Impact of warming and reduced precipitation on morphology and chlorophyll concentration in peat mosses (Sphagnum angustifolium and S. fallax)
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32451474
PubMed Central
PMC7248058
DOI
10.1038/s41598-020-65032-x
PII: 10.1038/s41598-020-65032-x
Knihovny.cz E-resources
- MeSH
- Biodiversity MeSH
- Chlorophyll metabolism MeSH
- Rain MeSH
- Ecosystem MeSH
- Climate Change MeSH
- Sphagnopsida metabolism physiology MeSH
- Temperature MeSH
- Carbon metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chlorophyll MeSH
- Carbon MeSH
Peatlands are one of the most important ecosystems due to their biodiversity and abundant organic compounds; therefore, it is important to observe how different plant species in peatlands react to changing environmental conditions. Sphagnum spp. are the main component of peatlands and are considered as the creator of conditions favorable for carbon storage in the form of peat. Sphagnum angustifolium and Sphagnum fallax are taxonomically very close species. To examine their adaptability to climate change, we studied the morphology and pigment content of these two species from environmental manipulation sites in Poland, where the environment was continuously manipulated for temperature and precipitation. The warming of peat was induced by using infrared heaters, whereas total precipitation was reduced by a curtain that cuts the nighttime precipitation. Morphology of S. angustifolium stayed under climate manipulation relatively stable. However, the main morphological parameters of S. fallax were significantly affected by precipitation reduction. Thus, this study indicates S. angustifolium is better adapted in comparison to S. fallax for drier and warmer conditions.
See more in PubMed
IPCC, Global warming of 1.5 °C – An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC Switzerland, (2018).
Radu DD, Duval TP. Precipitation frequency alters peatland ecosystem structure and CO2 exchange: Contrasting effects on moss, sedge, and shrub communities. Glob. Change Biol. 2018;24:2051–2065. doi: 10.1111/gcb.14057. PubMed DOI
Corlett RT, Westcott DA. Will plant movements keep up with climate change? Trends Ecol. Evol. 2013;28:482–488. doi: 10.1016/j.tree.2013.04.003. PubMed DOI
Elmqvist T, et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 2003;1:488. doi: 10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2. DOI
Gorham E. Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming. Ecol. Appl. 1991;1:182–195. doi: 10.2307/1941811. PubMed DOI
Bain, C. G., IUCN UK Commission of Inquiry on Peatlands. (IUCN UK Peatland Programme, 2011).
Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 2010;37:13. doi: 10.1029/2010GL043584. DOI
Gallego-Sala A. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Change. 2018;8:907–913. doi: 10.1038/s41558-018-0271-1. DOI
Jassey VEJ, et al. Tipping point effect in plant-fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration. Glob. Change Biol. 2018;24:972–986. doi: 10.1111/gcb.13928. PubMed DOI
Rastogi A, et al. Impact of Warming and Reduced Precipitation on Photosynthetic and Remote Sensing Properties of Peatland Vegetation. Env. Exp. Bot. 2019;160:71–80. doi: 10.1016/j.envexpbot.2019.01.005. DOI
Dorrepaal E, Aerts R, Cornelissen JHC, Callaghan TV, van Logtestijn RSP. Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog. Glob. Change Biol. 2003;10:93–104. doi: 10.1111/j.1365-2486.2003.00718.x. DOI
Hyyryläinen A, Turunenb M, Rautioc P, Huttunen S. Sphagnum mosses in a changing UV-B environment: A review. Perspect. Plant. Ecol. 2018;33:1–8. doi: 10.1016/j.ppees.2018.04.001. DOI
van Breemen N. How Sphagnum bogs down other plants. Trends Ecol. Evol. 1995;10:270–275. doi: 10.1016/0169-5347(95)90007-1. PubMed DOI
Rydin, H., & Jeglum, J. The Biology of Peatlands, second edition (Oxford University Press, 2013).
Slack N.G. The Ecological Value of Bryophytes as Indicators of Climate Change in Bryophyte Ecology and Climate Change (ed. Z., Tuba & N.G., Slack) 3-12 (Cambridge University Press, 2011).
Hájek T, Becket RP. Effect of Water Content Components on Desiccation and Recovery in Sphagnum Mosses. Ann. Bot. 2008;101:165–173. doi: 10.1093/aob/mcm287. PubMed DOI PMC
Hayward, P. M. & Clymo, R. S. Profiles of water content and pore size in Sphagnum and peat, ant treir relation to peat bog ecology. Proc. Royal Soc. B 215, 10.1098/rspb.1982.0044 299-325.
Tuba Z. Notes on the poikilochlorophyllous desiccation-tolerant plants. Acta Biol. Szeged. 2008;52:111–113.
Weston DJ, et al. Sphagnum physiology in the context of changing climate: emergent influences of genomics, modeling and host–microbiome interactions on understanding ecosystem function. Plant. Cell Environ. 2015;38:1737–1751. doi: 10.1111/pce.12458. PubMed DOI
Norby, R. J., Childs, J., Hanson, P. J. & Warren, J. M. Rapid loss of an ecosystem engineer: Sphagnum decline in an experimentally warmed bog. Ecol. Evol. 10.1002/ece3.5722 (2019). PubMed PMC
Jassey, V. E. J. & Signarbieux, C. Effects of climate warming on Sphagnum photosynthesis in peatlands depend on peat moisture and species-specific anatomical traits. Glob. Change Biol., 10.1111/gcb.14788 (2019). PubMed
Smith, A. J. E. The Moss Flora of Britain and Ireland, second edition (Cambridge University Press, 2004). 10.1017/CBO9780511541858
Bengtsson F, Granath G, Rydin H. Photosynthesis, growth, and decay traits in Sphagnum – a multispecies comparison. Ecol. Evol. 2016;6:3325–3341. doi: 10.1002/ece3.2119. PubMed DOI PMC
Turetsky MR, et al. The resilience and functional role of moss in boreal and arctic ecosystems. N. Physiol. 2012;196:49–67. doi: 10.1111/j.1469-8137.2012.04254.x. PubMed DOI
Marschall M, Borbély P. Photosynthetic responses of the desiccation intolerant Sphagnum angustifolium in relation to increasing its desiccation tolerance by exogenous ABA. Acta Biol. Szeged. 2011;55:119–121.
Szurdoki E, Márton O, Szövényi P. Genetic and morphological diversity of Sphagnum angustifolium, S. flexuosum and S. fallax in Europe. Taxon. 2014;63:237–248. doi: 10.12705/632.6. DOI
Buttler A, Grosvernier P, Matthey Y. Development of Sphagnum fallax diaspores on bare peat with implications for the restoration of cut-over bogs. J. Appl. Ecol. 1998;35:800–810. doi: 10.1046/j.1365-2664.1998.355351.x. DOI
Basińska AM, et al. Biomass changes in an active warming and precipitation reduction experiment on a Sphagnum peatland – the search for ecological indicators of climate change. Ecol. Indic. 2020;112:106059. doi: 10.1016/j.ecolind.2019.106059. DOI
Juszczak, R. et al. Towards better understanding of the response of Sphagnum peatland to increased temperature and reduced precipitation in Central Europe. Geophysical Research Abstracts 19, EGU2017-18838-1 (2017).
Łuców, D. et al. The response of vegetation structure to active warming and precipitation reduction of the Sphagnum peatland. Geophysical Research Abstracts 19, EGU2017-8001 (2017).
Rastogi, A. et al. The Impact of Climate Manipulation on Photosynthetic and Spectral Properties of Peatland Vegetation. Geophysical Research Abstracts 20, EGU2018-13685-1 (2018).
Vitt DH, Slack NG. Niche diversification of Sphagnum relative to environmental factors in northern Minnesota peatlands. J. Bot. 1984;62:1409–1430. doi: 10.1139/b84-192. DOI
Robroek BJM, Limpens J, Breeuwer A, Schouten MGC. Effects of water level and temperature on performance of four Sphagnum mosses. Plant. Ecol. 2007;190:97–107. doi: 10.1007/s11258-006-9193-5. DOI
Angela Breeuwer, Monique M. P. D. Heijmans, Bjorn J. M. Robroek, Frank Berendse, The effect of temperature on growth and competition between Sphagnum species. Oecologia156(1), 155–167 (2008). PubMed PMC
Asada T, Warner BG, Banner A. Growth of Mosses in Relation to Climate Factors in a Hypermaritime Coastal Peatland in British Columbia, Canada. Bryologist. 2003;106:516–527. doi: 10.1639/0007-2745(2003)106[516:GOMIRT]2.0.CO;2. DOI
Robroek BJM, Schouten MGS, Limpens J, Berendse F, Poorter H. Interactive effects of water table and precipitation on net CO2 assimilation of three co-occurring Sphagnum mosses differing in distribution above the water table. Glob. Change Biol. 2009;15:680–691. doi: 10.1111/j.1365-2486.2008.01724.x. DOI
Rydin, H., Gunnarsson, U., & Sundberg, S. The Role of Sphagnum in Peatland Development and Persistence. in Boreal Peatland Ecosystems (ed. R. K., Wieder, D. H., Vitt) s. 47–65 (Springer-Verlag, Heidelberg, 2006).
Gunnarsson U. Global patterns of Sphagnum productivity. J.Bryol. 2005;27:269–279. doi: 10.1179/174328205X70029. DOI
McCarter CPR, Price JS. Ecohydrology of Sphagnum moss hummocks: mechanisms of capitula water supply and simulated effects of evaporation. Ecohydrology. 2012;7:33–44. doi: 10.1002/eco.1313. DOI
Schipperges B, Rydin H. Response of Photosynthesis of Sphagnum Species from Contrasting Microhabitats to Tissue Water Content and Repeated Desiccation. N. Phytol. 1998;140:677–684. doi: 10.1046/j.1469-8137.1998.00311.x. PubMed DOI
Zhaojun B, et al. The response of peatlands to climate warming: A review. Acta Ecol. Sin. 2011;31:157–162. doi: 10.1016/j.chnaes.2011.03.006. DOI
Jassey VEJ, et al. Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions. Glob. Change Biol. 2012;19:811–823. doi: 10.1111/gcb.12075. PubMed DOI
Jassey VEJ, et al. Tipping point effect in plant-fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration. Glob. Change Biol. 2018;24:972–986. doi: 10.1111/gcb.13928. PubMed DOI
Bragazza L, et al. Persistent high temperature and low precipitation reduce peat carbon accumulation. Glob. Change Biol. 2016;22:4114–4123. doi: 10.1111/gcb.13319. PubMed DOI
Harley P. Irradiance and temperature effects on photosynthesis of tussock tundra Sphagnum mosses from the foothills of the Philip Smith Mountains, Alaska. Oecologia. 1989;79:251–259. doi: 10.1007/BF00388485. PubMed DOI
Lindholm T, Vasander H. Production of eight species of Sphagnum at Suurisuo Mire, southern Finland. Ann. Bot. Fenn. 1990;27:145–157.
Ashraf M, Harris PJC. Photosynthesis under stressful environments: an overview. Photosynthetica. 2013;51:163–190. doi: 10.1007/s11099-013-0021-6. DOI
Kalaji, H. M., Goltsev, V.N., Żuk-Gołaszewska, K., Zivcak, M., & Brestic, M. Chlorophyll Fluorescence Understanding Crop Performance in Basics and Applications (CRC Press, 2017).
Hashimoto H, Uragami C, Cogdell RJ. Carotenoids and photosynthesis. Subcell. Biochem. 2016;79:111–139. doi: 10.1007/978-3-319-39126-7_4. PubMed DOI
Trenberth KE, et al. Global warming and changes in drought. Nat. Clim. Change. 2014;4:17–22. doi: 10.1038/nclimate2067. DOI
Robroek, B. J. M. et al. Taxonomic and functional turnover are decoupled in European peat bogs. Nat. Commun. 8, 10.1038/s41467-017-01350-5 (2017). PubMed PMC
Maciej Gąbka, Mariusz Lamentowicz. Vegetation-Environment Relationships in Peatlands Dominated by Sphagnum fallax in Western Poland. Folia Geobotanica43(4), 413–429 (2008).
Acosta M, et al. CO2 Fluxes from Different Vegetation Communities on a Peatland Ecosystem. Wetlands. 2017;37:423–435. doi: 10.1007/s13157-017-0878-4. DOI
Juszczak R, Acosta M, Olejnik J. Comparison of Daytime and Nighttime Ecosystem Respiration Measured by the Closed Chamber Technique on a Temperate Mire in Poland. Pol. J. Environ. Stud. 2012;21:643–658.
Rastogi A, Bandopadhyay S, Stróżecki M, Juszczak R. Monitoring the Impact of Environmental Manipulation on Peatland Surface by Simple Remote Sensing Indices. ITM Web Conf. 2018;23:30. doi: 10.1051/itmconf/20182300030. DOI
Nyholm, E. Illustrated moss flora of Fennoscandia II. Musci. Fasc. 6, (Natural Science Research Council, 1969).
Lichtenthaler HK. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Plant. Cell Membr. 1987;148:350–382. doi: 10.1016/0076-6879(87)48036-1. DOI
Pinheiro, J. C. & Bates, D.M. Mixed-Effects Models in S and S-Plus. Springer. ISBN 0-387-98957-0. https://link.springer.com/book/10.1007/b98882 (2000). DOI
RStudio Team (2016). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA, http://www.rstudio.com/.