Measurement and Prediction of Railway Noise Case Study from Slovakia
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32455734
PubMed Central
PMC7277611
DOI
10.3390/ijerph17103616
PII: ijerph17103616
Knihovny.cz E-zdroje
- Klíčová slova
- CadnaA, noise, noise maps, prediction, rail transport,
- MeSH
- hluk dopravní * MeSH
- monitorování životního prostředí MeSH
- velkoměsta MeSH
- železnice * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Slovenská republika MeSH
- velkoměsta MeSH
The paper deals with comparing the measurement of noise from the railroads in the residential zone of the town of Zvolen with the results calculated using the prediction methods "Schall 03" (Deutsche Bundesbahn, 1990) and "Methodical instructions for the calculation of sound pressure level from transport" (MPVHD). The first is used in the Slovakia and second in the Czech Republic. The measurement results and the results obtained from the prediction methods for both measurement locations were evaluated graphically and statistically. The evaluation of the conformity of the measurement with the prediction showed that the results obtained using the method "Schall 03" are in better agreement with the measurement.
Institute of Foreign Languages Technical University in Zvolen T G Masaryka 24 96053 Zvolen Slovakia
National Forest Centre Forest Research Institute 96001 Zvolen Slovakia
Zobrazit více v PubMed
Clausen U., Doll C., Franklin F.J., Franklin G.V., Heinrichmeyer H., Kochsiek J., Sieber N. Reducing Railway Noise Pollution. European Parliament; Brussels, Belgium: 2012. pp. 10–55.
Watson I., Ali A., Bayyati A. Noise Mitigation and Related Factors of High Speed Railways. Eur. J. Sustain. Dev. 2018;7:11–19. doi: 10.14207/ejsd.2018.v7n3p11. DOI
Peris E., Woodcock J., Sica G., Sharp C., Moorhouse A.T., Waddington D.C. Guidance for new policy developments on railway noise and vibration. Transp. Res. Part A Policy Pract. 2016;85:76–88. doi: 10.1016/j.tra.2016.01.004. DOI
Zannin P.H.T., Bunn F. Noise annoyance through railway traffic—A case study. J. Environ. Health Sci. Eng. 2014;12:14. doi: 10.1186/2052-336X-12-14. PubMed DOI PMC
Hadzi-Nikolova M., Mirakovski D., Despodov Z., Doneva N. Traffic noise in small urban areas. Int. J. Transp. Logist. 2013;27:4.
Report from the Commission to the European Parliament and the Council On the Implementation of the Environmental Noise Directive in Accordance with Article 11 of Directive 2002/49/EC. European Commission; Brussels, Belgium: 2017.
Act Nr. 2/2005 on the Assessment and Control of Noise in the External Environment and on the Amendment of the Act of the National Council of the Slovak Republic no. 272/1994 Coll. on the Protection of Human Health, as Amended. National Council of the Slovak Republic; Bratislava, Slovakia: 2005.
Decký M., Krokker A. Ekologická kapacita železničných tratí a pozemných komunikácií. [Ecological capacity of railways and roads] Železničná Doprava a Logistika. 2011;3:17–27.
Němec M., Danihelová A. Dopravný Hluk. Technical University in Zvolen; Zvolen, Slovakia: 2016. pp. 21–25. [Traffic Noise]
Butorina M., Oleinikov A., Kuklin D. Classification of Railway Lines by Noise Emission for Noise Protection Design. Akustika. 2019;32:231–237.
Zhang X.Y., Thompson D.J., Squicciarini G. Sound radiation from railway sleepers. J. Sound Vib. 2016;369:178–194. doi: 10.1016/j.jsv.2016.01.018. DOI
Heutschi K., Buhlmann E., Oertli J. Options for reducing noise from roads and railway lines. Transp. Res. Part A Policy Pract. 2016;94:308–322. doi: 10.1016/j.tra.2016.09.019. DOI
STN ISO 1996-2:2006 . Acoustics. Description, Measurement and Assessment of Environmental Noise. Part 2: Determination of Environmental Noise Levels. ISO; Geneva, Switzerland: 2006.
Brown N. Ruční analyzátor 2270—Nástroj profesionálů pro měření zvuku a vibrací. [Hand Analyzer 2270—Tool of professionals for sound and vibration measurement] Bruel Kjaer Mag. 2008;1:1–31.
Jiang S., Meehan P.A., Bellette P.A., Thompson D.J., Jones C.J.C. Validation of a prediction model for tangent rail roughness and noise growth. Wear. 2014;314:261–272. doi: 10.1016/j.wear.2013.11.038. DOI
Ivanov N.I., Boiko I.S., Shashurin A.E. The problem of high-speed railway noise prediction and reduction; Proceedings of the International Scientific Conference Transportation Geotechnics and Geoecology (Tgg-2017); Saint Petersburg, Russia. 17–19 May 2017; Amsterdam, The Netherlands: Elsevier; 2017. pp. 539–546. Book Series: Procedia Engineering.
Szwarc M., Czyzewski A. New approach to railway noise modeling employing Genetic Algorithms. Appl. Acoust. 2011;72:611–622. doi: 10.1016/j.apacoust.2011.01.003. DOI
Van Leeuwen H.J.A. Railway noise prediction models: A comparison. J. Sound Vib. 2000;231:975–987. doi: 10.1006/jsvi.1999.2570. DOI
Steele C. A critical review of some traffic noise prediction models. Appl. Acoust. 2001;62:271–287. doi: 10.1016/S0003-682X(00)00030-X. DOI
Schall 03/Akustik 03 . Richtlinie zur Berechnung der Schallimmissionen von Schienenwegen. Deutsche Bundesbahn; Munich, Germany: 1990. pp. 1–59. [Guideline for the Calculation of Sound Immissions of Railways]
Liberko M. Hluk z Dopravy [Noise from Traffic] 2nd ed. VÚVA; Brno, Czech Republic: 1996. p. 54.
Bland J.M., Altman D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327:307–310. doi: 10.1016/S0140-6736(86)90837-8. PubMed DOI
Grubliauskas R., Venckus Z. Simulation of the noise of domestic appliances using the CadnaA programme. In: Cygas D., Tollazzi T., editors. Proceedings of the 9th International Conference Environmental Engineering (9th ICEE)—Selected Papers; Vilnius, Lithuania. 22–23 May 2014; Vilnius, Lithuania: Vilnius Gediminas Technical Univ Press; 2014.
Datakustik, GmbH Brief Instruction for the Program CadnaA—Software for Noise Abatement. [(accessed on 3 May 2019)]; Available online: www.datakustik.de.
Vyhláška č. 549/2007 Z. z. Vyhláška Ministerstva Zdravotníctva Slovenskej Republiky, Ktorou sa Ustanovujú Podrobnosti o Prípustných Hodnotách Hluku, Infrazvuku a Vibrácií a o Požiadavkách na Objektivizáciu Hluku, Infrazvuku a Vibrácií v Životnom Prostredí; Ministry of Health of the Slovak republic, Bratislava. [(accessed on 20 May 2020)];2007 Available online: https://www.health.gov.sk/?vyhlasky.
Gergeľ T. Master´s Thesis. TUZVO, Zvolen, Slovakia: 2012. Comparison of Predicted and Measured Results of Railway Noise in the Common Section of Track Banská Bystrica—Červená Skala and Banská Bystrica—Vrútky.
Prascevic M., Cvetkovic D., Mihajlov D., Petrovic Z., Radicevic B. Verification of NAISS Model for Road Traffic Noise Prediction in Urban Areas. Elektron. IR Elektrotechnika. 2013;19:91–94. doi: 10.5755/j01.eee.19.6.1294. DOI
Lui W.K., Li K.M., Ng P.L., Frommer G.H. A comparative study of different numericalmodels for predicting train noise in high-rise cities. Appl. Acoust. 2006;67:432–449. doi: 10.1016/j.apacoust.2005.08.005. DOI
Nassiri P., Abbaspour M., Mahmoodi M., Givargis S. A rail noise prediction model for the Tehran–Karaj commuter train. Appl. Acoust. 2007;68:326–333. doi: 10.1016/j.apacoust.2006.02.003. DOI
Hanson C.E., Towers D.A. Transit Noise and Vibration Impact Assessment. U.S. Department of Transportation Federal Transit Administration; Washington, DC, USA: 2006. p. 274.
Pronello C. The measurement of train noise: A case study in northern Italy. Transp. Res. Part D Transp. Environ. 2003;8:113–128. doi: 10.1016/S1361-9209(02)00036-6. DOI
Li F., Wu M.C., Lai C., Chen S.C., Xu Y., Du C.Y., Cai M., Liu J.K. A maximum noise-level prediction method for high-speed railways in China: A case study using the Baiyun campus of Guangdong polytechnic normal university. Appl. Acoust. 2019;150:124–131. doi: 10.1016/j.apacoust.2019.01.032. DOI
Iglesias E.L., Thompson D.J., Smith M.G. Component-based model to predict aerodynamic noise from high-speed train pantographs. J. Sound Vib. 2017;394:280–305. doi: 10.1016/j.jsv.2017.01.028. DOI
Engel M.S., Zannin P.H.T. Noise assessment of the area of a redesigned urban expressway based on noise measurements, noise maps and noise perception interviews. Noise Control Eng. J. 2017;65:590–610. doi: 10.3397/1/376572. DOI
Kucharčíková A., Miciak M. Human Capital Management in Transport Enterprises with the Acceptance of Sustainable Development in the Slovak Republic. Sustainability. 2018;10:2530. doi: 10.3390/su10072530. DOI
Ližbetinová L., Hitka M., Kleymenov M. Motivational Preferences of Employees in Requirements of Czech and Russian Transport and Logistics Enterprises. Naše More. 2018;65:254–258.
Kampf R., Lorincová S., Hitka M., Stopka O. Generational Differences in the Perception of Corporate Culture in European Transport Enterprises. Sustainability. 2017;9:1561. doi: 10.3390/su9091561. DOI
Mračková E., Krišťák L., Kučerka M., Gaff M., Gajtanska M. Creation of wood dust during wood processing: Size analysis, dust separation, and occupational health. Bioresources. 2016;11:209–222. doi: 10.15376/biores.11.1.209-222. DOI