Joint Acquisition Estimator of Modern GNSS Tiered Signals Using Block Pre-Correlation Processing of Secondary Code
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TE01020186
Technologická Agentura České Republiky
SGS20/129/OHK3/2T/13
České Vysoké Učení Technické v Praze
PubMed
32456218
PubMed Central
PMC7285316
DOI
10.3390/s20102965
PII: s20102965
Knihovny.cz E-zdroje
- Klíčová slova
- GNSS signal acquisition, block signal processing, parallel code search algorithm, pre-correlation coherent accumulation, secondary code, single block zero-padding,
- Publikační typ
- časopisecké články MeSH
Objective is a joint primary and secondary code (SC) acquisition estimator of tiered Global Navigation Satellite Systems (GNSS) signals. The estimator is based on the Parallel Code Search algorithm (PCS) combined with the Single-Block-Zero-Padding (SBZP) and the Pre-correlation Coherent Accumulation (PCA). The PCA realizes the extension of the coherent integration time in front of the PCS. However, the PCS with the SBZP and the PCA is affected by a navigation/SC bit transition problem due to its cyclic property of a computed Cross-Ambiguity Function (CAF). This CAF is degraded by diverse parasitic fragments and is not directly applicable for an acquisition. A novel analysis of this mechanism and its impact is presented. Then, the proposed modified SBZP (mSBZP) modified PCA (mPCA) PCS estimator is constructed, which does not degrade the CAF. The mSBZP allows the use of the PCS algorithm in the presence of SC bit transition, while the mPCA decreases the number of PCS algorithm calculations by a factor of SC chip count due to SC pre-correlation processing. The algorithm has the same detection performance in comparison with conventional Double-Block-Zero-Padding (DBZP). However, it allows using the PCS of half-length with longer latency up to a factor of SC chip count.
Zobrazit více v PubMed
Parkinson B., Enge W., Axelrad P., Spilker J.J., Jr. Global Positioning System: Theory and Applications, Volume II. American Institute of Aeronautics and Astronautics; Washington, DC, USA: 1996.
Ziedan N.I. GNSS Receivers for Weak Signals. Artech House; London, UK: 2006.
Kaplan E., Hegarty C. Understanding GPS: Principles and Applications. Artech House; London, UK: 2005. p. 574.
Zou D., Deng Z., Huang J., Liu H., Yang L. A study of Neuman Hoffman codes for GNSS application; Proceedings of the Wireless Communications, Networking and Mobile Computing, WiCom’09; Beijing, China. 24–26 September 2009; New York, NY, USA: IEEE; 2009. pp. 1–4.
Mongrédien C., Lachapelle G., Cannon M.E. Testing GPS L5 acquisition and tracking algorithms using a hardware simulator; Proceedings of the ION GNSS; Fort Worth, TX, USA. 26–29 September 2006; pp. 2901–2913.
Tawk Y., Jovanovic A., Leclère J., Botteron C., Farine P.A. A New FFT-Based Algorithm for Secondary Code Acquisition for Galileo Signals; Proceedings of the 2011 IEEE Vehicular Technology Conference (VTC Fall); San Francisco, CA, USA. 5–8 September 2011; pp. 1–6.
Wu J.F., Hu Y.H. The study on GPS signal acquisition algorithm in time domain; Proceedings of the 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing; Dalian, China. 12–17 October 2008; New York, NY, USA: IEEE; 2008.
Wang Z., Zhang H., Wang M., Liu X., Zhuang Y., Cai H., Yang J., Shi L. Multi-Peak Double-Dwell GPS Weak Signal Acquisition Method and VLSI Implementation for Energy-Constrained Applications. Electronics. 2018;7:31. doi: 10.3390/electronics7030031. DOI
Van Nee D., Coenen A. New fast GPS code-acquisition technique using FFT. Electron. Lett. 1991;27:158. doi: 10.1049/el:19910102. DOI
Akopian D. Fast FFT based GPS satellite acquisition methods. IEE Proc. Radar Sonar Navig. 2005;152:277. doi: 10.1049/ip-rsn:20045096. DOI
Deng Z., Jia B., Tang S., Fu X., Mo J. Fine Frequency Acquisition Scheme in Weak Signal Environment for a Communication and Navigation Fusion System. Electronics. 2019;8:829. doi: 10.3390/electronics8080829. DOI
Starzyk J.A., Zhu Z. Averaging correlation for C/A code acquisition and tracking in frequency domain; Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems, MWSCAS 2001 (Cat. No. 01CH37257); Dayton, OH, USA. 14–17 October 2001; New York, NY, USA: IEEE; 2001.
Sahmoudi M., Moeness G.A., Landry R. Acquisition of weak GNSS signals using a new block averaging pre-processing; Proceedings of the IEEE/ION Position, Location and Navigation Symposium; Portland, OR, USA. 20–23 April 2008; New York, NY, USA: IEEE; 2008.
Mollaiyan K., Santerre R., Landry R.J. Acquisition of Weak Signals in Multi-Constellation Frequency Domain Receivers. Positioning. 2013;4:144–152. doi: 10.4236/pos.2013.42014. DOI
Yang C., Han S. Block-Accumulating Coherent Integration Over Extended Interval (BACIX) for Weak GPS Signal Acquisition; Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006); Fort Worth, TX, USA. 26–29 September 2006; pp. 2427–2440.
Psiaki M.L. Block acquisition of weak GPS signals in a software receiver; Proceedings of the ION GPS; Salt Lake City, UT, USA. 11–14 September 2001.
Svatoň J., Vejražka F. Pre-and post-correlation method for acquisition of new GNSS signals with secondary code; Proceedings of the Position, Location and Navigation Symposium (PLANS); Monterey, CA, USA. 23–26 April 2018; New York, NY, USA: IEEE/ION, IEEE; 2018.
LeClere J., Botteron C., Farine P.-A. High sensitivity acquisition of GNSS signals with secondary code on FPGAs. IEEE Aerosp. Electron. Syst. Mag. 2017;32:46–63. doi: 10.1109/MAES.2017.160176. DOI
Presti L.L., Zhu X., Fantino M., Mulassano P. GNSS Signal Acquisition in the Presence of Sign Transition. IEEE J. Sel. Top. Signal Process. 2009;3:557–570. doi: 10.1109/JSTSP.2009.2024592. DOI
Yang C. FFT acquisition of periodic, aperiodic, puncture, and overlaid code sequences in GPS; Proceedings of the ION GPS; Salt Lake City, UT, USA. 11–14 September 2001;
Leclère J., Botteron C., Farine P.A. Modified parallel code-phase search for acquisition in presence of sign transition; Proceedings of the International Conference on Localization and GNSS (ICL-GNSS); Turin, Italy. 25–27 June 2013; pp. 1–6.
Sun K. Composite GNSS signal acquisition in presence of data sign transition; Proceedings of the International Conference on Indoor Positioning and Indoor Navigation; Zurich, Switzerland. 15–17 September 2010; pp. 1–9.
Leclère J., Botteron C., Farine P.-A. Acquisition of modern GNSS signals using a modified parallel code-phase search architecture. Signal Process. 2014;95:177–191. doi: 10.1016/j.sigpro.2013.08.004. DOI
Svatoň J., Vejražka F. Joint Estimator for Acquisition of GNSS Primary and Secondary Code with Pre-correlation Coherent Accumulation; Proceedings of the 16th IAIN World Congress 2018, The 16th IAIN World Congress 2018; Chiba, Japan. 28 November–1 December 2018.
Jung Y., Cho J., Lee S., Jung Y. Area-Efficient Pipelined FFT Processor for Zero-Padded Signals. Electronics. 2019;8:1397. doi: 10.3390/electronics8121397. DOI
Molino A., Girau G., Nicola M., Fantino M., Pini M. Evaluation of a FFT-Based Acquisition in Real Time Hardware and Software GNSS Receivers; Proceedings of the IEEE 10th International Symposium on Spread Spectrum Techniques and Applications; Bologna, Italy. 25–28 August 2008; pp. 37–41.