• This record comes from PubMed

A Standards Organization for Open and FAIR Neuroscience: the International Neuroinformatics Coordinating Facility

. 2022 Jan ; 20 (1) : 25-36. [epub] 20210127

Language English Country United States Media print-electronic

Document type Journal Article, Review, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural

Grant support
P41 EB019936 NIBIB NIH HHS - United States
R01 MH083320 NIMH NIH HHS - United States
R24 MH117295 NIMH NIH HHS - United States
RF1 MH120021 NIMH NIH HHS - United States
R01 MH096906 NIMH NIH HHS - United States

Links

PubMed 33506383
PubMed Central PMC9036053
DOI 10.1007/s12021-020-09509-0
PII: 10.1007/s12021-020-09509-0
Knihovny.cz E-resources

There is great need for coordination around standards and best practices in neuroscience to support efforts to make neuroscience a data-centric discipline. Major brain initiatives launched around the world are poised to generate huge stores of neuroscience data. At the same time, neuroscience, like many domains in biomedicine, is confronting the issues of transparency, rigor, and reproducibility. Widely used, validated standards and best practices are key to addressing the challenges in both big and small data science, as they are essential for integrating diverse data and for developing a robust, effective, and sustainable infrastructure to support open and reproducible neuroscience. However, developing community standards and gaining their adoption is difficult. The current landscape is characterized both by a lack of robust, validated standards and a plethora of overlapping, underdeveloped, untested and underutilized standards and best practices. The International Neuroinformatics Coordinating Facility (INCF), an independent organization dedicated to promoting data sharing through the coordination of infrastructure and standards, has recently implemented a formal procedure for evaluating and endorsing community standards and best practices in support of the FAIR principles. By formally serving as a standards organization dedicated to open and FAIR neuroscience, INCF helps evaluate, promulgate, and coordinate standards and best practices across neuroscience. Here, we provide an overview of the process and discuss how neuroscience can benefit from having a dedicated standards body.

Centre for Intelligent Signal and Imaging Research Institute of Health and Analytics Universiti Teknologi PETRONAS Bandar Seri Iskandar Malaysia

Centre for Intelligent Signal and Imaging Research Institute of Health and Analytics Universiti Teknologi PETRONAS Perak Malaysia

Computational Neuroscience and Neuroimaging Laboratory School of Bio Medical Engineering Indian Institute of Technology Varanasi UP India

Department of Biology 2 Ludwig Maximilians Universität München Martinsried Planegg Germany

Department of Computer Science and Engineering Faculty of Applied Sciences University of West Bohemia Pilsen Czech Republic

Department of Neuroscience School of Medicine University of California San Diego La Jolla CA USA

Department of Otolaryngology Head and Neck Surgery Harvard Medical School Boston Boston MA USA

Department of Psychiatry University of Massachusetts Medical School Worchester MA USA

Donders Institute for Brain Cognition and Behaviour Radboud University Nijmegen Nijmegen Netherlands

INCF Secretariat Karolinska Institutet Stockholm Sweden

Institute of Basic Medical Sciences University of Oslo Oslo Norway

Institute of Biomedical Technologies National Research Council Milan Italy

KTH Royal Institute of Technology School of Electrical Engineering and Computer Science Stockholm Sweden

Laboratory of Neuroinformatics Nencki Institute of Experimental Biology of Polish Academy of Sciences Warsaw Poland

McGill Centre for Integrative Neuroscience McGill University Montreal QC Canada

McGovern Institute for Brain Research Massachusetts Institute of Technology Cambridge MA USA

Monash Biomedical Imaging Monash University Clayton VIC Australia

Monash eResearch Centre Monash University Melbourne VIC Australia

Montreal Neurological Institute Faculty of Medicine and Health Sciences McGill University Montreal Canada

Nash Family Center for Advanced Circuit Therapeutics Icahn School of Medicine New York NY USA

Rotman Research Institute Baycrest Centre Department of Medical Biophysics University of Toronto Ontario ON Canada

Serendipitea World Hasselby Sweden

Erratum In

PubMed

See more in PubMed

Bug WJ, Ascoli GA, Grethe JS, Gupta A, Fennema-Notestine C, Laird AR, Larson SD, et al. The NIFSTD and BIRNLex vocabularies: Building comprehensive ontologies for neuroscience. Neuroinformatics. 2008;6(3):175–194. doi: 10.1007/s12021-008-9032-z. PubMed DOI PMC

Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, Munafò MR. Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience. 2013;14(5):365–376. doi: 10.1038/nrn3475. PubMed DOI

Cannon RC, Gleeson P, Crook S, Ganapathy G, Marin B, Piasini E, Angus Silver R. LEMS: A language for expressing complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2. Frontiers in Neuroinformatics. 2014;8(September):79. PubMed PMC

Cox RW, Ashburner J, Breman H, Fissell K, Haselgrove C, Holmes CJ, Lancaster JL, et al. A (sort of) new image data format standard: Nifti-1: We 150. NeuroImage. 2004;e1440:22.

Ercole A, Brinck V, George P, Hicks R, Huijben J, Jarrett M, Vassar M, Wilson L, the DAQCORD Collaborators Guidelines for data acquisition, quality and Curation for observational research designs (DAQCORD) Journal of Clinical and Translational Science. 2020;4(4):354–359. doi: 10.1017/cts.2020.24. PubMed DOI PMC

Ferguson AR, Irvine K-A, Gensel JC, Nielson JL, Lin A, Ly J, Segal MR, Ratan RR, Bresnahan JC, Beattie MS. Derivation of multivariate Syndromic outcome metrics for consistent testing across multiple models of cervical spinal cord injury in rats. PLoS One. 2013;8(3):e59712. doi: 10.1371/journal.pone.0059712. PubMed DOI PMC

Ferguson AR, Nielson JL, Cragin MH, Bandrowski AE, Martone ME. Big data from small data: Data-sharing in the ‘long tail’ of neuroscience. Nature Neuroscience. 2014;17(11):1442–1447. doi: 10.1038/nn.3838. PubMed DOI PMC

Gil Press. (2016). Cleaning big data: Most time-consuming, least enjoyable data science task, survey says. Forbes Magazine, March 23, 2016. https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/.

Gleeson P, Davison A. Relationship between NeuroML and PyNN. F1000 Research. 2020;621(document):9.

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Cameron Craddock, R., Das, S., Duff, E. P., Flandin, G., et al. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data, 3, 160044(June). PubMed PMC

Grewe J, Wachtler T, Benda J. A bottom-up approach to data annotation in neurophysiology. Frontiers in Neuroinformatics. 2011;5(January):16. PubMed PMC

Hawrylycz M, Baldock RA, Burger A, Hashikawa T, Johnson GA, Martone ME, Ng L, et al. Digital Atlasing and standardization in the mouse brain. PLoS Comput Biol. 2011;7(2):e1001065. doi: 10.1371/journal.pcbi.1001065. PubMed DOI PMC

Johnson GA, Badea A, Brandenburg J, Cofer G, Fubara B, Liu S, Nissanov J. Waxholm space: An image-based reference for coordinating mouse brain research. NeuroImage. 2010;53(2):365–372. doi: 10.1016/j.neuroimage.2010.06.067. PubMed DOI PMC

Lefebvre A, Beggiato A, Bourgeron T, Toro R. Neuroanatomical diversity of Corpus callosum and brain volume in autism: Meta-analysis, analysis of the autism brain imaging data exchange project, and simulation. Biological Psychiatry. 2015;78(2):126–134. doi: 10.1016/j.biopsych.2015.02.010. PubMed DOI

Maas AIR, Menon DK, David Adelson P, Andelic N, Bell MJ, Belli A, Bragge P, et al. Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16(12):987–1048. doi: 10.1016/S1474-4422(17)30371-X. PubMed DOI

Martone, M., Gerkin, R., Moucek, R., et al. (2020a). NIX- Neuroscience Information Exchange Format [version 1; not peer reviewed]. F1000Research 2020, 9:358 (document).

Martone, M., Gerkin, R., Moucek, R., et al. (2020b). Call for community review of Neurodata Without Borders: Neurophysiology (NWB:N) 2.0--a data standard for neurophysiology [version 1; not peer reviewed].” F1000Research 8:1731 (document). 10.7490/f1000research.1117538.1.

Martone, M., Das, S., Goscinski, W., et al. (2019a). Call for community review of NeuroML — A Model Description Language for Computational Neuroscience [version 1; not peer reviewed]. F1000Research, 8:75 (document). 10.7490/f1000research.1116398.1.

Martone, M., Das, S., Goscinski, W., et al. (2019b). Call for community review of PyNN — A simulator-independent language for building neuronal network models [version 1; not peer reviewed]. F1000Research 8:74 (document). 10.7490/f1000research.1116399.1.

Martone, M., Goscinski, W., Das, S., Yamaguchi, Y., Ho, E.T.W., Leergaard, T., Hellgren-Kotaleski, J., Wachtler, T., Kennedy, D., & Abrams, M., (2018). Call for Community Review of the brain imaging data structure – a standard for organizing and describing MRI Data Sets. F1000Research 7 (August). 10.7490/f1000research.1115998.1.

Mons, B., Neylon, C., Velterop, J., Dumontier, M., da Silva Santos, L. O. B., & Wilkinson, M. D. (2017). Cloudy, increasingly FAIR; revisiting the FAIR data guiding principles for the European Open Science cloud. Information Services & Use, 37(1), 49–56.

Nichols, T. E., Das, S., Eickhoff, S. B., Evans, A. C., Glatard, T., Hanke, M., Kriegeskorte, N., Milham, M. P., Poldrack, R. A., Poline, J.-B., Proal, E., Thirion, B., van Essen, D. C., White, T., & Yeo, B. T. T. (2017). Best practices in data analysis and sharing in neuroimaging using MRI. Nature Neuroscience, 20(3), 299–303. PubMed PMC

Palsson B, Zengler K. The challenges of integrating multi-omic data sets. Nature Chemical Biology. 2010;6:787–789. doi: 10.1038/nchembio.462. PubMed DOI

Papp EA, Leergaard TB, Evan C, Allan Johnson G, Bjaalie JG. Waxholm space atlas of the Sprague Dawley rat brain. NeuroImage. 2014;97(August):374–386. doi: 10.1016/j.neuroimage.2014.04.001. PubMed DOI PMC

Raikov, I., Kumar, S. S., Torben-Nielsen, B., & De Schutter, E. (2014). A NineML-based domain-specific language for computational exploration of connectivity in the cerebellar granular layer. BMC Neurosci, 15(1), P176.

Rotella, P., (2012). Is data the new oil? Forbes. April 2. https://ana.blogs.com/maestros/2006/11/data_is_the_new.html.

Sheehan J, Hirschfeld S, Foster E, Ghitza U, Goetz K, Karpinski J, Lang L, Moser RP, Odenkirchen J, Reeves D, Rubinstein Y, Werner E, Huerta M. Improving the value of clinical research through the use of common data elements. Clinical Trials. 2016;13(6):671–676. doi: 10.1177/1740774516653238. PubMed DOI PMC

Sochat V, Nichols BN. The Neuroimaging Data Model (NIDM) API. GigaScience. 2016;5(1):23–24. PubMed

Standards and Best Practices Committee . International neuroinformatics coordinating facility review criteria for endorsement of standards and best practices. 2019.

Standards and Best Practices Committee . International neuroinformatics coordinating facility vetting and endorsement process for standards and best practices. 2019.

Wikipedia Contributors. (2018a). “Best Practice.” Wikipedia, The Free Encyclopedia. November 1, 2018. https://en.wikipedia.org/w/index.php?title=Best_practice&oldid=866773529.

Wikipedia Contributors (2018b). Standards organization. Wikipedia, The Free Encyclopedia. November 14, 2018. https://en.wikipedia.org/w/index.php?title=Standards_organization&oldid=868762976.

Wilkinson, M. D., Michel, D., Aalbersberg, I. J. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., et al. (2016). The FAIR guiding principles for scientific data management and stewardship. Scientific Data 3 (March), 160018. PubMed PMC

Newest 20 citations...

See more in
Medvik | PubMed

Workflow for health-related and brain data lifecycle

. 2022 ; 4 () : 1025086. [epub] 20221130

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...