Transition Metal Dichalcogenides for the Application of Pollution Reduction: A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.2.69/0.0/0.0/18_070/0009469
IMPROVE II under OP VVV programme
61975098, and 51972194
National Natural Science Foundation of China
PubMed
32466377
PubMed Central
PMC7353444
DOI
10.3390/nano10061012
PII: nano10061012
Knihovny.cz E-zdroje
- Klíčová slova
- catalysis, emission control, gas cleaning, layered materials, nanocatalysis, pollution reduction, transition metal dichalcogenide (TMDCs) nanomaterials,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The material characteristics and properties of transition metal dichalcogenide (TMDCs) have gained research interest in various fields, such as electronics, catalytic, and energy storage. In particular, many researchers have been focusing on the applications of TMDCs in dealing with environmental pollution. TMDCs provide a unique opportunity to develop higher-value applications related to environmental matters. This work highlights the applications of TMDCs contributing to pollution reduction in (i) gas sensing technology, (ii) gas adsorption and removal, (iii) wastewater treatment, (iv) fuel cleaning, and (v) carbon dioxide valorization and conversion. Overall, the applications of TMDCs have successfully demonstrated the advantages of contributing to environmental conversation due to their special properties. The challenges and bottlenecks of implementing TMDCs in the actual industry are also highlighted. More efforts need to be devoted to overcoming the hurdles to maximize the potential of TMDCs implementation in the industry.
Department of Chemical Engineering Monash University Clayton Victoria 3800 Australia
State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China
Zobrazit více v PubMed
Radisavljevic B., Radenovic A., Brivio J., Giacometti V., Kis A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011 doi: 10.1038/nnano.2010.279. PubMed DOI
Yin Z., Li H., Li H., Jiang L., Shi Y., Sun Y., Lu G., Zhang Q., Chen X., Zhang H. Single-layer MoS2 phototransistors. ACS Nano. 2012 doi: 10.1021/nn2024557. PubMed DOI
Mak K.F., McGill K.L., Park J., McEuen P.L. The valley hall effect in MoS2 transistors. Science. 2014 doi: 10.1126/science.1250140. PubMed DOI
Li H., Jia X., Zhang Q., Wang X. Metallic transition-metal dichalcogenide nanocatalysts for energy conversion. Chem. 2018;4:1510–1537. doi: 10.1016/j.chempr.2018.03.012. DOI
Gao Y.-P., Wu X., Huang K.-J., Xing L.-L., Zhang Y.-Y., Liu L. Two-dimensional transition metal diseleniums for energy storage application: A review of recent developments. CrystEngComm. 2017;19:404–418. doi: 10.1039/C6CE02223E. DOI
Lu J.M., Zheliuk O., Leermakers I., Yuan N.F.Q., Zeitler U., Law K.T., Ye J.T. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science. 2015 doi: 10.1126/science.aab2277. PubMed DOI
Liu X., Zhang Y.W. Thermal properties of transition-metal dichalcogenide. Chin. Phys. B. 2018;27:034402. doi: 10.1088/1674-1056/27/3/034402. DOI
Kappera R., Voiry D., Yalcin S.E., Branch B., Gupta G., Mohite A.D., Chhowalla M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014 doi: 10.1038/nmat4080. PubMed DOI
Kolobov A.V., Tominaga J. Two-Dimensional Transition-Metal Dichalcogenides. Springer International Publishing; Cham, Switzerland: 2016.
Wang Q.H., Kalantar-Zadeh K., Kis A., Coleman J.N., Strano M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012;7:699–712. doi: 10.1038/nnano.2012.193. PubMed DOI
Santosh K.C., Longo R.C., Addou R., Wallace R.M., Cho K. Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers. Nanotechnology. 2014;25:375703. doi: 10.1088/0957-4484/25/37/375703. PubMed DOI
Feng S., Lin Z., Gan X., Lv R., Terrones M. Doping two-dimensional materials: Ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers. Nanoscale Horizons. 2017 doi: 10.1039/C6NH00192K. PubMed DOI
Ghorbani-Asl M., Borini S., Kuc A., Heine T. Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides. Phys. Rev. B Condens. Matter Mater. Phys. 2013 doi: 10.1103/PhysRevB.87.235434. DOI
Su X., Ju W., Zhang R., Guo C., Zheng J., Yong Y., Li X. Bandgap engineering of MoS2/MX2 (MX2 = WS2, MoSe2 and WSe2) heterobilayers subjected to biaxial strain and normal compressive strain. RSC Adv. 2016 doi: 10.1039/C5RA27871F. DOI
Gusakova J., Wang X., Shiau L.L., Krivosheeva A., Shaposhnikov V., Borisenko V., Gusakov V., Tay B.K. Electronic properties of bulk and monolayer TMDs: Theoretical study within DFT framework (GVJ-2e method) Phys. Status Solidi Appl. Mater. Sci. 2017 doi: 10.1002/pssa.201700218. DOI
Mak K.F., Lee C., Hone J., Shan J., Heinz T.F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010 doi: 10.1103/PhysRevLett.105.136805. PubMed DOI
Acerce M., Voiry D., Chhowalla M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015 doi: 10.1038/nnano.2015.40. PubMed DOI
Li H., Tan Y., Liu P., Guo C., Luo M., Han J., Lin T., Huang F., Chen M. Atomic-sized pores enhanced electrocatalysis of TaS2 nanosheets for hydrogen evolution. Adv. Mater. 2016 doi: 10.1002/adma.201602502. PubMed DOI
Stephenson T., Li Z., Olsen B., Mitlin D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014 doi: 10.1039/C3EE42591F. DOI
Chang Y.H., Lin C.T., Chen T.Y., Hsu C.L., Lee Y.H., Zhang W., Wei K.H., Li L.J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 2013 doi: 10.1002/adma.201202920. PubMed DOI
Kannan P.K., Late D.J., Morgan H., Rout C.S. Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale. 2015 doi: 10.1039/C5NR03633J. PubMed DOI
Sun Y., Gao S., Lei F., Xie Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 2015;44:623–636. doi: 10.1039/C4CS00236A. PubMed DOI
Sang Y., Zhao Z., Zhao M., Hao P., Leng Y., Liu H. From UV to near-infrared, WS2 nanosheet: A novel photocatalyst for full solar light spectrum photodegradation. Adv. Mater. 2015 doi: 10.1002/adma.201403264. PubMed DOI
Atkin P., Daeneke T., Wang Y., Carey B.J., Berean K.J., Clark R.M., Ou J.Z., Trinchi A., Cole I.S., Kalantar-Zadeh K. 2D WS2/carbon dot hybrids with enhanced photocatalytic activity. J. Mater. Chem. A. 2016 doi: 10.1039/C6TA06415A. DOI
Di J., Xia J., Ge Y., Xu L., Xu H., Chen J., He M., Li H. Facile fabrication and enhanced visible light photocatalytic activity of few-layer MoS2 coupled BiOBr microspheres. Dalt. Trans. 2014 doi: 10.1039/C4DT01652A. PubMed DOI
Jaramillo T.F., Jørgensen K.P., Bonde J., Nielsen J.H., Horch S., Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 2007 doi: 10.1126/science.1141483. PubMed DOI
Mohanty B., Ghorbani-Asl M., Kretschmer S., Ghosh A., Guha P., Panda S.K., Jena B., Krasheninnikov A.V., Jena B.K. MoS2 quantum dots as efficient catalyst materials for the oxygen evolution reaction. ACS Catal. 2018 doi: 10.1021/acscatal.7b03180. DOI
Ye G., Gong Y., Lin J., Li B., He Y., Pantelides S.T., Zhou W., Vajtai R., Ajayan P.M. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 2016 doi: 10.1021/acs.nanolett.5b04331. PubMed DOI
Chan K., Tsai C., Hansen H.A., Nørskov J.K. Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. ChemCatChem. 2014 doi: 10.1002/cctc.201402128. DOI
Mohajerin T.J., Helz G.R., Johannesson K.H. Tungsten-molybdenum fractionation in estuarine environments. Geochim. Cosmochim. Acta. 2016 doi: 10.1016/j.gca.2015.12.030. DOI
Ren Z., Zhou T., Hollings P., White N.C., Wang F., Yuan F. Trace element geochemistry of molybdenite from the Shapinggou super-large porphyry Mo deposit, China. Ore Geol. Rev. 2018 doi: 10.1016/j.oregeorev.2018.02.011. DOI
Golden J., McMillan M., Downs R.T., Hystad G., Goldstein I., Stein H.J., Zimmerman A., Sverjensky D.A., Armstrong J.T., Hazen R.M. Rhenium variations in molybdenite (MoS2): Evidence for progressive subsurface oxidation. Earth Planet. Sci. Lett. 2013 doi: 10.1016/j.epsl.2013.01.034. DOI
Pumera M., Sofer Z., Ambrosi A. Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A. 2014 doi: 10.1039/C4TA00652F. DOI
Eftekhari A. Tungsten dichalcogenides (WS2, WSe2, and WTe2): Materials chemistry and applications. J. Mater. Chem. A. 2017;5:18299–18325. doi: 10.1039/C7TA04268J. DOI
Zhan Y., Liu Z., Najmaei S., Ajayan P.M., Lou J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small. 2012 doi: 10.1002/smll.201102654. PubMed DOI
Ji Q., Li C., Wang J., Niu J., Gong Y., Zhang Z., Fang Q., Zhang Y., Shi J., Liao L., et al. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano Lett. 2017 doi: 10.1021/acs.nanolett.7b01914. PubMed DOI
Wilson J.A., Yoffe A.D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969 doi: 10.1080/00018736900101307. DOI
Ubaldini A., Jacimovic J., Ubrig N., Giannini E. Chloride-driven chemical vapor transport method for crystal growth of transition metal dichalcogenides. Cryst. Growth Des. 2013 doi: 10.1021/cg400953e. DOI
Zhang X., Lou F., Li C., Zhang X., Jia N., Yu T., He J., Zhang B., Xia H., Wang S., et al. Flux method growth of bulk MoS2 single crystals and their application as a saturable absorber. CrystEngComm. 2015;17:4026–4032. doi: 10.1039/C5CE00484E. DOI
Ye L., Xu H., Zhang D., Chen S. Synthesis of bilayer MoS2 nanosheets by a facile hydrothermal method and their methyl orange adsorption capacity. Mater. Res. Bull. 2014 doi: 10.1016/j.materresbull.2014.04.025. DOI
Kalosi A., Demydenko M., Bodik M., Hagara J., Kotlar M., Kostiuk D., Halahovets Y., Vegso K., Marin Roldan A., Maurya G.S., et al. Tailored langmuir–schaefer deposition of few-layer MoS2 nanosheet films for electronic applications. Langmuir. 2019;35:9802–9808. doi: 10.1021/acs.langmuir.9b01000. PubMed DOI
Huang X., Zeng Z., Zhang H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013;42:1934–1946. doi: 10.1039/c2cs35387c. PubMed DOI
Li H., Wu J., Yin Z., Zhang H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014;47:1067–1075. doi: 10.1021/ar4002312. PubMed DOI
Cunningham G., Lotya M., Cucinotta C.S., Sanvito S., Bergin S.D., Menzel R., Shaffer M.S.P., Coleman J.N. Solvent exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano. 2012 doi: 10.1021/nn300503e. PubMed DOI
Bissett M.A., Worrall S.D., Kinloch I.A., Dryfe R.A.W. Comparison of two-dimensional transition metal dichalcogenides for electrochemical supercapacitors. Electrochim. Acta. 2016 doi: 10.1016/j.electacta.2016.03.190. DOI
Yue Q., Shao Z., Chang S., Li J. Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett. 2013 doi: 10.1186/1556-276X-8-425. PubMed DOI PMC
Kumar R., Goel N., Hojamberdiev M., Kumar M. Transition metal dichalcogenides-based flexible gas sensors. Sensors Actuators A Phys. 2020;303:111875. doi: 10.1016/j.sna.2020.111875. DOI
Elsevier Welcome to Scopus Preview. [(accessed on 4 May 2020)]; Available online: https://www.scopus.com/home.uri.
Blumenthal I. Carbon monoxide poisoning. J. R. Soc. Med. 2001;94:270–272. doi: 10.1177/014107680109400604. PubMed DOI PMC
Li Z., He J., Wang H., Wang B., Ma X. Enhanced methanation stability of nano-sized MoS2 catalysts by adding Al2O3. Front. Chem. Sci. Eng. 2015 doi: 10.1007/s11705-014-1446-6. DOI
Almeida K., Peña P., Rawal T.B., Coley W.C., Akhavi A.A., Wurch M., Yamaguchi K., Le D., Rahman T.S., Bartels L. A single layer of MoS2 activates gold for room temperature CO oxidation on an inert silica substrate. J. Phys. Chem. C. 2019 doi: 10.1021/acs.jpcc.8b12325. DOI
Lolla S., Luo X. Tuning the catalytic properties of monolayer MoS2 through doping and sulfur vacancies. Appl. Surf. Sci. 2020 doi: 10.1016/j.apsusc.2019.144892. DOI
Ma D., Tang Y., Yang G., Zeng J., He C., Lu Z. CO catalytic oxidation on iron-embedded monolayer MoS2. Appl. Surf. Sci. 2015 doi: 10.1016/j.apsusc.2014.12.024. DOI
Lu X., Guo L., Wang P., Cui M., Kanghong D., Peng W. Theoretical investigation of the adsorption of gas molecules on WSe2 monolayers decorated with Pt, Au nanoclusters. Appl. Surf. Sci. 2020 doi: 10.1016/j.apsusc.2020.145860. DOI
Cui H., Zhang G., Zhang X., Tang J. Rh-doped MoSe2 as a toxic gas scavenger: A first-principles study. Nanoscale Adv. 2019 doi: 10.1039/C8NA00233A. PubMed DOI PMC
Chen W., Zijlstra B., Filot I.A.W., Pestman R., Hensen E.J.M. Mechanism of carbon monoxide dissociation on a cobalt Fischer–Tropsch catalyst. ChemCatChem. 2018 doi: 10.1002/cctc.201701203. PubMed DOI PMC
American Chemical Society (ACS) It’s Water Vapor, Not the CO2. [(accessed on 2 May 2020)]; Available online: https://www.acs.org/content/acs/en/climatescience/climatesciencenarratives/its-water-vapor-not-the-co2.html.
Kong D., Wang H., Cha J.J., Pasta M., Koski K.J., Yao J., Cui Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013 doi: 10.1021/nl400258t. PubMed DOI
Wang H., Kong D., Johanes P., Cha J.J., Zheng G., Yan K., Liu N., Cui Y. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 2013 doi: 10.1021/nl401944f. PubMed DOI
Hinnemann B., Moses P.G., Bonde J., Jørgensen K.P., Nielsen J.H., Horch S., Chorkendorff I., Nørskov J.K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005 doi: 10.1021/ja0504690. PubMed DOI
Yu K., Groom D.J., Wang X., Yang Z., Gummalla M., Ball S.C., Myers D.J., Ferreira P.J. Degradation mechanisms of platinum nanoparticle catalysts in proton exchange membrane fuel cells: The role of particle size. Chem. Mater. 2014 doi: 10.1021/cm501867c. DOI
Zhao Y., Hwang J., Tang M.T., Chun H., Wang X., Zhao H., Chan K., Han B., Gao P., Li H. Ultrastable molybdenum disulfide-based electrocatalyst for hydrogen evolution in acidic media. J. Power Sources. 2020 doi: 10.1016/j.jpowsour.2020.227998. DOI
Rong H., Zhang H., Xiao S., Li C., Hu C. Optimizing energy consumption for data centers. Renew. Sustain. Energy Rev. 2016;58:674–691. doi: 10.1016/j.rser.2015.12.283. DOI
Li B.B., Qiao S.Z., Zheng X.R., Yang X.J., Cui Z.D., Zhu S.L., Li Z.Y., Liang Y.Q. Pd coated MoS2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation. J. Power Sources. 2015 doi: 10.1016/j.jpowsour.2015.03.021. DOI
Jian J., Li Y., Bi H., Wang X., Wu X., Qin W. Aluminum decoration on MoS2 ultrathin nanosheets for highly efficient hydrogen evolution. ACS Sustain. Chem. Eng. 2020 doi: 10.1021/acssuschemeng.0c00185. DOI
Bar-Ziv R., Ranjan P., Lavie A., Jain A., Garai S., Bar Hen A., Popovitz-Biro R., Tenne R., Arenal R., Ramasubramaniam A., et al. Au-MoS2 hybrids as hydrogen evolution electrocatalysts. ACS Appl. Energy Mater. 2019 doi: 10.1021/acsaem.9b01147. DOI
Chia X., Sutrisnoh N.A.A., Pumera M. Tunable Pt-MoSx hybrid catalysts for hydrogen evolution. ACS Appl. Mater. Interfaces. 2018 doi: 10.1021/acsami.7b19346. PubMed DOI
Rastogi P.K., Sarkar S., Mandler D. Ionic strength induced electrodeposition of two-dimensional layered MoS2 nanosheets. Appl. Mater. Today. 2017 doi: 10.1016/j.apmt.2017.04.004. DOI
Cao J., Zhou J., Zhang Y., Liu X. A Clean and facile synthesis strategy of MoS2 nanosheets grown on multi-wall CNTs for enhanced hydrogen evolution reaction performance. Sci. Rep. 2017 doi: 10.1038/s41598-017-09047-x. PubMed DOI PMC
Chua X.J., Pumera M. The effect of varying solvents for MoS2 treatment on its catalytic efficiencies for HER and ORR. Phys. Chem. Chem. Phys. 2017 doi: 10.1039/C6CP08205J. PubMed DOI
Ren J., Zong H., Sun Y., Gong S., Feng Y., Wang Z., Hu L., Yu K., Yu K. 2D organ-like molybdenum carbide (MXene) coupled with MoS2 nanoflowers enhances the catalytic activity in the hydrogen evolution reaction. CrystEngComm. 2020 doi: 10.1039/C9CE01777A. DOI
Wang Y., Jian C., He X., Liu W. Self-supported molybdenum selenide nanosheets grown on urchin-like cobalt selenide nanowires array for efficient hydrogen evolution. Int. J. Hydrogen Energy. 2020 doi: 10.1016/j.ijhydene.2020.03.017. DOI
Seok J., Lee J.H., Cho S., Ji B., Kim H.W., Kwon M., Kim D., Kim Y.M., Oh S.H., Kim S.W., et al. Active hydrogen evolution through lattice distortion in metallic MoTe2. 2D Mater. 2017 doi: 10.1088/2053-1583/aa659d. DOI
Pan Y., Zheng F., Wang X., Qin H., Liu E., Sha J., Zhao N., Zhang P., Ma L. Enhanced electrochemical hydrogen evolution performance of WS2 nanosheets by Te doping. J. Catal. 2020 doi: 10.1016/j.jcat.2019.12.031. DOI
Kadam S.R., Enyashin A.N., Houben L., Bar-Ziv R., Bar-Sadan M. Ni-WSe2 nanostructures as efficient catalysts for electrochemical hydrogen evolution reaction (HER) in acidic and alkaline media. J. Mater. Chem. A. 2020 doi: 10.1039/C9TA10990K. DOI
Rahman F.A., Aziz M.M.A., Saidur R., Bakar W.A.W.A., Hainin M., Putrajaya R., Hassan N.A. Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renew. Sustain. Energy Rev. 2017;71:112–126. doi: 10.1016/j.rser.2017.01.011. DOI
Shen Y., Wang H., Zhang X., Zhang Y. MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method. ACS Appl. Mater. Interfaces. 2016 doi: 10.1021/acsami.6b07153. PubMed DOI
Sun Q., Qin G., Ma Y., Wang W., Li P., Du A., Li Z. Electric field controlled CO2 capture and CO2/N2 separation on MoS2 monolayers. Nanoscale. 2017 doi: 10.1039/c6nr07001a. PubMed DOI
Aguilar N., Aparicio S. Theoretical insights into CO2 adsorption by MoS2 nanomaterials. J. Phys. Chem. C. 2019 doi: 10.1021/acs.jpcc.9b07219. DOI
Shi G., Yu L., Ba X., Zhang X., Zhou J., Yu Y. Copper nanoparticle interspersed MoS2 nanoflowers with enhanced efficiency for CO2 electrochemical reduction to fuel. Dalt. Trans. 2017 doi: 10.1039/C6DT04381J. PubMed DOI
Kim R., Kim J., Do J.Y., Seo M.W., Kang M. Carbon dioxide photoreduction on the Bi2S3/MoS2 catalyst. Catalysts. 2019:998. doi: 10.3390/catal9120998. DOI
Hu X., Yang H., Gao M., Tian H., Li Y., Liang Z., Jian X. Insights into the photoassisted electrocatalytic reduction of CO2 over a two-dimensional MoS2 nanostructure loaded on SnO2 nanoparticles. ChemElectroChem. 2019 doi: 10.1002/celc.201900632. DOI
Yu L., Xie Y., Zhou J., Li Y., Yu Y., Ren Z. Robust and selective electrochemical reduction of CO2: The case of integrated 3D TiO2@MoS2 architectures and Ti-S bonding effects. J. Mater. Chem. A. 2018 doi: 10.1039/C7TA11376E. DOI
Ai W., Kou L., Hu X., Wang Y., Krasheninnikov A.V., Sun L., Shen X. Enhanced sensitivity of MoSe2 monolayer for gas adsorption induced by electric field. J. Phys. Condens. Matter. 2019 doi: 10.1088/1361-648X/ab29d8. PubMed DOI
Rathi K., Pal K. Ruthenium-decorated tungsten disulfide quantum dots for a CO2 gas sensor. Nanotechnology. 2020 doi: 10.1088/1361-6528/ab5cd3. PubMed DOI
Myllyvirta L. Global Air Pollution Map: Ranking the World’s Worst SO2 and NO2 Emission Hotspots. [(accessed on 2 May 2020)]; Available online: https://storage.googleapis.com/planet4-africa-stateless/2019/03/625c2655-ranking-so2-and-no2-hotspots_19-march-2019.pdf.
Aas W., Mortier A., Bowersox V., Cherian R., Faluvegi G., Fagerli H., Hand J., Klimont Z., Galy-Lacaux C., Lehmann C.M.B., et al. Global and regional trends of atmospheric sulfur. Sci. Rep. 2019 doi: 10.1038/s41598-018-37304-0. PubMed DOI PMC
Ye X., Ma S., Jiang X., Yang Z., Jiang W., Wang H. The adsorption of acidic gaseous pollutants on metal and nonmetallic surface studied by first-principles calculation: A review. Chinese Chem. Lett. 2019 doi: 10.1016/j.cclet.2019.09.043. DOI
Gui Y., Chen J., Wang W., Zhu Y., Tang C., Xu L. Adsorption mechanism of hydrogen sulfide and sulfur dioxide on Au–MoS2 monolayer. Superlattices Microstruct. 2019 doi: 10.1016/j.spmi.2019.106280. DOI
Qian H., Lu W., Wei X., Chen W., Deng J. H2S and SO2 adsorption on Pt-MoS2 adsorbent for partial discharge elimination: A DFT study. Results Phys. 2019 doi: 10.1016/j.rinp.2018.11.035. DOI
Yang Y., Ashraf M.A., Jermsittiparsert K., Jiang L., Zhang D. Enhancing the adsorption performance and sensing capability of Ti-doped MoSe2 and MoS2 monolayers by applying electric field. Appl. Surf. Sci. 2020 doi: 10.1016/j.apsusc.2020.145758. DOI
Ma S., Su L., Jin L., Su J., Jin Y. A first-principles insight into Pd-doped MoSe2 monolayer: A toxic gas scavenger. Phys. Lett. A. 2019 doi: 10.1016/j.physleta.2019.125868. DOI
Abbasi A., Sardroodi J.J. A novel strategy for SOx removal by N-doped TiO2/WSe2 nanocomposite as a highly efficient molecule sensor investigated by van der Waals corrected DFT. Comput. Theor. Chem. 2017 doi: 10.1016/j.comptc.2017.05.020. DOI
Ni J., Wang W., Quintana M., Jia F., Song S. Adsorption of small gas molecules on strained monolayer WSe2 doped with Pd, Ag, Au, and Pt: A computational investigation. Appl. Surf. Sci. 2020 doi: 10.1016/j.apsusc.2020.145911. DOI
Dan M., Xiang J., Wu F., Yu S., Cai Q., Ye L., Ye Y., Zhou Y. Rich active-edge-site MoS2 anchored on reduction sites in metal sulfide heterostructure: Toward robust visible light photocatalytic hydrogen sulphide splitting. Appl. Catal. B Environ. 2019 doi: 10.1016/j.apcatb.2019.117870. DOI
Li Y., Yu S., Doronkin D.E., Wei S., Dan M., Wu F., Ye L., Grunwaldt J.D., Zhou Y. Highly dispersed PdS preferably anchored on In2S3 of MnS/In2S3 composite for effective and stable hydrogen production from H2S. J. Catal. 2019 doi: 10.1016/j.jcat.2019.03.021. DOI
Yuan Y., Wang W., Shi Y., Song L., Ma C., Hu Y. The influence of highly dispersed Cu2O-anchored MoS2 hybrids on reducing smoke toxicity and fire hazards for rigid polyurethane foam. J. Hazard. Mater. 2020 doi: 10.1016/j.jhazmat.2019.121028. PubMed DOI
Wen M.Q., Xiong T., Zang Z.G., Wei W., Tang X.S., Dong F. Synthesis of MoS2/g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of nitric oxide (NO) Opt. Express. 2016 doi: 10.1364/OE.24.010205. PubMed DOI
Xiong T., Wen M., Dong F., Yu J., Han L., Lei B., Zhang Y., Tang X., Zang Z. Three dimensional Z-scheme (BiO)2CO3/MoS2 with enhanced visible light photocatalytic NO removal. Appl. Catal. B Environ. 2016 doi: 10.1016/j.apcatb.2016.06.032. DOI
Hu J., Chen D., Li N., Xu Q., Li H., He J., Lu J. In situ fabrication of Bi2O2CO3/MoS2 on carbon nanofibers for efficient photocatalytic removal of NO under visible-light irradiation. Appl. Catal. B Environ. 2017 doi: 10.1016/j.apcatb.2017.05.088. DOI
Zhu J., Zhang H., Tong Y., Zhao L., Zhang Y., Qiu Y., Lin X. First-principles investigations of metal (V, Nb, Ta)-doped monolayer MoS2: Structural stability, electronic properties and adsorption of gas molecules. Appl. Surf. Sci. 2017 doi: 10.1016/j.apsusc.2017.04.157. DOI
Ovcharenko R., Dedkov Y., Voloshina E. Adsorption of NO2 on WSe2: DFT and photoelectron spectroscopy studies. J. Phys. Condens. Matter. 2016 doi: 10.1088/0953-8984/28/36/364003. PubMed DOI
Ala-Mantila S., Heinonen J., Junnila S. Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis. Ecol. Econ. 2014 doi: 10.1016/j.ecolecon.2014.04.019. DOI
Denmead O.T., Chen D., Griffith D.W.T., Loh Z.M., Bai M., Naylor T. Emissions of the indirect greenhouse gases NH3 and NOx from Australian beef cattle feedlots. Aust. J. Exp. Agric. 2008;48:213. doi: 10.1071/EA07276. DOI
Tai A.P.K., Martin M.V., Heald C.L. Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Chang. 2014 doi: 10.1038/nclimate2317. DOI
Tjoelker M.G., Volin J.C., Oleksyn J., Reich P.B. Interaction of ozone pollution and light effects on photosynthesis in a forest canopy experiment. Plant. Cell Environ. 1995 doi: 10.1111/j.1365-3040.1995.tb00598.x. DOI
Hulin M., Simoni M., Viegi G., Annesi-Maesano I. Respiratory health and indoor air pollutants based on quantitative exposure assessments. Eur. Respir. J. 2012;40:1033–1045. doi: 10.1183/09031936.00159011. PubMed DOI
Ajugwo A.O. Negative effects of gas flaring: The Nigerian experience. J. Environ. Pollut. Hum. Health. 2013 doi: 10.12691/jephh-1-1-2. DOI
Collins F., Orpen D., Fay C., Foley C., Smeaton A.F., Diamond D. Web-based monitoring of year-length deployments of autonomous gas sensing platforms on landfill sites; Proceedings of the 2011 IEEE Sensors; Limerick, Ireland. 28–31 October 2011; pp. 1620–1623.
Rossi M., Brunelli D., Adami A., Lorenzelli L., Menna F., Remondino F. Gas-drone: Portable gas sensing system on UAVs for gas leakage localization; Proceedings of the 2014 IEEE Sensors; Valencia, Spain. 2–5 November 2014; pp. 1431–1434.
Li L., Fu C., Lou Z., Chen S., Han W., Jiang K., Chen D., Shen G. Flexible planar concentric circular micro-supercapacitor arrays for wearable gas sensing application. Nano Energy. 2017 doi: 10.1016/j.nanoen.2017.08.060. DOI
Suh J.H., Cho I., Kang K., Kweon S.J., Lee M., Yoo H.J., Park I. Fully integrated and portable semiconductor-type multi-gas sensing module for IoT applications. Sensors Actuators B Chem. 2018 doi: 10.1016/j.snb.2018.03.099. DOI
Cho B., Hahm M.G., Choi M., Yoon J., Kim A.R., Lee Y.J., Park S.G., Kwon J.D., Kim C.S., Song M., et al. Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 2015 doi: 10.1038/srep08052. PubMed DOI PMC
Liu L., Ikram M., Ma L., Zhang X., Lv H., Ullah M., Khan M., Yu H., Shi K. Edge-exposed MoS2 nanospheres assembled with SnS2 nanosheet to boost NO2 gas sensing at room temperature. J. Hazard. Mater. 2020 doi: 10.1016/j.jhazmat.2020.122325. PubMed DOI
Pham T., Li G., Bekyarova E., Itkis M.E., Mulchandani A. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano. 2019 doi: 10.1021/acsnano.8b08778. PubMed DOI
Guo S., Yang D., Zhang S., Dong Q., Li B., Tran N., Li Z., Xiong Y., Zaghloul M.E. Development of a cloud-based epidermal MoSe2 device for hazardous gas sensing. Adv. Funct. Mater. 2019 doi: 10.1002/adfm.201900138. DOI
Zhang Q., Shen Z., Cao J., Zhang R., Zhang L., Huang R.J., Zheng C., Wang L., Liu S., Xu H., et al. Variations in PM2.5, TSP, BC, and trace gases (NO2, SO2, and O3) between haze and non-haze episodes in winter over Xi’an, China. Atmos. Environ. 2015 doi: 10.1016/j.atmosenv.2015.04.033. DOI
Pijolat C., Pupier C., Sauvan M., Tournier G., Lalauze R. Gas detection for automotive pollution control. Sensors Actuators B Chem. 1999 doi: 10.1016/S0925-4005(99)00220-8. DOI
Yamazoe N., Miura N. Environmental gas sensing. Sensors Actuators B Chem. 1994 doi: 10.1016/0925-4005(93)01183-5. DOI
Long H., Harley-Trochimczyk A., Pham T., Tang Z., Shi T., Zettl A., Carraro C., Worsley M.A., Maboudian R. High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 2016 doi: 10.1002/adfm.201601562. DOI
Liu B., Chen L., Liu G., Abbas A.N., Fathi M., Zhou C. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano. 2014 doi: 10.1021/nn5015215. PubMed DOI
Yan W., Worsley M.A., Pham T., Zettl A., Carraro C., Maboudian R. Effects of ambient humidity and temperature on the NO2 sensing characteristics of WS2/graphene aerogel. Appl. Surf. Sci. 2018 doi: 10.1016/j.apsusc.2018.04.185. DOI
Zhou Y., Liu G., Zhu X., Guo Y. Ultrasensitive NO2 gas sensing based on rGO/MoS2 nanocomposite film at low temperature. Sensors Actuators B Chem. 2017 doi: 10.1016/j.snb.2017.05.060. DOI
Mirõ P., Ghorbani-Asl M., Heine T. Two dimensional materials beyond MoS2: Noble-transition-metal dichalcogenides. Angew. Chemie Int. Ed. 2014 doi: 10.1002/anie.201309280. PubMed DOI
Sajjad M., Montes E., Singh N., Schwingenschlögl U. Superior gas sensing properties of monolayer PtSe2. Adv. Mater. Interfaces. 2017 doi: 10.1002/admi.201600911. DOI
Yim C., Lee K., McEvoy N., O’Brien M., Riazimehr S., Berner N.C., Cullen C.P., Kotakoski J., Meyer J.C., Lemme M.C., et al. High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano. 2016 doi: 10.1021/acsnano.6b04898. PubMed DOI
Wu E., Xie Y., Yuan B., Zhang H., Hu X., Liu J., Zhang D. Ultrasensitive and fully reversible NO2 gas sensing based on p-type MoTe2 under ultraviolet illumination. ACS Sensors. 2018 doi: 10.1021/acssensors.8b00461. PubMed DOI
Ko K.Y., Song J.G., Kim Y., Choi T., Shin S., Lee C.W., Lee K., Koo J., Lee H., Kim J., et al. Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano. 2016 doi: 10.1021/acsnano.6b03631. PubMed DOI
Cho B., Kim A.R., Park Y., Yoon J., Lee Y.J., Lee S., Yoo T.J., Kang C.G., Lee B.H., Ko H.C., et al. Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2. ACS Appl. Mater. Interfaces. 2015 doi: 10.1021/am508535x. PubMed DOI
Wang J., Deng J., Li Y., Yuan H., Xu M. ZnO nanocrystal-coated MoS2 nanosheets with enhanced ultraviolet light gas sensitive activity studied by surface photovoltage technique. Ceram. Int. 2020 doi: 10.1016/j.ceramint.2020.01.157. DOI
Baek J., Yin D., Liu N., Omkaram I., Jung C., Im H., Hong S., Kim S.M., Hong Y.K., Hur J., et al. A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe2 films. Nano Res. 2017 doi: 10.1007/s12274-016-1291-7. DOI
Perrozzi F., Emamjomeh S.M., Paolucci V., Taglieri G., Ottaviano L., Cantalini C. Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2. Sensors Actuators B Chem. 2017 doi: 10.1016/j.snb.2016.12.069. DOI
Han S., Bian H., Feng Y., Liu A., Li X., Zeng F., Zhang X. Analysis of the relationship between O3, NO and NO2 in Tianjin, China. Aerosol Air Qual. Res. 2011 doi: 10.4209/aaqr.2010.07.0055. DOI
Jones A.E., Weller R., Wolff E.W., Jacobi H.W. Speciation and rate of photochemical NO and NO2 production in Antarctic snow. Geophys. Res. Lett. 2000 doi: 10.1029/1999GL010885. DOI
Environmental Protection Agency (EPA) Nitrogen Oxides (NOx), Why and How They Are Controlled. EPA; Research Triangle Park, NC, USA: 1999. Technical Bulletin No. EPA-456/F-99-006R.
Zhao S., Xue J., Kang W. Gas adsorption on MoS2 monolayer from first-principles calculations. Chem. Phys. Lett. 2014 doi: 10.1016/j.cplett.2014.01.043. DOI
Li H., Yin Z., He Q., Li H., Huang X., Lu G., Fam D.W.H., Tok A.I.Y., Zhang Q., Zhang H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small. 2012 doi: 10.1002/smll.201101016. PubMed DOI
Ramu S., Chandrakalavathi T., Murali G., Kumar K.S., Sudharani A., Ramanadha M., Peta K.R., Jeyalakshmi R., Vijayalakshmi R.P. UV enhanced NO gas sensing properties of the MoS2 monolayer gas sensor. Mater. Res. Express. 2019 doi: 10.1088/2053-1591/ab20b7. DOI
Burman D., Ghosh R., Santra S., Kumar Ray S., Kumar Guha P. Role of vacancy sites and UV-ozone treatment on few layered MoS2 nanoflakes for toxic gas detection. Nanotechnology. 2017 doi: 10.1088/1361-6528/aa87cd. PubMed DOI
Medina H., Li J.G., Su T.Y., Lan Y.W., Lee S.H., Chen C.W., Chen Y.Z., Manikandan A., Tsai S.H., Navabi A., et al. Wafer-scale growth of WSe2 monolayers toward phase-engineered hybrid WOx/WSe2 films with sub-ppb NOx gas sensing by a low-temperature plasma-assisted selenization process. Chem. Mater. 2017 doi: 10.1021/acs.chemmater.6b04467. DOI
Committee on the Environment and Natural Resources Air Quality Research Subcommittee . Atmospheric Ammonia: Sources and Fate. A review of Ongoing Federal Research and Future Needs. NOAA Aeronomy Laboratory; Boulder, CO, USA: 2000. [(accessed on 2 May 2020)]. Available online: https://www.esrl.noaa.gov/csl/aqrsd/reports/ammonia.pdf.
Pinder R.W., Gilliland A.B., Dennis R.L. Environmental impact of atmospheric NH3 emissions under present and future conditions in the eastern United States. Geophys. Res. Lett. 2008 doi: 10.1029/2008GL033732. DOI
Donham K.J., Cumro D., Reynolds S. Synergistic effects of dust and ammonia on the occupational health effects of poultry production workers. J. Agromedicine. 2002 doi: 10.1300/J096v08n02_09. PubMed DOI
Guo S., Yang D., Li B., Dong Q., Li Z., Zaghloul M.E. An artificial intelligent flexible gas sensor based on ultra-large area MoSe2 nanosheet; Proceedings of the 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS); Dallas, TX, USA. 4–7 August 2019; pp. 884–887.
Luo H., Cao Y., Zhou J., Feng J., Cao J., Guo H. Adsorption of NO2, NH3 on monolayer MoS2 doped with Al, Si, and P: A first-principles study. Chem. Phys. Lett. 2016 doi: 10.1016/j.cplett.2015.10.077. DOI
Cho B., Yoon J., Lim S.K., Kim A.R., Kim D.H., Park S.G., Kwon J.D., Lee Y.J., Lee K.H., Lee B.H., et al. Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl. Mater. Interfaces. 2015 doi: 10.1021/acsami.5b04541. PubMed DOI
Feng Z., Xie Y., Chen J., Yu Y., Zheng S., Zhang R., Li Q., Chen X., Sun C., Zhang H., et al. Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing. 2D Mater. 2017 doi: 10.1088/2053-1583/aa57fe. DOI
Qin Z., Zeng D., Zhang J., Wu C., Wen Y., Shan B., Xie C. Effect of layer number on recovery rate of WS2 nanosheets for ammonia detection at room temperature. Appl. Surf. Sci. 2017 doi: 10.1016/j.apsusc.2017.04.063. DOI
Late D.J., Doneux T., Bougouma M. Single-layer MoSe2 based NH3 gas sensor. Appl. Phys. Lett. 2014 doi: 10.1063/1.4903358. DOI
Zhang D., Jiang C., Li P., Sun Y. Layer-by-layer self-assembly of Co3O4 nanorod-decorated MoS2 nanosheet-based nanocomposite toward high-performance ammonia detection. ACS Appl. Mater. Interfaces. 2017 doi: 10.1021/acsami.6b15669. PubMed DOI
Abun A., Huang B.R., Saravanan A., Kathiravan D., Hong P. Da Effect of PMMA on the surface of exfoliated MoS2 nanosheets and their highly enhanced ammonia gas sensing properties at room temperature. J. Alloys Compd. 2020 doi: 10.1016/j.jallcom.2020.155005. DOI
Zhang S., Wang J., Torad N.L., Xia W., Aslam M.A., Kaneti Y.V., Hou Z., Ding Z., Da B., Fatehmulla A., et al. Rational design of nanoporous MoS2/VS2 heteroarchitecture for ultrahigh performance ammonia sensors. Small. 2020 doi: 10.1002/smll.201901718. PubMed DOI
Durmusoglu E., Taspinar F., Karademir A. Health risk assessment of BTEX emissions in the landfill environment. J. Hazard. Mater. 2010 doi: 10.1016/j.jhazmat.2009.11.117. PubMed DOI
Dai H., Jing S., Wang H., Ma Y., Li L., Song W., Kan H. VOC characteristics and inhalation health risks in newly renovated residences in Shanghai, China. Sci. Total Environ. 2017 doi: 10.1016/j.scitotenv.2016.10.071. PubMed DOI
Cetin E., Odabasi M., Seyfioglu R. Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery. Sci. Total Environ. 2003 doi: 10.1016/S0048-9697(03)00197-9. PubMed DOI
Malherbe L., Mandin C. VOC emissions during outdoor ship painting and health-risk assessment. Atmos. Environ. 2007 doi: 10.1016/j.atmosenv.2007.02.018. DOI
Chen C., Tsow F., Campbell K.D., Iglesias R., Forzani E., Tao N. A wireless hybrid chemical sensor for detection of environmental volatile organic compounds. IEEE Sens. J. 2013 doi: 10.1109/JSEN.2013.2239472. PubMed DOI PMC
Sun X., Shao K., Wang T. Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis. Anal. Bioanal. Chem. 2016 doi: 10.1007/s00216-015-9200-6. PubMed DOI
Barzegar M., Berahman M., Asgari R. First-principles study of molecule adsorption on Ni-decorated monolayer MoS2. J. Comput. Electron. 2019 doi: 10.1007/s10825-019-01359-7. DOI
Kim J.S., Yoo H.W., Choi H.O., Jung H.T. Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett. 2014 doi: 10.1021/nl502906a. PubMed DOI
Tomer V.K., Malik R., Chaudhary V., Mishra Y.K., Kienle L., Ahuja R., Lin L. Superior visible light photocatalysis and low-operating temperature VOCs sensor using cubic Ag(0)-MoS2 loaded g-CN 3D porous hybrid. Appl. Mater. Today. 2019 doi: 10.1016/j.apmt.2019.05.010. DOI
Zhao C., Gan X., Yuan Q., Hu S., Fang L., Zhao J. High-performance volatile organic compounds microsensor based on few-layer MoS2-coated photonic crystal cavity. Adv. Opt. Mater. 2018 doi: 10.1002/adom.201700882. DOI
Chen D., Tang J., Zhang X., Li Y., Liu H. Detecting decompositions of sulfur hexafluoride using MoS2 monolayer as gas sensor. IEEE Sens. J. 2019 doi: 10.1109/JSEN.2018.2876637. DOI
Chen D., Zhang X., Tang J., Cui Z., Cui H., Pi S. Theoretical study of monolayer PtSe2 as outstanding gas sensor to detect SF6 decompositions. IEEE Electron Device Lett. 2018 doi: 10.1109/LED.2018.2859258. DOI
Park J., Mun J., Shin J.S., Kang S.W. Highly sensitive two dimensional MoS2 gas sensor decorated with Pt nanoparticles. R. Soc. Open Sci. 2018 doi: 10.1098/rsos.181462. PubMed DOI PMC
Yang Y., Jermsittiparsert K., Gao W., Zhang D. Structural, electronic and magnetic properties of the Ni/Cu-embedded S-vacancy defective MoS2 monolayers and their effects on the adsorption of SOx and O3 molecules. Appl. Surf. Sci. 2020 doi: 10.1016/j.apsusc.2020.146179. DOI
Ma D., Ju W., Li T., Zhang X., He C., Ma B., Lu Z., Yang Z. The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: A first-principles study. Appl. Surf. Sci. 2016 doi: 10.1016/j.apsusc.2016.04.171. DOI
Shen J., Yang Z., Wang Y., Xu L.C., Liu R., Liu X. The gas sensing performance of borophene/MoS2 heterostructure. Appl. Surf. Sci. 2020 doi: 10.1016/j.apsusc.2019.144412. DOI
Sahoo M.P.K., Wang J., Zhang Y., Shimada T., Kitamura T. Modulation of gas adsorption and magnetic properties of monolayer-MoS2 by antisite defect and strain. J. Phys. Chem. C. 2016 doi: 10.1021/acs.jpcc.6b03284. DOI
Ma D., Ma B., Lu Z., He C., Tang Y., Lu Z., Yang Z. Interaction between H2O, N2, CO, NO, NO2 and N2O molecules and a defective WSe2 monolayer. Phys. Chem. Chem. Phys. 2017 doi: 10.1039/C7CP04351A. PubMed DOI
Jasmine J.M., Aadhityan A., Preferencial kala C., Thiruvadigal D.J. A first-principles study of Cl2, PH3, AsH3, BBr3 and SF4 gas adsorption on MoS2 monolayer with S and Mo vacancy. Appl. Surf. Sci. 2019 doi: 10.1016/j.apsusc.2019.05.197. DOI
UNEP Tackling Global Water Pollution. [(accessed on 2 May 2020)]; Available online: https://www.unenvironment.org/explore-topics/water/what-we-do/tackling-global-water-pollution.
Malik S.N., Khan S.M., Ghosh P.C., Vaidya A.N., Kanade G., Mudliar S.N. Treatment of pharmaceutical industrial wastewater by nano-catalyzed ozonation in a semi-batch reactor for improved biodegradability. Sci. Total Environ. 2019;678:114–122. doi: 10.1016/j.scitotenv.2019.04.097. PubMed DOI
Khan N.A., Khan K.A., Islam M. Chemistry of Phytopotentials: Health, Energy and Environmental Perspectives. Springer; Berlin/Heidelberg, Germany: 2012. Water and wastewater treatment using nano-technology; pp. 315–318.
Prince R.C. Oil spill dispersants: Boon or bane? Environ. Sci. Technol. 2015;49:6376–6384. doi: 10.1021/acs.est.5b00961. PubMed DOI
Abiodun O.I., Jantan A., Omolara A.E., Dada K.V., Mohamed N.A., Arshad H. State-of-the-art in artificial neural network applications: A survey. Heliyon. 2018;4:e00938. doi: 10.1016/j.heliyon.2018.e00938. PubMed DOI PMC
Gusain R., Kumar N., Fosso-Kankeu E., Ray S.S. Efficient removal of Pb(II) and Cd(II) from industrial mine water by a hierarchical MoS2/SH-MWCNT nanocomposite. ACS Omega. 2019;4:13922–13935. doi: 10.1021/acsomega.9b01603. PubMed DOI PMC
Göktaş R.K., MacLeod M. Remoteness from sources of persistent organic pollutants in the multi-media global environment. Environ. Pollut. 2016;217:33–41. doi: 10.1016/j.envpol.2015.12.058. PubMed DOI
Wang Z., Wu A., Ciacchi L.C., Wei G. Recent advances in nanoporous membranes for water purification. Nanomaterials. 2018;8:65. doi: 10.3390/nano8020065. PubMed DOI PMC
SDG Knowledge Platform Sustainable Development Goals. [(accessed on 2 May 2020)]; Available online: https://sustainabledevelopment.un.org/?menu=1300.
Lu H., Wang J., Stoller M., Wang T., Bao Y., Hao H. An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng. 2016;2016:4964828. doi: 10.1155/2016/4964828. DOI
Li G., Wang Y., Bi J., Huang X., Mao Y., Luo L., Hao H. Partial oxidation strategy to synthesize WS2/WO3 heterostructure with enhanced adsorption performance for organic dyes: Synthesis, modelling, and mechanism. Nanomaterials. 2020;10:278. doi: 10.3390/nano10020278. PubMed DOI PMC
Wang Z., Mi B. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ. Sci. Technol. 2017;51:8229–8244. doi: 10.1021/acs.est.7b01466. PubMed DOI
Tang H., Huang H., Wang X., Wu K., Tang G., Li C. Hydrothermal synthesis of 3D hierarchical flower-like MoSe2 microspheres and their adsorption performances for methyl orange. Appl. Surf. Sci. 2016;379:296–303. doi: 10.1016/j.apsusc.2016.04.086. DOI
Fang Y., Huang Q., Liu P., Shi J., Xu G. Easy-separative MoS2-glue sponges with high-efficient dye adsorption and excellent reusability for convenient water treatment. Colloids Surfaces A Physicochem. Eng. Asp. 2018;540:112–122. doi: 10.1016/j.colsurfa.2018.01.001. DOI
Song H.J., You S., Jia X.H., Yang J. MoS2 nanosheets decorated with magnetic Fe3O4 nanoparticles and their ultrafast adsorption for wastewater treatment. Ceram. Int. 2015;41:13896–13902. doi: 10.1016/j.ceramint.2015.08.023. DOI
Li H., Xie F., Li W., Fahlman B.D., Chen M., Li W. Preparation and adsorption capacity of porous MoS2 nanosheets. RSC Adv. 2016;6:105222–105230. doi: 10.1039/C6RA22414H. DOI
Massey A.T., Gusain R., Kumari S., Khatri O.P. Hierarchical microspheres of MoS2 nanosheets: Efficient and regenerative adsorbent for removal of water-soluble dyes. Ind. Eng. Chem. Res. 2016;55:7124–7131. doi: 10.1021/acs.iecr.6b01115. DOI
Krishna Kumar A.S., Jiang S.J., Warchoł J.K. Synthesis and characterization of two-dimensional transition metal dichalcogenide magnetic MoS2@Fe3O4 nanoparticles for adsorption of Cr(VI)/Cr(III) ACS Omega. 2017;2:6187–6200. doi: 10.1021/acsomega.7b00757. PubMed DOI PMC
Wan Z., Li D., Jiao Y., Ouyang X., Chang L., Wang X. Bifunctional MoS2 coated melamine-formaldehyde sponges for efficient oil–water separation and water-soluble dye removal. Appl. Mater. Today. 2017;9:551–559. doi: 10.1016/j.apmt.2017.09.013. DOI
Li R., Deng H., Zhang X., Wang J.J., Awasthi M.K., Wang Q., Xiao R., Zhou B., Du J., Zhang Z. High-efficiency removal of Pb(II) and humate by a CeO2–MoS2 hybrid magnetic biochar. Bioresour. Technol. 2019;273:335–340. doi: 10.1016/j.biortech.2018.10.053. PubMed DOI
Wan Z., Liu Y., Chen S., Song K., Peng Y., Zhao N., Ouyang X., Wang X. Facile fabrication of a highly durable and flexible MoS2@RTV sponge for efficient oil-water separation. Colloids Surfaces A Physicochem. Eng. Asp. 2018;546:237–243. doi: 10.1016/j.colsurfa.2018.03.017. DOI
Heiranian M., Farimani A.B., Aluru N.R. Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 2015;6:1–6. doi: 10.1038/ncomms9616. PubMed DOI PMC
Kou J., Yao J., Wu L., Zhou X., Lu H., Wu F., Fan J. Nanoporous two-dimensional MoS2 membranes for fast saline solution purification. Phys. Chem. Chem. Phys. 2016 doi: 10.1039/C6CP01967F. PubMed DOI
Kozubek R., Tripathi M., Ghorbani-Asl M., Kretschmer S., Madauß L., Pollmann E., O’Brien M., McEvoy N., Ludacka U., Susi T., et al. Perforating freestanding molybdenum disulfide monolayers with highly charged ions. J. Phys. Chem. Lett. 2019 doi: 10.1021/acs.jpclett.8b03666. PubMed DOI
Ma J., Tang X., He Y., Fan Y., Chen J., Hao Y. Robust stable MoS2/GO filtration membrane for effective removal of dyes and salts from water with enhanced permeability. Desalination. 2020;480:114328. doi: 10.1016/j.desal.2020.114328. DOI
Gao J., Zhang M., Wang J., Liu G., Liu H., Jiang Y. Bioinspired modification of layer-stacked molybdenum disulfide (MoS2) membranes for enhanced nanofiltration performance. ACS Omega. 2019;4:4012–4022. doi: 10.1021/acsomega.9b00155. PubMed DOI PMC
Chu H., Liu X., Liu B., Zhu G., Lei W., Du H., Liu J., Li J., Li C., Sun C. Hexagonal 2H-MoSe2 broad spectrum active photocatalyst for Cr(VI) reduction. Sci. Rep. 2016;6:1–10. doi: 10.1038/srep35304. PubMed DOI PMC
Mittal H., Khanuja M. Nanosheets- and nanourchins-like nanostructures of MoSe2 for photocatalytic water purification: Kinetics and reusability study. Environ. Sci. Pollut. Res. 2019:1–13. doi: 10.1007/s11356-019-06275-8. PubMed DOI
Zhou X., Yao J., Yang M., Ma J., Zhou Q., Ou E., Zhang Z., Sun X. Synthesis of MoSe2/SrTiO3 heterostructures with enhanced ultraviolet-light-driven and visible-light-driven photocatalytic properties. Nano. 2018;13 doi: 10.1142/S1793292018500388. DOI
Kridiotis A.C., Longwell J.P., Sarofim A.F., Bar-ziv E. Application of a stochastic model of imperfect mixing to the combustion of fuel-lean COH2 mixtures in air. Chem. Eng. Sci. 1989 doi: 10.1016/0009-2509(89)87003-4. DOI
Kim J.H., Ma X., Zhou A., Song C. Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism. Catal. Today. 2006;111:74–83. doi: 10.1016/j.cattod.2005.10.017. DOI
Kalam M.A., Masjuki H.H. Emissions and deposit characteristics of a small diesel engine when operated on preheated crude palm oil. Biomass Bioenergy. 2004 doi: 10.1016/j.biombioe.2004.01.009. DOI
Ashraful A.M., Masjuki H.H., Kalam M.A., Rizwanul Fattah I.M., Imtenan S., Shahir S.A., Mobarak H.M. Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review. Energy Convers. Manag. 2014;80:202–228. doi: 10.1016/j.enconman.2014.01.037. DOI
Song C., Ma X. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Appl. Catal. B Environ. 2003;41:207–238. doi: 10.1016/S0926-3373(02)00212-6. DOI
Itthibenchapong V., Srifa A., Kaewmeesri R., Kidkhunthod P., Faungnawakij K. Deoxygenation of palm kernel oil to jet fuel-like hydrocarbons using Ni-MoS2/γ-Al2O3 catalysts. Energy Convers. Manag. 2017 doi: 10.1016/j.enconman.2016.12.034. DOI
Jiang L., Kronbak J., Christensen L.P. The costs and benefits of sulphur reduction measures: Sulphur scrubbers versus marine gas oil. Transp. Res. Part D Transp. Environ. 2014 doi: 10.1016/j.trd.2013.12.005. DOI
Ushakov S., Valland H., Nielsen J.B., Hennie E. Effects of high sulphur content in marine fuels on particulate matter emission characteristics. J. Mar. Eng. Technol. 2013 doi: 10.1080/20464177.2013.11020283. DOI
Jones J., Dupont V., Brydson R., Fullerton D., Nasri N., Ross A., Westwood A.V. Sulphur poisoning and regeneration of precious metal catalysed methane combustion. Catal. Today. 2003;81:589–601. doi: 10.1016/S0920-5861(03)00157-3. DOI
Paul J.F., Payen E. Vacancy formation on MoS2 hydrodesulfurization catalyst: DFT study of the mechanism. J. Phys. Chem. B. 2003 doi: 10.1021/jp027668f. DOI
Grimblot J. Genesis, architecture and nature of sites of Co(Ni)-MoS2 supported hydroprocessing catalysts. Catal. Today. 1998 doi: 10.1016/S0920-5861(98)00042-X. DOI
Liaw S.J., Raje A., Chary K.V.R., Davis B.H. Catalytic hydrotreatment of Illinois No. 6 coal-derived naphtha: The removal of individual nitrogen and sulfur compounds over MoS2 and Mo2N. Appl. Catal. A Gen. 1995 doi: 10.1016/0926-860X(94)00233-9. DOI
Mahmoudabadi Z.S., Rashidi A., Tavasoli A. Synthesis of MoS2 quantum dots as a nanocatalyst for hydrodesulfurization of naphtha: Experimental and DFT study. J. Environ. Chem. Eng. 2020 doi: 10.1016/j.jece.2020.103736. DOI
Olivas A., Zepeda T.A., Villalpando I., Fuentes S. Performance of unsupported Ni(Co,Fe)/MoS2 catalysts in hydrotreating reactions. Catal. Commun. 2008 doi: 10.1016/j.catcom.2007.11.025. DOI
Liu L.H., Liu D., Liu B., Li G.C., Liu Y.Q., Liu C.G. Relation between the morphology of MoS2 in NiMo catalyst and its selectivity for dibenzothiophene hydrodesulfurization. Ranliao Huaxue Xuebao J. Fuel Chem. Technol. 2011 doi: 10.1016/S1872-5813(11)60049-2. DOI
Rangarajan S., Mavrikakis M. On the preferred active sites of promoted MoS2 for hydrodesulfurization with minimal organonitrogen inhibition. ACS Catal. 2017 doi: 10.1021/acscatal.6b02735. DOI
Tye C.T., Smith K.J. Hydrodesulfurization of dibenzothiophene over exfoliated MoS2 catalyst. Catal. Today. 2006 doi: 10.1016/j.cattod.2006.06.028. DOI
Abbasi A., Karimi A., Aghabozorg H., Sadighi S., Aval M.A. Cobalt-promoted MoS2 nanosheets: A promising novel diesel hydrodesulfurization catalyst. Int. J. Chem. Kinet. 2020 doi: 10.1002/kin.21338. DOI
Moses P.G., Hinnemann B., Topsøe H., Nørskov J.K. The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: A density functional study. J. Catal. 2007 doi: 10.1016/j.jcat.2007.02.028. DOI
Kaluža L., Zdražil M., Žilková N., Čejka J. High activity of highly loaded MoS2 hydrodesulfurization catalysts supported on organised mesoporous alumina. Catal. Commun. 2002 doi: 10.1016/S1566-7367(02)00073-0. DOI
Liu N., Wang X., Xu W., Hu H., Liang J., Qiu J. Microwave-assisted synthesis of MoS2/graphene nanocomposites for efficient hydrodesulfurization. Fuel. 2014 doi: 10.1016/j.fuel.2013.11.045. DOI
Yang L., Wang X.z., Liu Y., Yu Z.f., Liang J.j., Chen B.b., Shi C., Tian S., Li X., Qiu J.-S. Monolayer MoS2 anchored on reduced graphene oxide nanosheets for efficient hydrodesulfurization. Appl. Catal. B Environ. 2017 doi: 10.1016/j.apcatb.2016.07.006. DOI
Liu G., Robertson A.W., Li M.M.J., Kuo W.C.H., Darby M.T., Muhieddine M.H., Lin Y.C., Suenaga K., Stamatakis M., Warner J.H., et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 2017 doi: 10.1038/nchem.2740. PubMed DOI
Li Q., Bai X., Ling C., Zhou Q., Yuan S., Chen Q., Wang J. Forming atom–vacancy interface on the MoS2 catalyst for efficient hydrodeoxygenation reactions. Small Methods. 2019 doi: 10.1002/smtd.201800315. DOI
Wu K., Wang W., Guo H., Yang Y., Huang Y., Li W., Li C. Engineering co nanoparticles supported on defect MoS2–x for mild deoxygenation of lignin-derived phenols to arenes. ACS Energy Lett. 2020 doi: 10.1021/acsenergylett.0c00411. DOI
Varakin A.N., Mozhaev A.V., Pimerzin A.A., Nikulshin P.A. Toward HYD/DEC selectivity control in hydrodeoxygenation over supported and unsupported Co(Ni)-MoS2 catalysts. A key to effective dual-bed catalyst reactor for co-hydroprocessing of diesel and vegetable oil. Catal. Today. 2019 doi: 10.1016/j.cattod.2019.06.005. DOI
Alvarez-Galvan M., Campos-Martin J., Fierro J. Transition metal phosphides for the catalytic hydrodeoxygenation of waste oils into green diesel. Catalysts. 2019;9:293. doi: 10.3390/catal9030293. DOI
Li N., Wei L., Bibi R., Chen L., Liu J., Zhang L., Zheng Y., Zhou J. Catalytic hydrogenation of alkali lignin into bio-oil using flower-like hierarchical MoS2-based composite catalysts. Fuel. 2016 doi: 10.1016/j.fuel.2016.08.001. DOI
Zhou X., Zhou J., Yu Y., Ma J., Sun X., Hu L. Catalytic hydrogenation of alkali lignin into bio-oil via nano-lamellar MoSe2-based composite catalysts. Nano. 2017 doi: 10.1142/S1793292017501211. DOI
Porsin A.A., Vlasova E.N., Bukhtiyarova G.A., Nuzhdin A.L., Bukhtiyarov V.I. Sulfide catalysts for production of motor fuels from fatty acid triglycerides. Russ. J. Appl. Chem. 2018;91:1905–1911. doi: 10.1134/S1070427218120017. DOI
Zhang Y., Meng Z., Shi Q., Gao H., Liu Y., Wang Y., Rao D., Deng K., Lu R. Nanoporous MoS2 monolayer as a promising membrane for purifying hydrogen and enriching methane. J. Phys. Condens. Matter. 2017 doi: 10.1088/1361-648X/aa7d5e. PubMed DOI
Yu L., Mishra I.K., Xie Y., Zhou H., Sun J., Zhou J., Ni Y., Luo D., Yu F., Yu Y., et al. Ternary Ni2(1−x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density. Nano Energy. 2018 doi: 10.1016/j.nanoen.2018.08.025. DOI
Mohamed M., Yusup S., Loy A.C.M. Effect of empty fruit bunch in calcium oxide for cyclic CO2 capture. Chem. Eng. Technol. 2019 doi: 10.1002/ceat.201800649. DOI
Yamamoto A., Shinkai T., Loy A.C.M., Mohamed M., Balean F.H., Yusup S., Quitain A.T., Kida T. Application of a solid electrolyte CO2 sensor to the performance evaluation of CO2 capture materials. Sensors Actuators B Chem. 2020 doi: 10.1016/j.snb.2020.128105. DOI
Holloway S. Underground sequestration of carbon dioxide—A viable greenhouse gas mitigation option. Energy. 2005;30:2318–2333. doi: 10.1016/j.energy.2003.10.023. DOI
Song Y., Peng R., Hensley D.K., Bonnesen P.V., Liang L., Wu Z., Meyer H.M., Chi M., Ma C., Sumpter B.G., et al. High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/N-doped graphene electrode. ChemistrySelect. 2016 doi: 10.1002/slct.201601169. DOI
Yang X., Zhang R., Fu J., Geng S., Cheng J.J., Sun Y. Pyrolysis kinetic and product analysis of different microalgal biomass by distributed activation energy model and pyrolysis-gas chromatography-mass spectrometry. Bioresour. Technol. 2014 doi: 10.1016/j.biortech.2014.04.040. PubMed DOI
Manenti F. Computer Aided Chemical Engineering. Elsevier BV; Amsterdam, The Netherlands: 2015. syngas.
Marlin D.S., Sarron E., Sigurbjörnsson Ó. Process advantages of direct CO2 to methanol synthesis. Front. Chem. 2018 doi: 10.3389/fchem.2018.00446. PubMed DOI PMC
Melo Bravo P., Debecker D.P. Combining CO2 capture and catalytic conversion to methane. Waste Dispos. Sustain. Energy. 2019 doi: 10.1007/s42768-019-00004-0. DOI
Nguyen D.L.T., Kim Y., Hwang Y.J., Won D.H. Progress in development of electrocatalyst for CO2 conversion to selective CO production. Carbon Energy. 2020 doi: 10.1002/cey2.27. DOI
Ali N., Bilal M., Nazir M.S., Khan A., Ali F., Iqbal H.M.N. Thermochemical and electrochemical aspects of carbon dioxide methanation: A sustainable approach to generate fuel via waste to energy theme. Sci. Total Environ. 2020 doi: 10.1016/j.scitotenv.2019.136482. PubMed DOI
Wang Z., Roberts R.R., Naterer G.F., Gabriel K.S. Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies. Int. J. Hydrogen Energy. 2012;37:16287–16301. doi: 10.1016/j.ijhydene.2012.03.057. DOI
Zhang J.-H., Zhou Y.-G. Nano-impact electrochemistry: Analysis of single bioentities. TrAC Trends Anal. Chem. 2020;123:115768. doi: 10.1016/j.trac.2019.115768. DOI
Abdullah H., Khan M.M.R., Ong H.R., Yaakob Z. Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview. J. CO2 Util. 2017;22:15–32. doi: 10.1016/j.jcou.2017.08.004. DOI
Xie S., Zhang Q., Liu G., Wang Y. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem. Commun. 2016 doi: 10.1039/C5CC07613G. PubMed DOI
Kisch H. Semiconductor photocatalysis-mechanistic and synthetic aspects. Angew. Chemie Int. Ed. 2013;52:812–847. doi: 10.1002/anie.201201200. PubMed DOI
Xu Q., Zhang L., Yu J., Wageh S., Al-Ghamdi A.A., Jaroniec M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today. 2018;21:1042–1063. doi: 10.1016/j.mattod.2018.04.008. DOI
Geioushy R.A., El-Sheikh S.M., Hegazy I.M., Shawky A., El-Sherbiny S., Kandil A.H.T. Insights into two-dimensional MoS2 sheets for enhanced CO2 photoreduction to C1 and C2 hydrocarbon products. Mater. Res. Bull. 2019 doi: 10.1016/j.materresbull.2019.110499. DOI
Beheshti M., Kakooei S., Ismail M.C., Shahrestani S. Investigation of CO2 electrochemical reduction to syngas on Zn/Ni-based electrocatalysts using the cyclic voltammetry method. Electrochim. Acta. 2020 doi: 10.1016/j.electacta.2020.135976. DOI
Debe M.K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature. 2012;486:43–51. doi: 10.1038/nature11115. PubMed DOI
Zinola C.F., Martins M.E., Tejera E.P., Neves N.P. Electrocatalysis: Fundamentals and applications. Int. J. Electrochem. 2012 doi: 10.1155/2012/874687. DOI
Asadi M., Kumar B., Behranginia A., Rosen B.A., Baskin A., Repnin N., Pisasale D., Phillips P., Zhu W., Haasch R., et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat. Commun. 2014 doi: 10.1038/ncomms5470. PubMed DOI
Wang Y., Zhang Z., Zhang L., Luo Z., Shen J., Lin H., Long J., Wu J.C.S., Fu X., Wang X., et al. Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 Heterostructure. J. Am. Chem. Soc. 2018 doi: 10.1021/jacs.8b09344. PubMed DOI
Asadi M., Kim K., Liu C., Addepalli A.V., Abbasi P., Yasaei P., Phillips P., Behranginia A., Cerrato J.M., Haasch R., et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science. 2016 doi: 10.1126/science.aaf4767. PubMed DOI
Lee H.I., Yu H., Rhee C.K., Sohn Y. Electrochemical hydrogen evolution and CO2 reduction over hierarchical MoSxSe2−x hybrid nanostructures. Appl. Surf. Sci. 2019 doi: 10.1016/j.apsusc.2019.06.002. DOI
Xie Y., Li X., Wang Y., Li B., Yang L., Zhao N., Liu M., Wang X., Yu Y., Liu J.M. Reaction mechanisms for reduction of CO2 to CO on monolayer MoS2. Appl. Surf. Sci. 2020 doi: 10.1016/j.apsusc.2019.143964. DOI
Abbasi P., Asadi M., Liu C., Sharifi-Asl S., Sayahpour B., Behranginia A., Zapol P., Shahbazian-Yassar R., Curtiss L.A., Salehi-Khojin A. Tailoring the edge structure of molybdenum disulfide toward electrocatalytic reduction of carbon dioxide. ACS Nano. 2017 doi: 10.1021/acsnano.6b06392. PubMed DOI
Asadi M., Motevaselian M.H., Moradzadeh A., Majidi L., Esmaeilirad M., Sun T.V., Liu C., Bose R., Abbasi P., Zapol P., et al. Highly efficient solar-driven carbon dioxide reduction on molybdenum disulfide catalyst using choline chloride-based electrolyte. Adv. Energy Mater. 2019 doi: 10.1002/aenm.201803536. DOI
Liu X., Yang H., He J., Liu H., Song L., Li L., Luo J. Highly active, durable ultrathin MoTe2 layers for the electroreduction of CO2 to CH4. Small. 2018 doi: 10.1002/smll.201704049. PubMed DOI
Primo A., He J., Jurca B., Cojocaru B., Bucur C., Parvulescu V.I., Garcia H. CO2 methanation catalyzed by oriented MoS2 nanoplatelets supported on few layers graphene. Appl. Catal. B Environ. 2019 doi: 10.1016/j.apcatb.2018.12.034. DOI
Jung H., Cho K.M., Kim K.H., Yoo H.W., Al-Saggaf A., Gereige I., Jung H.T. Highly efficient and stable CO2 reduction photocatalyst with a hierarchical structure of mesoporous TiO2 on 3D graphene with few-layered MoS2. ACS Sustain. Chem. Eng. 2018 doi: 10.1021/acssuschemeng.8b00002. DOI
Qin H., Guo R.T., Liu X.Y., Pan W.G., Wang Z.Y., Shi X., Tang J.Y., Huang C.Y. Z-scheme MoS2/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction. Dalt. Trans. 2018 doi: 10.1039/C8DT02901F. PubMed DOI
Jia P.y., Guo R.t., Pan W.g., Huang C.y., Tang J.y., Liu X.y., Qin H., Xu Q.Y. The MoS2/TiO2 heterojunction composites with enhanced activity for CO2 photocatalytic reduction under visible light irradiation. Colloids Surfaces A Physicochem. Eng. Asp. 2019 doi: 10.1016/j.colsurfa.2019.03.045. DOI
Kanan M.W., Nocera D.G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+ Science. 2008 doi: 10.1126/science.1162018. PubMed DOI
Reece S.Y., Hamel J.A., Sung K., Jarvi T.D., Esswein A.J., Pijpers J.J.H., Nocera D.G. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science. 2011 doi: 10.1126/science.1209816. PubMed DOI
Wang Q., Lei Y., Wang D., Li Y. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 2019;12:1730–1750. doi: 10.1039/C8EE03781G. DOI
Ji Y., Nørskov J.K., Chan K. Scaling relations on basal plane vacancies of transition metal dichalcogenides for CO2 reduction. J. Phys. Chem. C. 2019 doi: 10.1021/acs.jpcc.8b11628. DOI
Pérez-Fortes M., Schöneberger J.C., Boulamanti A., Tzimas E. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment. Appl. Energy. 2016 doi: 10.1016/j.apenergy.2015.07.067. DOI
Pérez-Fortes M., Bocin-Dumitriu A., Tzimas E. CO2 utilization pathways: Techno-economic assessment and market opportunities. Energy Procedia. 2014;63:7968–7975. doi: 10.1016/j.egypro.2014.11.834. DOI
Zheng Y., Yin X., Jiang Y., Bai J., Tang Y., Shen Y., Zhang M. Nano Ag-decorated MoS2 nanosheets from 1T to 2H phase conversion for photocatalytically reducing CO2 to methanol. Energy Technol. 2019 doi: 10.1002/ente.201900582. DOI
Bolivar H., Izquierdo S., Tremont R., Cabrera C.R. Methanol oxidation at Pt/MoOx/MoSe2 thin film electrodes prepared with exfoliated MoSe2. J. Appl. Electrochem. 2003 doi: 10.1023/B:JACH.0000003868.71691.92. DOI
Tu W., Li Y., Kuai L., Zhou Y., Xu Q., Li H., Wang X., Xiao M., Zou Z. Construction of unique two-dimensional MoS2-TiO2 hybrid nanojunctions: MoS2 as a promising cost-effective cocatalyst toward improved photocatalytic reduction of CO2 to methanol. Nanoscale. 2017 doi: 10.1039/C7NR03238B. PubMed DOI
Xu F., Zhu B., Cheng B., Yu J., Xu J. 1D/2D TiO2/MoS2 hybrid nanostructures for enhanced photocatalytic CO2 reduction. Adv. Opt. Mater. 2018 doi: 10.1002/adom.201800911. DOI
Francis S.A., Velazquez J.M., Ferrer I.M., Torelli D.A., Guevarra D., McDowell M.T., Sun K., Zhou X., Saadi F.H., John J., et al. Reduction of aqueous CO2 to 1-propanol at MoS2 electrodes. Chem. Mater. 2018 doi: 10.1021/acs.chemmater.7b04428. DOI
Dai W., Yu J., Luo S., Hu X., Yang L., Zhang S., Li B., Luo X., Zou J. WS2 quantum dots seeding in Bi2S3 nanotubes: A novel Vis-NIR light sensitive photocatalyst with low-resistance junction interface for CO2 reduction. Chem. Eng. J. 2020 doi: 10.1016/j.cej.2019.123430. DOI
Dai W., Yu J., Deng Y., Hu X., Wang T., Luo X. Facile synthesis of MoS2/Bi2 WO6 nanocomposites for enhanced CO2 photoreduction activity under visible light irradiation. Appl. Surf. Sci. 2017 doi: 10.1016/j.apsusc.2017.01.171. DOI
Peng H., Lu J., Wu C., Yang Z., Chen H., Song W., Li P., Yin H. Co-doped MoS2 NPs with matched energy band and low overpotential high efficiently convert CO2 to methanol. Appl. Surf. Sci. 2015 doi: 10.1016/j.apsusc.2015.06.178. DOI
Biswas M.R.U.D., Ali A., Cho K.Y., Oh W.C. Novel synthesis of WSe2-Graphene-TiO2 ternary nanocomposite via ultrasonic technics for high photocatalytic reduction of CO2 into CH3OH. Ultrason. Sonochem. 2018 doi: 10.1016/j.ultsonch.2017.12.030. PubMed DOI
Reyes Valle C., Villanueva Perales A.L., Vidal-Barrero F., Gómez-Barea A. Techno-economic assessment of biomass-to-ethanol by indirect fluidized bed gasification: Impact of reforming technologies and comparison with entrained flow gasification. Appl. Energy. 2013 doi: 10.1016/j.apenergy.2013.04.024. DOI
Villanueva Perales A.L., Reyes Valle C., Ollero P., Gómez-Barea A. Technoeconomic assessment of ethanol production via thermochemical conversion of biomass by entrained flow gasification. Energy. 2011 doi: 10.1016/j.energy.2011.04.037. DOI
Phillips S.D. Technoeconomic analysis of a lignocellulosic biomass indirect gasification process to make ethanol via mixed alcohols synthesis. Ind. Eng. Chem. Res. 2007;46:8887–8897. doi: 10.1021/ie071224u. DOI
Kwok K.M., Ong S.W.D., Chen L., Zeng H.C. Constrained growth of MoS2 nanosheets within a mesoporous silica shell and its effects on defect sites and catalyst stability for H2S decomposition. ACS Catal. 2018 doi: 10.1021/acscatal.7b03123. DOI
Xi J., Zhao T., Wang D., Shuai Z. Tunable electronic properties of two-dimensional transition metal dichalcogenide alloys: A first-principles prediction. J. Phys. Chem. Lett. 2014 doi: 10.1021/jz402375s. PubMed DOI
Ahmed S., Yi J. Two-dimensional transition metal dichalcogenides and their charge carrier mobilities in field-effect transistors. Nano Micro Lett. 2017 doi: 10.1007/s40820-017-0152-6. PubMed DOI PMC
Cates E.L. Photocatalytic water treatment: So where are we going with this? Environ. Sci. Technol. 2017;51:757–758. doi: 10.1021/acs.est.6b06035. PubMed DOI
Hodges B.C., Cates E.L., Kim J.H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 2018 doi: 10.1038/s41565-018-0216-x. PubMed DOI
Chen X., Liu C., Mao S. Environmental analysis with 2D transition-metal dichalcogenide-based field-effect transistors. Nano Micro Lett. 2020 doi: 10.1007/s40820-020-00438-w. PubMed DOI PMC
Ngan S.L., How B.S., Teng S.Y., Leong W.D., Loy A.C.M., Yatim P., Promentilla M.A.B., Lam H.L. A hybrid approach to prioritize risk mitigation strategies for biomass polygeneration systems. Renew. Sustain. Energy Rev. 2020 doi: 10.1016/j.rser.2019.109679. DOI
Vondra M., Touš M., Teng S.Y. Digestate evaporation treatment in biogas plants: A Techno-economic assessment by Monte Carlo, neural networks and decision trees. J. Clean. Prod. 2019:117870. doi: 10.1016/j.jclepro.2019.117870. DOI
Teng S.Y., How B.S., Leong W.D., Teoh J.H., Siang Cheah A.C., Motavasel Z., Lam H.L. Principal component analysis-aided statistical process optimisation (PASPO) for process improvement in industrial refineries. J. Clean. Prod. 2019;225:359–375. doi: 10.1016/j.jclepro.2019.03.272. DOI
Xu C., Gao S., Li M. A novel PCA-based microstructure descriptor for heterogeneous material design. Comput. Mater. Sci. 2017 doi: 10.1016/j.commatsci.2016.12.031. DOI
Teng S.Y., Loy A.C.M., Leong W.D., How B.S., Chin B.L.F., Máša V. Catalytic thermal degradation of Chlorella vulgaris: Evolving deep neural networks for optimization. Bioresour. Technol. 2019;292:121971. doi: 10.1016/j.biortech.2019.121971. PubMed DOI
Ge L., Yuan H., Min Y., Li L., Chen S., Xu L., Goddard W.A. Predicted optimal bifunctional electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction using chalcogenide heterostructures based on machine learning analysis of in silico quantum mechanics based high throughput screening. J. Phys. Chem. Lett. 2020 doi: 10.1021/acs.jpclett.9b03875. PubMed DOI
Zhao H., Hu R., Xie X., Wang Z., Jiang P., Zheng C., Gao X., Wu T. Adopting big data to accelerate discovery of 2D TMDCs materials via CVR method for the potential application in urban airborne Hg0 sensor. Energy Procedia. 2018;152:847–852. doi: 10.1016/j.egypro.2018.09.189. DOI
Bassman L., Rajak P., Kalia R.K., Nakano A., Sha F., Aykol M., Huck P., Persson K., Sun J., Singh D.J., et al. Efficient discovery of optimal N-layered TMDC hetero-structures. MRS Adv. 2018;3:397–402. doi: 10.1557/adv.2018.260. DOI