Mitochondrial Function in Modulating Human Granulosa Cell Steroidogenesis and Female Fertility
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MOST 108-2314-B-038-003
Ministry of Science and Technology, Taiwan
GA-18-11275S
European Regional Development Fund
PubMed
32438750
PubMed Central
PMC7279321
DOI
10.3390/ijms21103592
PII: ijms21103592
Knihovny.cz E-zdroje
- Klíčová slova
- 3β-HSD., StAR, estradiol, fertilization rate, granulosa cells, mitochondrial mass, progesterone, steroidogenesis,
- MeSH
- apoptóza MeSH
- biologické modely MeSH
- cysty patologie MeSH
- dospělí MeSH
- endometrióza krev komplikace patologie MeSH
- estradiol krev MeSH
- fertilita * MeSH
- fertilizace in vitro MeSH
- folikulární buňky metabolismus MeSH
- folikulární tekutina metabolismus MeSH
- kumulární buňky metabolismus MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- oocyty metabolismus MeSH
- progesteron krev MeSH
- steroidy biosyntéza MeSH
- syndrom polycystických ovarií krev komplikace patologie MeSH
- těhotenství MeSH
- výsledek těhotenství MeSH
- ženská infertilita krev patologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- estradiol MeSH
- progesteron MeSH
- steroidy MeSH
Ovarian follicle steroidogenesis associated with embryo quality results in a successful pregnancy. Each follicle consists of an oocyte surrounded by granulosa cells, which secrete several steroid and peptide hormones. Follicles harvested from women who conceived after assisted reproductive therapy (ART) had significantly higher estradiol levels in follicular fluids than the follicles from women who failed to conceive after ART. The higher follicular estradiol levels correlate well with successful fertilization following ART. Mitochondria are the central sites for steroid hormone biosynthesis. The first and rate-limiting step in the biosynthesis of steroid hormones occurs in the mitochondria of granulosa cells. In the present study, we hypothesized that the mitochondria in granulosa cells are critical for maintaining oocyte quality and fertility capacity. This study aims to clarify the relationship between mitochondrial function and granulosa cell steroidogenesis, and the relationship between hormone levels and fertility capacity. Sera, follicular fluids and granulosa cells were obtained from individuals undergoing IVF-ET treatment. The oocyte numbers, oocyte quality, fertilization rate, and pregnancy rate were also recorded. The patients who provided the granulosa cells were further classified into four groups: endometriosis, ovarian endometrioma, endometriosis without ovarian endometrioma, and polycystic ovary syndrome (PCOS); patients with other female factor infertility and male factor infertility were used as controls. We measured the levels of estradiol (E2) by radioimmunoassay. Concurrently, we analyzed the mitochondrial mass and membrane potential, and apoptosis by flow cytometry using nonyl acridine orange, TMRE, Annexin V-FITC and PI. Mitochondrial morphology was visualized by transfection with pLV-mitoDsRed. In addition, we assessed the protein levels of steroidogenic enzymes, steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) by Western blot. The results showed significantly decreased serum E2 and follicular E2 levels, and decreased IVF outcomes, in the patients with endometriosis. Reduced mitochondrial mass and decreased mitochondrial membrane potential were correlated with lower E2. Furthermore, a significant decrease in StAR and 3β-HSD was found in patients with ovarian endometrioma. The enzyme levels of StAR and 3β-HSD were highly correlated with E2 levels. Finally, elevated cumulus cell apoptosis was found in the patient group with ovarian endometrioma and PCOS. In conclusion, mitochondrial dysfunction of human granulosa cells may contribute to the decline of steroidogenesis, decreased fertilization rate, oocyte maturation rate, and oocyte quality, and it can ultimately jeopardize fertility.
Department of Obstetrics and Gynecology Taipei Veterans General Hospital Taipei 11217 Taiwan
Department of Zoology Faculty of Science Charles University Vinicna 7 128 44 Prague 2 Czech Republic
Zobrazit více v PubMed
Practice Committee of American Society for Reproductive Medicine Definitions of infertility and recurrent pregnancy loss: A committee opinion. Fertil. Steril. 2013;99:63. doi: 10.1016/j.fertnstert.2012.09.023. PubMed DOI
Practice Committee of the American Society for Reproductive Medicine Testing and interpreting measures of ovarian reserve: A committee opinion. Fertil. Steril. 2015;103:e9–e17. doi: 10.1016/j.fertnstert.2014.12.093. PubMed DOI
Committee on Gynecologic Practice Committee opinion no. 618: Ovarian reserve testing. Obstet. Gynecol. 2015;125:268–273. PubMed
Smith S., Pfeifer S.M., Collins J.A. Diagnosis and management of female infertility. JAMA. 2003;290:1767–1770. doi: 10.1001/jama.290.13.1767. PubMed DOI
Chattopadhyay A.B., Rath S.K. Understanding male factor in infertility. Med. J. Armed Forces India. 1999;55:181–182. doi: 10.1016/S0377-1237(17)30435-5. PubMed DOI PMC
Niederberger C. WHO manual for the standardized investigation, diagnosis and management of the infertile male. Urology. 2001;57:208. doi: 10.1016/S0090-4295(00)00803-7. DOI
Farquhar C. Endometriosis. BMJ. 2007;334:249–253. doi: 10.1136/bmj.39073.736829.BE. PubMed DOI PMC
Brosens I., Benagiano G. Endometriosis, a modern syndrome. Indian J. Med. Res. 2011;133:581–593. PubMed PMC
Lagana A.S., Garzon S., Gotte M., Vigano P., Franchi M., Ghezzi F., Martin D.C. The pathogenesis of endometriosis: Molecular and cell biology insights. Int. J. Mol. Sci. 2019;20:5615. doi: 10.3390/ijms20225615. PubMed DOI PMC
Vercellini P., Vigano P., Somigliana E., Fedele L. Endometriosis: Pathogenesis and treatment. Nat. Rev. Endocrinol. 2014;10:261–275. doi: 10.1038/nrendo.2013.255. PubMed DOI
Brosens I.A., Puttemans P.J., Deprest J. The endoscopic localization of endometrial implants in the ovarian chocolate cyst. Fertil. Steril. 1994;61:1034–1038. doi: 10.1016/S0015-0282(16)56752-1. PubMed DOI
Zhang J., Bao Y., Zhou X., Zheng L. Polycystic ovary syndrome and mitochondrial dysfunction. Reprod. Biol. Endocrinol. 2019;17:67. doi: 10.1186/s12958-019-0509-4. PubMed DOI PMC
Teede H.J., Misso M.L., Costello M.F., Dokras A., Laven J., Moran L., Piltonen T., Norman R.J., International P.N. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil. Steril. 2018;110:364–379. doi: 10.1016/j.fertnstert.2018.05.004. PubMed DOI PMC
Uyar A., Torrealday S., Seli E. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil. Steril. 2013;99:979–997. doi: 10.1016/j.fertnstert.2013.01.129. PubMed DOI PMC
Wyndham N., Marin Figueira P.G., Patrizio P. A persistent misperception: Assisted reproductive technology can reverse the aged biological clock. Fertil. Steril. 2012;97:1044–1047. doi: 10.1016/j.fertnstert.2012.02.015. PubMed DOI
Cakmak H., Franciosi F., Zamah A.M., Cedars M.I., Conti M. Dynamic secretion during meiotic reentry integrates the function of the oocyte and cumulus cells. Proc. Natl. Acad. Sci. USA. 2016;113:2424–2429. doi: 10.1073/pnas.1519990113. PubMed DOI PMC
Hillier S.G., Whitelaw P.F., Smyth C.D. Follicular oestrogen synthesis: The two-cell, two-gonadotrophin model revisited. Mol. Cell. Endocrinol. 1994;100:51–54. doi: 10.1016/0303-7207(94)90278-X. PubMed DOI
Ting A.Y., Xu J., Stouffer R.L. Differential effects of estrogen and progesterone on development of primate secondary follicles in a steroid-depleted milieu in vitro. Hum. Reprod. 2015;30:1907–1917. doi: 10.1093/humrep/dev119. PubMed DOI PMC
Hamel M., Dufort I., Robert C., Gravel C., Leveille M.C., Leader A., Sirard M.A. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum. Reprod. 2008;23:1118–1127. doi: 10.1093/humrep/den048. PubMed DOI
Wathlet S., Adriaenssens T., Segers I., Verheyen G., Janssens R., Coucke W., Devroey P., Smitz J. New candidate genes to predict pregnancy outcome in single embryo transfer cycles when using cumulus cell gene expression. Fertil. Steril. 2012;98:432–439.e4. doi: 10.1016/j.fertnstert.2012.05.007. PubMed DOI
Feuerstein P., Cadoret V., Dalbies-Tran R., Guerif F., Bidault R., Royere D. Gene expression in human cumulus cells: One approach to oocyte competence. Hum. Reprod. 2007;22:3069–3077. doi: 10.1093/humrep/dem336. PubMed DOI
Miller W.L. Disorders in the initial steps of steroid hormone synthesis. J. Steroid. Biochem. Mol. Biol. 2017;165:18–37. doi: 10.1016/j.jsbmb.2016.03.009. PubMed DOI
Miller W.L. Steroid hormone synthesis in mitochondria. Mol. Cell. Endocrinol. 2013;379:62–73. doi: 10.1016/j.mce.2013.04.014. PubMed DOI
Allen J.A., Shankara T., Janus P., Buck S., Diemer T., Hales K.H., Hales D.B. Energized, polarized, and actively respiring mitochondria are required for acute Leydig cell steroidogenesis. Endocrinology. 2006;147:3924–3935. doi: 10.1210/en.2005-1204. PubMed DOI
Artemenko I.P., Zhao D., Hales D.B., Hales K.H., Jefcoate C.R. Mitochondrial processing of newly synthesized steroidogenic acute regulatory protein (StAR), but not total StAR, mediates cholesterol transfer to cytochrome P450 side chain cleavage enzyme in adrenal cells. J. Biol. Chem. 2001;276:46583–46596. doi: 10.1074/jbc.M107815200. PubMed DOI
Au H.K., Lin S.H., Huang S.Y., Yeh T.S., Tzeng C.R., Hsieh R.H. Deleted mitochondrial DNA in human luteinized granulosa cells. Ann. N. Y. Acad. Sci. 2005;1042:136–141. doi: 10.1196/annals.1338.014. PubMed DOI
Von Mengden L., Klamt F., Smitz J. Redox biology of human cumulus cells: Basic concepts, impact on oocyte quality, and potential clinical use. Antioxid. Redox Signal. 2020;32:522–535. doi: 10.1089/ars.2019.7984. PubMed DOI PMC
Karuputhula N.B., Chattopadhyay R., Chakravarty B., Chaudhury K. Oxidative status in granulosa cells of infertile women undergoing IVF. Syst. Biol. Reprod. Med. 2013;59:91–98. doi: 10.3109/19396368.2012.743197. PubMed DOI
Hsu A.L., Townsend P.M., Oehninger S., Castora F.J. Endometriosis may be associated with mitochondrial dysfunction in cumulus cells from subjects undergoing in vitro fertilization-intracytoplasmic sperm injection, as reflected by decreased adenosine triphosphate production. Fertil. Steril. 2015;103:347–352.e1. doi: 10.1016/j.fertnstert.2014.11.002. PubMed DOI
Hoshino Y. Updating the markers for oocyte quality evaluation: Intracellular temperature as a new index. Reprod. Med. Biol. 2018;17:434–441. doi: 10.1002/rmb2.12245. PubMed DOI PMC
Tanghe S., Van Soom A., Nauwynck H., Coryn M., de Kruif A. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 2002;61:414–424. doi: 10.1002/mrd.10102. PubMed DOI
Huang Z., Wells D. The human oocyte and cumulus cells relationship: New insights from the cumulus cell transcriptome. Mol. Hum. Reprod. 2010;16:715–725. doi: 10.1093/molehr/gaq031. PubMed DOI
Boucret L., Chao de la Barca J.M., Moriniere C., Desquiret V., Ferre-L’Hotellier V., Descamps P., Marcaillou C., Reynier P., Procaccio V., May-Panloup P. Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells. Hum. Reprod. 2015;30:1653–1664. doi: 10.1093/humrep/dev114. PubMed DOI
Senapati S., Sammel M.D., Morse C., Barnhart K.T. Impact of endometriosis on in vitro fertilization outcomes: An evaluation of the Society for Assisted Reproductive Technologies Database. Fertil. Steril. 2016;106:164–171.e1. doi: 10.1016/j.fertnstert.2016.03.037. PubMed DOI PMC
Harb H.M., Gallos I.D., Chu J., Harb M., Coomarasamy A. The effect of endometriosis on in vitro fertilization outcome: A systematic review and meta-analysis. BJOG. 2013;120:1308–1320. doi: 10.1111/1471-0528.12366. PubMed DOI
Coccia M.E., Rizzello F., Mariani G., Bulletti C., Palagiano A., Scarselli G. Impact of endometriosis on in vitro fertilization and embryo transfer cycles in young women: A stage-dependent interference. Acta Obstet. Gynecol. Scand. 2011;90:1232–1238. doi: 10.1111/j.1600-0412.2011.01247.x. PubMed DOI
Suzuki T., Izumi S., Matsubayashi H., Awaji H., Yoshikata K., Makino T. Impact of ovarian endometrioma on oocytes and pregnancy outcome in in vitro fertilization. Fertil. Steril. 2005;83:908–913. doi: 10.1016/j.fertnstert.2004.11.028. PubMed DOI
Opoien H.K., Fedorcsak P., Omland A.K., Abyholm T., Bjercke S., Ertzeid G., Oldereid N., Mellembakken J.R., Tanbo T. In vitro fertilization is a successful treatment in endometriosis-associated infertility. Fertil. Steril. 2012;97:912–918. doi: 10.1016/j.fertnstert.2012.01.112. PubMed DOI
Zamah A.M., Hassis M.E., Albertolle M.E., Williams K.E. Proteomic analysis of human follicular fluid from fertile women. Clin. Proteomics. 2015;12:5. doi: 10.1186/s12014-015-9077-6. PubMed DOI PMC
Rodgers R.J., Irving-Rodgers H.F. Formation of the ovarian follicular antrum and follicular fluid. Biol. Reprod. 2010;82:1021–1029. doi: 10.1095/biolreprod.109.082941. PubMed DOI
Sanchez A.M., Vanni V.S., Bartiromo L., Papaleo E., Zilberberg E., Candiani M., Orvieto R., Vigano P. Is the oocyte quality affected by endometriosis? A review of the literature. J. Ovarian Res. 2017;10:43. doi: 10.1186/s13048-017-0341-4. PubMed DOI PMC
Ishihara Y., Takemoto T., Ishida A., Yamazaki T. Protective actions of 17beta-estradiol and progesterone on oxidative neuronal injury induced by organometallic compounds. Oxid. Med. Cell. Longev. 2015;2015:343706. doi: 10.1155/2015/343706. PubMed DOI PMC
Lamb J.D., Zamah A.M., Shen S., McCulloch C., Cedars M.I., Rosen M.P. Follicular fluid steroid hormone levels are associated with fertilization outcome after intracytoplasmic sperm injection. Fertil. Steril. 2010;94:952–957. doi: 10.1016/j.fertnstert.2009.04.010. PubMed DOI PMC
Carpintero N.L., Suarez O.A., Mangas C.C., Varea C.G., Rioja R.G. Follicular steroid hormones as markers of oocyte quality and oocyte development potential. J. Hum. Reprod. Sci. 2014;7:187–193. doi: 10.4103/0974-1208.142479. PubMed DOI PMC
Jones H.W., Jr., Acosta A., Andrews M.C., Garcia J.E., Jones G.S., Mantzavinos T., McDowell J., Sandow B., Veeck L., Whibley T., et al. The importance of the follicular phase to success and failure in in vitro fertilization. Fertil. Steril. 1983;40:317–321. doi: 10.1016/S0015-0282(16)47293-6. PubMed DOI
Fisher S., Grin A., Paltoo A., Shapiro H.M. Falling estradiol levels as a result of intentional reduction in gonadotrophin dose are not associated with poor IVF outcomes, whereas spontaneously falling estradiol levels result in low clinical pregnancy rates. Hum. Reprod. 2005;20:84–88. doi: 10.1093/humrep/deh543. PubMed DOI
Segawa T., Teramoto S., Omi K., Miyauchi O., Watanabe Y., Osada H. Changes in estrone and estradiol levels during follicle development: A retrospective large-scale study. Reprod. Biol. Endocrinol. 2015;13:54. doi: 10.1186/s12958-015-0051-y. PubMed DOI PMC
Nebert D.W., Wikvall K., Miller W.L. Human cytochromes P450 in health and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013;368:20120431. doi: 10.1098/rstb.2012.0431. PubMed DOI PMC
Prasad M., Thomas J.L., Whittal R.M., Bose H.S. Mitochondrial 3beta-hydroxysteroid dehydrogenase enzyme activity requires reversible pH-dependent conformational change at the intermembrane space. J. Biol. Chem. 2012;287:9534–9546. doi: 10.1074/jbc.M111.333278. PubMed DOI PMC
Castillo A.F., Orlando U., Helfenberger K.E., Poderoso C., Podesta E.J. The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis. Mol. Cell. Endocrinol. 2015;408:73–79. doi: 10.1016/j.mce.2014.12.011. PubMed DOI
Regan S.L.P., Knight P.G., Yovich J.L., Leung Y., Arfuso F., Dharmarajan A. Granulosa cell apoptosis in the ovarian follicle-a changing view. Front. Endocrinol. 2018;9:61. doi: 10.3389/fendo.2018.00061. PubMed DOI PMC
Schreier S., Sawaisorn P., Udomsangpetch R., Triampo W. Advances in rare cell isolation: An optimization and evaluation study. J. Transl. Med. 2017;15:6. doi: 10.1186/s12967-016-1108-1. PubMed DOI PMC
Vigone G., Merico V., Redi C.A., Mazzini G., Garagna S., Zuccotti M. FSH and LH receptors are differentially expressed in cumulus cells surrounding developmentally competent and incompetent mouse fully grown antral oocytes. Reprod. Fertil. Dev. 2015;27:497–503. doi: 10.1071/RD13251. PubMed DOI