Orvieto R., Vigano P. Is the oocyte quality affected by endometriosis? A review of the literature. J. Ovarian Res. 2017;10:43. doi: 10.1186/s13048-017-0341-4. PubMed DOI PMC

Ishihara Y., Takemoto T., Ishida A., Yamazaki T. Protective actions of 17beta-estradiol and progesterone on oxidative neuronal injury induced by organometallic compounds. Oxid. Med. Cell. Longev. 2015;2015:343706. doi: 10.1155/2015/343706. PubMed DOI PMC

Lamb J.D., Zamah A.M., Shen S., McCulloch C., Cedars M.I., Rosen M.P. Follicular fluid steroid hormone levels are associated with fertilization outcome after intracytoplasmic sperm injection. Fertil. Steril. 2010;94:952–957. doi: 10.1016/j.fertnstert.2009.04.010. PubMed DOI PMC

Carpintero N.L., Suarez O.A., Mangas C.C., Varea C.G., Rioja R.G. Follicular steroid hormones as markers of oocyte quality and oocyte development potential. J. Hum. Reprod. Sci. 2014;7:187–193. doi: 10.4103/0974-1208.142479. PubMed DOI PMC

Jones H.W., Jr., Acosta A., Andrews M.C., Garcia J.E., Jones G.S., Mantzavinos T., McDowell J., Sandow B., Veeck L., Whibley T., et al. The importance of the follicular phase to success and failure in in vitro fertilization. Fertil. Steril. 1983;40:317–321. doi: 10.1016/S0015-0282(16)47293-6. PubMed DOI

Fisher S., Grin A., Paltoo A., Shapiro H.M. Falling estradiol levels as a result of intentional reduction in gonadotrophin dose are not associated with poor IVF outcomes, whereas spontaneously falling estradiol levels result in low clinical pregnancy rates. Hum. Reprod. 2005;20:84–88. doi: 10.1093/humrep/deh543. PubMed DOI

Segawa T., Teramoto S., Omi K., Miyauchi O., Watanabe Y., Osada H. Changes in estrone and estradiol levels during follicle development: A retrospective large-scale study. Reprod. Biol. Endocrinol. 2015;13:54. doi: 10.1186/s12958-015-0051-y. PubMed DOI PMC

Nebert D.W., Wikvall K., Miller W.L. Human cytochromes P450 in health and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013;368:20120431. doi: 10.1098/rstb.2012.0431. PubMed DOI PMC

Prasad M., Thomas J.L., Whittal R.M., Bose H.S. Mitochondrial 3beta-hydroxysteroid dehydrogenase enzyme activity requires reversible pH-dependent conformational change at the intermembrane space. J. Biol. Chem. 2012;287:9534–9546. doi: 10.1074/jbc.M111.333278. PubMed DOI PMC

Castillo A.F., Orlando U., Helfenberger K.E., Poderoso C., Podesta E.J. The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis. Mol. Cell. Endocrinol. 2015;408:73–79. doi: 10.1016/j.mce.2014.12.011. PubMed DOI

Regan S.L.P., Knight P.G., Yovich J.L., Leung Y., Arfuso F., Dharmarajan A. Granulosa cell apoptosis in the ovarian follicle-a changing view. Front. Endocrinol. 2018;9:61. doi: 10.3389/fendo.2018.00061. PubMed DOI PMC

Schreier S., Sawaisorn P., Udomsangpetch R., Triampo W. Advances in rare cell isolation: An optimization and evaluation study. J. Transl. Med. 2017;15:6. doi: 10.1186/s12967-016-1108-1. PubMed DOI PMC

Vigone G., Merico V., Redi C.A., Mazzini G., Garagna S., Zuccotti M. FSH and LH receptors are differentially expressed in cumulus cells surrounding developmentally competent and incompetent mouse fully grown antral oocytes. Reprod. Fertil. Dev. 2015;27:497–503. doi: 10.1071/RD13251. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...