The Proliferation and Differentiation of Adipose-Derived Stem Cells in Neovascularization and Angiogenesis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
32471255
PubMed Central
PMC7312564
DOI
10.3390/ijms21113790
PII: ijms21113790
Knihovny.cz E-zdroje
- Klíčová slova
- adipose, angiogenesis, differentiation, stem, vascularization,
- MeSH
- buněčná diferenciace * MeSH
- fyziologická neovaskularizace * MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie metabolismus fyziologie MeSH
- proliferace buněk * MeSH
- tuková tkáň cytologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Neovascularization and angiogenesis are vital processes in the repair of damaged tissue, creating new blood vessel networks and increasing oxygen and nutrient supply for regeneration. The importance of Adipose-derived Mesenchymal Stem Cells (ASCs) contained in the adipose tissue surrounding blood vessel networks to these processes remains unknown and the exact mechanisms responsible for directing adipogenic cell fate remain to be discovered. As adipose tissue contains a heterogenous population of partially differentiated cells of adipocyte lineage; tissue repair, angiogenesis and neovascularization may be closely linked to the function of ASCs in a complex relationship. This review aims to investigate the link between ASCs and angiogenesis/neovascularization, with references to current studies. The molecular mechanisms of these processes, as well as ASC differentiation and proliferation are described in detail. ASCs may differentiate into endothelial cells during neovascularization; however, recent clinical trials have suggested that ASCs may also stimulate angiogenesis and neovascularization indirectly through the release of paracrine factors.
Department of Anatomy Poznan University of Medical Sciences 60 781 Poznan Poland
Department of Histology and Embryology Poznan University of Medical Sciences 60 781 Poznan Poland
Institute of Human Genetics Polish Academy of Sciences 60 479 Poznan Poland
Physiology Graduate Program North Carolina State University Raleigh NC 27695 USA
The School of Medicine Medical Sciences and Nutrition University of Aberdeen Aberdeen AB25 2ZD UK
Zobrazit více v PubMed
Frese L., Dijkman P.E., Hoerstrup S.P. Adipose Tissue-Derived Stem Cells in Regenerative Medicine. Transfus. Med. Hemother. 2016;43:268–274. doi: 10.1159/000448180. PubMed DOI PMC
Ma T., Sun J., Zhao Z., Lei W., Chen Y., Wang X., Yang J., Shen Z. A brief review: Adipose-derived stem cells and their therapeutic potential in cardiovascular diseases. Stem Cell Res. Ther. 2017;8:1–8. doi: 10.1186/s13287-017-0585-3. PubMed DOI PMC
Caplan A.I. Mesenchymal stem cells: Time to change the name! Stem Cells Transl. Med. 2017;6:1445–1451. doi: 10.1002/sctm.17-0051. PubMed DOI PMC
Madonna R., de Caterina R. In vitro neovasculogenic potential of resident adipose tissue precursors. Am. J. Physiol. Cell Physiol. 2008;295:1271–1280. doi: 10.1152/ajpcell.00186.2008. PubMed DOI
Gimble J.M., Katz A.J., Bunnell B.A. Adipose-derived stem cells for regenerative medicine. Circ. Res. 2007;100:1249–1260. doi: 10.1161/01.RES.0000265074.83288.09. PubMed DOI PMC
Sarantopoulos C.N., Banyard D.A., Ziegler M.E., Sun B., Shaterian A., Widgerow A.D. Elucidating the Preadipocyte and Its Role in Adipocyte Formation: A Comprehensive Review. Stem Cell Rev. Rep. 2018;14:27–42. doi: 10.1007/s12015-017-9774-9. PubMed DOI
Fukumura D., Ushiyama A., Duda D.G., Xu L., Tam J., Krishna V., Chatterjee K., Garkavtsev I., Jain R.K. Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ Res. 2003;93 doi: 10.1161/01.RES.0000099243.20096.FA. PubMed DOI PMC
Zhao L., Johnson T., Liu D. Therapeutic angiogenesis of adipose-derived stem cells for ischemic diseases. Stem Cell Res. Ther. 2017;8:1–9. doi: 10.1186/s13287-017-0578-2. PubMed DOI PMC
Yang H.N., Choi J.H., Park J.S., Jeon S.Y., Park K.D., Park K.H. Differentiation of endothelial progenitor cells into endothelial cells byheparin-modified supramolecular pluronic nanogels encapsulating bFGF and complexed with VEGF165 genes. Biomaterials. 2014;35:4716–4728. doi: 10.1016/j.biomaterials.2014.02.038. PubMed DOI
Matsumoto T., Kano K., Kondo D., Fukuda N., Iribe Y., Tanaka N., Matsubara Y., Sakuma T., Satomi A., Otaki M., et al. Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J. Cell. Physiol. 2008;215:210–222. doi: 10.1002/jcp.21304. PubMed DOI
Morigny P., Houssier M., Mouisel E., Langin D. Adipocyte lipolysis and insulin resistance. Biochimie. 2016;125:259–266. doi: 10.1016/j.biochi.2015.10.024. PubMed DOI
Wald D., Teucher B., Dinkel J., Kaaks R., Delorme S., Boeing H., Seidensaal K., Meinzer H.P., Heimann T. Automatic quantification of subcutaneous and visceral adipose tissue from whole-body magnetic resonance images suitable for large cohort studies. J. Magn. Reson. Imaging. 2012;36:1421–1434. doi: 10.1002/jmri.23775. PubMed DOI
Choe S.S., Huh J.Y., Hwang I.J., Kim J.I., Kim J.B. Adipose tissue remodeling: Its role in energy metabolism and metabolic disorders. Front. Endocrinol. 2016;7:1–16. doi: 10.3389/fendo.2016.00030. PubMed DOI PMC
Sztalryd C., Brasaemle D.L. The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Biochim. Biophys. Acta—Mol. Cell Biol. Lipids. 2017;1862:1221–1232. doi: 10.1016/j.bbalip.2017.07.009. PubMed DOI PMC
Pinto A., Toselli L., Cava E. Dietary intervention and nutritional counseling. Multidiscip. Approach Obes. 2015 doi: 10.1007/978-3-319-09045-0_21. DOI
Zangi L., Oliveira M.S., Ye L.Y., Ma Q., Sultana N., Hadas Y., Chepurko E., Später D., Zhou B., Chew W.L., et al. Insulin-like growth factor 1 receptor-dependent pathway drives epicardial adipose tissue formation after myocardial injury. Circulation. 2017;135:59–72. doi: 10.1161/CIRCULATIONAHA.116.022064. PubMed DOI PMC
Ansaldo A.M., Montecucco F., Sahebkar A., Dallegri F., Carbone F. Epicardial adipose tissue and cardiovascular diseases. Int. J. Cardiol. 2019;278:254–260. doi: 10.1016/j.ijcard.2018.09.089. PubMed DOI
Cao Y. Science in medicine Angiogenesis modulates adipogenesis and obesity. Diversity. 2007;117:2362–2368. doi: 10.1172/JCI32239.2362. PubMed DOI PMC
Asano A., Morimatsu M., Nikami H., Yoshida T., Saito M. Adrenergic activation of vascular endothelial growth factor mRNA expression in rat brown adipose tissue: Implication in cold-induced angiogenesis. Biochem. J. 1997;328:179–183. doi: 10.1042/bj3280179. PubMed DOI PMC
Chen J., Kitchen C.M., Streb J.W., Miano J.M. Myocardin: A Component of a Molecular Switch for Smooth Muscle Differentiation. J. Mol. Cell. Cardiol. 2002;34:1345–1356. doi: 10.1006/jmcc.2002.2086. PubMed DOI
Pusztaszeri M.P., Seelentag W., Bosman F.T. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and FLI-1 in normal human tissues. J. Histochem. Cytochem. 2006;54:385–395. doi: 10.1369/jhc.4A6514.2005. PubMed DOI
Kalinina N., Kharlampieva D., Loguinova M., Butenko I., Pobeguts O., Efimenko A., Ageeva L., Sharonov G., Ischenko D., Alekseev D., et al. Characterization of secretomes provides evidence for adipose-derived mesenchymal stromal cells subtypes. Stem Cell Res. Ther. 2015;6:1–12. doi: 10.1186/s13287-015-0209-8. PubMed DOI PMC
Hartwig S., De Filippo E., Göddeke S., Knebel B., Kotzka J., Al-Hasani H., Roden M., Lehr S., Sell H. Exosomal proteins constitute an essential part of the human adipose tissue secretome. Biochim. Biophys. Acta—Proteins Proteom. 2019;1867:140172. doi: 10.1016/j.bbapap.2018.11.009. PubMed DOI
Dubey N.K., Mishra V.K., Dubey R., Deng Y.H., Tsai F.C., Deng W.P. Revisiting the advances in isolation, characterization and secretome of adipose-derived stromal/stem cells. Int. J. Mol. Sci. 2018;19:2200. doi: 10.3390/ijms19082200. PubMed DOI PMC
Sbrana F.V., Cortini M., Avnet S., Perut F., Columbaro M., De Milito A., Baldini N. The Role of Autophagy in the Maintenance of Stemness and Differentiation of Mesenchymal Stem Cells. Stem Cell Rev. Rep. 2016;12:621–633. doi: 10.1007/s12015-016-9690-4. PubMed DOI
Yamada Y., Wang X.D., Yokoyama S.I., Fukuda N., Takakura N. Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium. Biochem. Biophys. Res. Commun. 2006;342:662–670. doi: 10.1016/j.bbrc.2006.01.181. PubMed DOI
El Sayyad H.I., Sobh M., Khalifa S., El-Sayyad O., El S.H.I. Adipose Derived Mesenchymal Stem Cell Differentiation into Adipogenic and Osteogenic Stem Cells. Stud. Stem Cells Res. Ther. 2016:17–24. doi: 10.17352/sscrt.000008. DOI
Nishimura S., Manabe I., Nagasaki M., Hosoya Y., Yamashita H., Fujita H., Ohsugi M., Tobe K., Kadowaki T., Nagai R., et al. Adipogenesis in Obesity Requires Close Interplay. Diabetes. 2007;56:1517–1526. doi: 10.2337/db06-1749. PubMed DOI
Rigamonti A., Brennand K., Lau F., Cowan C.A. Rapid Cellular Turnover in Adipose Tissue. PLoS ONE. 2011;6:e17637. doi: 10.1371/journal.pone.0017637. PubMed DOI PMC
Tran K.-V., Gealekman O., Frontini A., Zingaretti M.C., Morroni M., Giordano A., Smorlesi A., Perugini J., De Matteis R., Sbarbati A., et al. The Vascular Endothelium of the Adipose Tissue Gives Rise to Both White and Brown Fat Cells. Cell Metab. 2012;15:222–229. doi: 10.1016/j.cmet.2012.01.008. PubMed DOI PMC
Jiang Y., Berry D.C., Jo A., Tang W., Arpke R.W., Kyba M., Graff J.M. A PPARγ transcriptional cascade directs adipose progenitor cell-niche interaction and niche expansion. Nat. Commun. 2017;8:15926. doi: 10.1038/ncomms15926. PubMed DOI PMC
Wang W., Huang L., Huang Y., Yin J., Berk A.J., Friedman J.M., Wang G. Mediator MED23 Links Insulin Signaling to the Adipogenesis Transcription Cascade. Dev. Cell. 2009;16:764–771. doi: 10.1016/j.devcel.2009.04.006. PubMed DOI PMC
Gupta R.K., Mepani R.J., Kleiner S., Lo J.C., Khandekar M.J., Cohen P., Frontini A., Bhowmick D.C., Ye L., Cinti S., et al. Zfp423 Expression Identifies Committed Preadipocytes and Localizes to Adipose Endothelial and Perivascular Cells. Cell Metab. 2012;15:230–239. doi: 10.1016/j.cmet.2012.01.010. PubMed DOI PMC
Yin L., Liu M., Wang F., Wang X., Tang Y., Zhao Q., Wang T., Chen Y., Huang C. Transcription Factor prrx1 Promotes Brown Adipose-Derived Stem Cells Differentiation to Sinus Node-Like Cells. DNA Cell Biol. 2019;38:1313–1322. doi: 10.1089/dna.2019.4998. PubMed DOI PMC
Zhang W., Bai X., Zhao B., Li Y., Zhang Y., Li Z., Wang X., Luo L., Han F., Zhang J., et al. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway. Exp. Cell Res. 2018;370:333–342. doi: 10.1016/j.yexcr.2018.06.035. PubMed DOI
Fève B. Adipogenesis: Cellular and molecular aspects. Best Pr. Res. Clin. Endocrinol. Metab. 2005;19:483–499. doi: 10.1016/j.beem.2005.07.007. PubMed DOI
Lefterova M.I., Haakonsson A.K., Lazar M.A., Mandrup S. PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol. Metab. 2014;25:293–302. doi: 10.1016/j.tem.2014.04.001. PubMed DOI PMC
Sarjeant K., Stephens J.M. Adipogenesis. Cold Spring Harb. Perspect. Biol. 2012;4:a008417. doi: 10.1101/cshperspect.a008417. PubMed DOI PMC
Yu H., He K., Wang L., Hu J., Gu J., Zhou C., Lu R., Jin Y. Stk40 represses adipogenesis through translational control of CCAAT/enhancer-binding proteins. J Cell Sci. 2015;128:2881–2890. doi: 10.1242/jcs.170282. PubMed DOI
Gunasekar S.K., Xie L., Sah R. SWELL signalling in adipocytes: Can fat “feel” fat? Adipocyte. 2019;8:223–228. doi: 10.1080/21623945.2019.1612223. PubMed DOI PMC
Steinhart Z., Angers S. Wnt signaling in development and tissue homeostasis. Development. 2018;145 doi: 10.1242/dev.146589. PubMed DOI
Chen N., Wang J. Wnt/β-Catenin Signaling and Obesity. Front Physiol. 2018;9:792. doi: 10.3389/fphys.2018.00792. PubMed DOI PMC
Ishay-Ronen D., Diepenbruck M., Kalathur R.K.R., Sugiyama N., Tiede S., Ivanek R., Bantug G., Morini M.F., Wang J., Hess C., et al. Gain Fat—Lose Metastasis: Converting Invasive Breast Cancer Cells into Adipocytes Inhibits Cancer Metastasis. Cancer Cell. 2019;35:17–32.e6. doi: 10.1016/j.ccell.2018.12.002. PubMed DOI
Li S., Xue T., He F., Liu Z., Ouyang S., Cao D., Wu J. A time-resolved proteomic analysis of transcription factors regulating adipogenesis of human adipose derived stem cells. Biochem. Biophys. Res. Commun. 2019;511:855–861. doi: 10.1016/j.bbrc.2019.02.134. PubMed DOI
Suresh V., West J.L. 3D Culture Facilitates VEGF-Stimulated Endothelial Differentiation of Adipose-Derived Stem Cells. Ann. Biomed. Eng. 2019:1–11. doi: 10.1007/s10439-019-02297-y. PubMed DOI
Hu T., Kitano A., Luu V., Dawson B., Hoegenauer K.A., Lee B.H., Nakada D. Bmi1 Suppresses Adipogenesis in the Hematopoietic Stem Cell Niche. Stem Cell Rep. 2019;13:545–558. doi: 10.1016/j.stemcr.2019.05.027. PubMed DOI PMC
Ali A.T., Hochfeld W.E., Myburgh R., Pepper M.S. Adipocyte and adipogenesis. Eur. J. Cell Biol. 2013;92:229–236. doi: 10.1016/j.ejcb.2013.06.001. PubMed DOI
Kiwaki K., Novak C.M., Hsu D.K., Liu F.-T., Levine J.A. Galectin-3 Stimulates Preadipocyte Proliferation and Is Up-regulated in Growing Adipose Tissue*. Obesity. 2007;15:32–39. doi: 10.1038/oby.2007.526. PubMed DOI
Wang C., Wang Y., Ma S.-R., Zuo Z.-Y., Wu Y.-B., Kong W.-J., Wang A.-P., Jiang J.-D. Berberine inhibits adipocyte differentiation, proliferation and adiposity through down-regulating galectin-3. Sci. Rep. 2019;9:13415. doi: 10.1038/s41598-019-50103-5. PubMed DOI PMC
Nadler S.T., Stoehr J.P., Schueler K.L., Tanimoto G., Yandell B.S., Attie A.D. The expression of adipogenic genes is decreased in obesity and diabetes mellitus. Proc. Natl. Acad. Sci. USA. 2000;97:11371–11376. doi: 10.1073/pnas.97.21.11371. PubMed DOI PMC
Lee E.Y., Xia Y., Kim W.-S., Kim M.H., Kim T.H., Kim K.J., Park B.-S., Sung J.-H. Hypoxia-enhanced wound-healing function of adipose-derived stem cells: Increase in stem cell proliferation and up-regulation of VEGF and bFGF. Wound Repair Regen. 2009;17:540–547. doi: 10.1111/j.1524-475X.2009.00499.x. PubMed DOI
Balusamy S.R., Perumalsamy H., Ranjan A., Park S., Ramani S. A dietary vegetable, Moringa oleifera leaves (drumstick tree) induced fat cell apoptosis by inhibiting adipogenesis in 3T3-L1 adipocytes. J. Funct. Foods. 2019;59:251–260. doi: 10.1016/j.jff.2019.05.029. DOI
Qi R., Wang J., Wang Q., Qiu X., Yang F., Liu Z., Huang J. MicroRNA-425 controls lipogenesis and lipolysis in adipocytes. Biochim. Biophys. Acta—Mol. Cell Biol. Lipids. 2019;1864:744–755. doi: 10.1016/j.bbalip.2019.02.007. PubMed DOI
Lee J., Kim D., Choi J., Choi H., Ryu J.-H., Jeong J., Park E.-J., Kim S.-H., Kim S. Dehydrodiconiferyl alcohol isolated from Cucurbita moschata shows anti-adipogenic and anti-lipogenic effects in 3T3-L1 cells and primary mouse embryonic fibroblasts. J. Biol. Chem. 2012;287:8839–8851. doi: 10.1074/jbc.M111.263434. PubMed DOI PMC
Simu S.Y., Ahn S., Castro-Aceituno V., Singh P., Mathiyalagan R., Jiménez-Pérez Z.E., Hurh J., Oi L.Z., Hun N.J., Kim Y.-J., et al. Gold Nanoparticles Synthesized with Fresh Panax ginseng Leaf Extract Suppress Adipogenesis by Downregulating PPAR γ/CEBP α Signaling in 3T3-L1 Mature Adipocytes. J. Nanosci. Nanotechnol. 2019;19:701–708. doi: 10.1166/jnn.2019.15753. PubMed DOI
Doğan A., Demirci S., Apdik H., Apdik E.A., Şahin F. Mesenchymal Stem Cell Isolation from Pulp Tissue and Co-Culture with Cancer Cells to Study Their Interactions. J. Vis. Exp. 2019 doi: 10.3791/58825. PubMed DOI
Wei H., Li J., Shi S., Zhang L., Xiang A., Shi X., Yang G., Chu G. Hhip inhibits proliferation and promotes differentiation of adipocytes through suppressing hedgehog signaling pathway. Biochem. Biophys. Res. Commun. 2019;514:148–156. doi: 10.1016/j.bbrc.2019.04.047. PubMed DOI
John B., Naczki C., Patel C., Ghoneum A., Qasem S., Salih Z., Said N. Regulation of the bi-directional cross-talk between ovarian cancer cells and adipocytes by SPARC. Oncogene. 2019;38:4366–4383. doi: 10.1038/s41388-019-0728-3. PubMed DOI PMC
Shapira S.N., Seale P. Transcriptional Control of Brown and Beige Fat Development and Function. Obesity. 2019;27:13–21. doi: 10.1002/oby.22334. PubMed DOI PMC
Abdalla B.A., Chen J., Nie Q., Zhang X. Genomic Insights into the Multiple Factors Controlling Abdominal Fat Deposition in a Chicken Model. Front Genet. 2018;9:262. doi: 10.3389/fgene.2018.00262. PubMed DOI PMC
Shao M., Wang Q.A., Song A., Vishvanath L., Busbuso N.C., Scherer P.E., Gupta R.K. Cellular Origins of Beige Fat Cells Revisited. Diabetes. 2019;68:1874–1885. doi: 10.2337/db19-0308. PubMed DOI PMC
Fischer A.W., Schlein C., Cannon B., Heeren J., Nedergaard J. Intact innervation is essential for diet-induced recruitment of brown adipose tissue. Am. J. Physiol. Endocrinol. Metab. 2019;316:E487–E503. doi: 10.1152/ajpendo.00443.2018. PubMed DOI PMC
Lee K.Y., Luong Q., Sharma R., Dreyfuss J.M., Ussar S., Kahn C.R. Developmental and functional heterogeneity of white adipocytes within a single fat depot. EMBO J. 2019;38 doi: 10.15252/embj.201899291. PubMed DOI PMC
Westphal S., Gantert T., Kless C., Hüttinger K., Klingenspor M., Fromme T. Fibroblast growth factor 8b induces uncoupling protein 1 expression in epididymal white preadipocytes. Sci. Rep. 2019;9:8470. doi: 10.1038/s41598-019-44878-w. PubMed DOI PMC
Gálvez I., Martín-Cordero L., Hinchado M.D., Álvarez-Barrientos A., Ortega E. Anti-inflammatory effect of β2 adrenergic stimulation on circulating monocytes with a pro-inflammatory state in high-fat diet-induced obesity. Brain Behav. Immun. 2019;80:564–572. doi: 10.1016/j.bbi.2019.04.042. PubMed DOI
Li H., Wu G., Fang Q., Zhang M., Hui X., Sheng B., Wu L., Bao Y., Li P., Xu A., et al. Fibroblast growth factor 21 increases insulin sensitivity through specific expansion of subcutaneous fat. Nat. Commun. 2018;9 doi: 10.1038/s41467-017-02677-9. PubMed DOI PMC
Hsu J.-W., Yeh S.-C., Tsai F.-Y., Chen H.-W., Tsou T.-C. Fibroblast growth factor 21 secretion enhances glucose uptake in mono(2-ethylhexyl)phthalate-treated adipocytes. Toxicol. In Vitro. 2019;59:246–254. doi: 10.1016/j.tiv.2019.04.021. PubMed DOI
Cuevas-Ramos D., Mehta R., Aguilar-Salinas C.A. Fibroblast Growth Factor 21 and Browning of White Adipose Tissue. Front. Physiol. 2019;10:37. doi: 10.3389/fphys.2019.00037. PubMed DOI PMC
Luo H., Guo Y., Liu Y., Wang Y., Zheng R., Ban Y., Peng L., Yuan Q., Liu W. Growth differentiation factor 11 inhibits adipogenic differentiation by activating TGF-beta/Smad signalling pathway. Cell Prolif. 2019;52 doi: 10.1111/cpr.12631. PubMed DOI PMC
Smith P.J., Wise L.S., Berkowitz R., Wan C., Rubin C.S. Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J. Biol. Chem. 1988;263:9402–9408. PubMed
Steinbrenner H., Micoogullari M., Hoang N.A., Bergheim I., Klotz L.-O., Sies H. Selenium-binding protein 1 (SELENBP1) is a marker of mature adipocytes. Redox Biol. 2019;20:489–495. doi: 10.1016/j.redox.2018.11.004. PubMed DOI PMC
Wang F., Li H., Lou Y., Xie J., Cao D., Huang X. Insulin_like growth factor I promotes adipogenesis in hemangioma stem cells from infantile hemangiomas. Mol. Med. Rep. 2019;19:2825–2830. doi: 10.3892/mmr.2019.9895. PubMed DOI
Zhu D., Shi S., Wang H., Liao K. Growth arrest induces primary-cilium formation and sensitizes IGF-1-receptor signaling during differentiation induction of 3T3-L1 preadipocytes. J. Cell Sci. 2009;122:2760–2768. doi: 10.1242/jcs.046276. PubMed DOI
Woldt E., Matz R.L., Terrand J., Mlih M., Gracia C., Foppolo S., Martin S., Bruban V., Ji J., Velot E., et al. Differential signaling by adaptor molecules LRP1 and ShcA regulates adipogenesis by the insulin-like growth factor-1 receptor. J. Biol. Chem. 2011;286:16775–16782. doi: 10.1074/jbc.M110.212878. PubMed DOI PMC
Ando Y., Sato F., Fukunaga H., Iwasaki Y., Chiba Y., Tebakari M., Daigo Y., Kawashima J., Kamei J. Placental extract suppresses differentiation of 3T3-L1 preadipocytes to mature adipocytes via accelerated activation of p38 MAPK during the early phase of adipogenesis. Nutr. Metab. 2019;16:32. doi: 10.1186/s12986-019-0361-8. PubMed DOI PMC
Young D.A., Choi Y.S., Engler A.J., Christman K.L. Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials. 2013;34:8581–8588. doi: 10.1016/j.biomaterials.2013.07.103. PubMed DOI PMC
Zhou Z.Q., Chen Y., Chai M., Tao R., Lei Y.H., Jia Y.Q., Shu J., Ren J., Li G., Wei W.X., et al. Adipose extracellular matrix promotes skin wound healing by inducing the differentiation of adipose_derived stem cells into fibroblasts. Int. J. Mol. Med. 2018;43:890–900. doi: 10.3892/ijmm.2018.4006. PubMed DOI PMC
Tang M., Chen R., Wang H., Sun G., Yin F., Liang B., Yang Y., Sharen G., Wei H., Zhou X., et al. Obesity-Induced Methylation of Osteopontin Contributes to Adipogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells. Stem Cells Int. 2019;2019:1–13. doi: 10.1155/2019/1238153. PubMed DOI PMC
Kindler D., Sousa I.S., Schweizer S., Lerch S., Klingenspor M., Herzig S., Vegiopoulos A. A novel growth factor-dependent thermogenic brown adipocyte cell line from defined precursor cells. BioRxiv. 2019:565168. doi: 10.1101/565168. DOI
Tu W., Fu Y., Xie X. RepSox, a small molecule inhibitor of the TGFβ receptor, induces brown adipogenesis and browning of white adipocytes. Acta Pharmacol. Sin. 2019;40:1523–1531. doi: 10.1038/s41401-019-0264-2. PubMed DOI PMC
Yang K., Guan H., Arany E., Hill D.J., Cao X. Neuropeptide Y is produced in visceral adipose tissue and promotes proliferation of adipocyte precursor cells via the Y1 receptor. FASEB J. 2008;22:2452–2464. doi: 10.1096/fj.07-100735. PubMed DOI
Sabatakos G., Sims N.A., Chen J., Aoki K., Kelz M.B., Amling M., Bouali Y., Mukhopadhyay K., Ford K., Nestler E.J., et al. Overexpression of DeltaFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat. Med. 2000;6:985–990. doi: 10.1038/79683. PubMed DOI
Li K., Wu Y., Yang H., Hong P., Fang X., Hu Y. H19/miR-30a/C8orf4 axis modulates the adipogenic differentiation process in human adipose tissue-derived mesenchymal stem cells. J. Cell. Physiol. 2019;234:20925–20934. doi: 10.1002/jcp.28697. PubMed DOI
Rahman M.S., Khan F., Syeda P.K., Nishimura K., Jisaka M., Nagaya T., Shono F., Yokota K. Endogenous synthesis of prostacyclin was positively regulated during the maturation phase of cultured adipocytes. Cytotechnology. 2014;66:635–646. doi: 10.1007/s10616-013-9616-9. PubMed DOI PMC
Larian N., Ensor M., Thatcher S.E., English V., Morris A.J., Stromberg A., Cassis L.A. Pseudomonas aeruginosa-derived pyocyanin reduces adipocyte differentiation, body weight, and fat mass as mechanisms contributing to septic cachexia. Food Chem. Toxicol. 2019;130:219–230. doi: 10.1016/j.fct.2019.05.012. PubMed DOI PMC
McCabe I.C., Fedorko A., Myers M.G., Leinninger G., Scheller E., McCabe L.R. Novel leptin receptor signaling mutants identify location and sex-dependent modulation of bone density, adiposity, and growth. J. Cell. Biochem. 2019;120:4398–4408. doi: 10.1002/jcb.27726. PubMed DOI PMC
Zhang Y., Wang Y., Wang X., Ji Y., Cheng S., Wang M., Zhang C., Yu X., Zhao R., Zhang W., et al. Acetyl-coenzyme A acyltransferase 2 promote the differentiation of sheep precursor adipocytes into adipocytes. J. Cell. Biochem. 2019;120:8021–8031. doi: 10.1002/jcb.28080. PubMed DOI
Goldstein N., Haim Y., Mattar P., Hadadi-Bechor S., Maixner N., Kovacs P., Blüher M., Rudich A. Leptin stimulates autophagy/lysosome-related degradation of long-lived proteins in adipocytes. Adipocyte. 2019;8:51–60. doi: 10.1080/21623945.2019.1569447. PubMed DOI PMC
Sun G., Li F., Ma X., Sun J., Jiang R., Tian Y., Han R., Li G., Wang Y., Li Z., et al. gga-miRNA-18b-3p Inhibits Intramuscular Adipocytes Differentiation in Chicken by Targeting the ACOT13 Gene. Cells. 2019;8:556. doi: 10.3390/cells8060556. PubMed DOI PMC
Zöller N., Schreiner S., Petry L., Hoffmann S., Steinhorst K., Kleemann J., Jäger M., Kaufmann R., Meissner M., Kippenberger S. Collagen I Promotes Adipocytogenesis in Adipose-Derived Stem Cells In Vitro. Cells. 2019;8:302. doi: 10.3390/cells8040302. PubMed DOI PMC
Guo Z., Cao Y. An lncRNA_miRNA_mRNA ceRNA network for adipocyte differentiation from human adipose_derived stem cells. Mol. Med. Rep. 2019;19:4271–4287. doi: 10.3892/mmr.2019.10067. PubMed DOI PMC
Ahonen M.A., Haridas P.A.N., Mysore R., Wabitsch M., Fischer-Posovszky P., Olkkonen V.M. miR-107 inhibits CDK6 expression, differentiation, and lipid storage in human adipocytes. Mol. Cell Endocrinol. 2019;479:110–116. doi: 10.1016/j.mce.2018.09.007. PubMed DOI
Manavski Y., Lucas T., Glaser S.F., Dorsheimer L., Günther S., Braun T., Rieger M.A., Zeiher A.M., Boon R.A., Dimmeler S. Clonal expansion of endothelial cells contributes to ischemia-induced neovascularization. Circ. Res. 2018;122:670–677. doi: 10.1161/CIRCRESAHA.117.312310. PubMed DOI
Li Y., Zhao Y., Sang S., Leung T. Methylglyoxal-Induced Retinal Angiogenesis in Zebrafish Embryo: A Potential Animal Model of Neovascular Retinopathy. J. Ophthalmol. 2019;2019 doi: 10.1155/2019/2746735. PubMed DOI PMC
Zhang W., Trebak M. Vascular balloon injury and intraluminal administration in rat carotid artery. J. Vis. Exp. 2014 doi: 10.3791/52045. PubMed DOI PMC
Strassburg S., Nienhueser H., Björn Stark G., Finkenzeller G., Torio-Padron N. Co-culture of adipose-derived stem cells and endothelial cells in fibrin induces angiogenesis and vasculogenesis in a chorioallantoic membrane model. J. Tissue Eng. Regen. Med. 2016;10:496–506. doi: 10.1002/term.1769. PubMed DOI
Fantin A., Lampropoulou A., Gestri G., Raimondi C., Senatore V., Zachary I., Ruhrberg C. NRP1 Regulates CDC42 Activation to Promote Filopodia Formation in Endothelial Tip Cells. Cell Rep. 2015;11:1577–1590. doi: 10.1016/j.celrep.2015.05.018. PubMed DOI PMC
Urbich C., Dimmeler S. Endothelial progenitor cells: Characterization and role in vascular biology. Circ. Res. 2004;95:343–353. doi: 10.1161/01.RES.0000137877.89448.78. PubMed DOI
Darvishi B., Majidzadeh A.K., Ghadirian R., Mosayebzadeh M., Farahmand L. Recruited bone marrow derived cells, local stromal cells and IL-17 at the front line of resistance development to anti-VEGF targeted therapies. Life Sci. 2019;217:34–40. doi: 10.1016/j.lfs.2018.11.033. PubMed DOI
Gerszten R.E., Garcia-Zepeda E.A., Lim Y.C., Yoshida M., Ding H.A., Gimbrone M.A., Luster A.D., Luscinskas F.W., Rosenzwelg A. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature. 1999;398:718–725. doi: 10.1038/19546. PubMed DOI
Gerhardt H., Golding M., Fruttiger M., Ruhrberg C., Lundkvist A., Abramsson A., Jeltsch M., Mitchell C., Alitalo K., Shima D., et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 2003;161:1163–1177. doi: 10.1083/jcb.200302047. PubMed DOI PMC
Yang J., Ii M., Kamei N., Alev C., Kwon S.-M., Kawamoto A., Akimaru H., Masuda H., Sawa Y., Asahara T. CD34+ Cells Represent Highly Functional Endothelial Progenitor Cells in Murine Bone Marrow. PLoS ONE. 2011;6:e20219. doi: 10.1371/journal.pone.0020219. PubMed DOI PMC
Maher T.J., Ren Y., Li Q., Braunlin E., Garry M.G., Sorrentino B.P., Martin C.M. ATP-binding cassette transporter Abcg2 lineage contributes to the cardiac vasculature after oxidative stress. Am. J. Physiol. Circ. Physiol. 2014;306:H1610–H1618. doi: 10.1152/ajpheart.00638.2013. PubMed DOI PMC
Akita M., Tanaka K., Matsumoto S., Komatsu K., Fujita K. Detection of the hematopoietic stem and progenitor cell marker Cd133 during angiogenesis in three-dimensional collagen gel culture. Stem Cells Int. 2013 doi: 10.1155/2013/927403. PubMed DOI PMC
Gehling U.M., Ergün S., Schumacher U., Wagener C., Pantel K., Otte M., Schuch G., Schafhausen P., Mende T., Kilic N., et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood. 2000;95:3106–3112. doi: 10.1182/blood.V95.10.3106. PubMed DOI
Park J.S., Yang H.N., Yi S.W., Kim J.H., Park K.H. Neoangiogenesis of human mesenchymal stem cells transfected with peptide-loaded and gene-coated PLGA nanoparticles. Biomaterials. 2016;76:226–237. doi: 10.1016/j.biomaterials.2015.10.062. PubMed DOI
Basagiannis D., Zografou S., Murphy C., Fotsis T., Morbidelli L., Ziche M., Bleck C., Mercer J., Christoforidis S. VEGF induces signalling and angiogenesis by directing VEGFR2 internalisation through macropinocytosis. J. Cell Sci. 2016;129:4091–4104. doi: 10.1242/dev.146456. PubMed DOI
Liang X., Zhang L., Wang S., Han Q., Zhao R.C. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J. Cell Sci. 2016;129:2182–2189. doi: 10.1242/jcs.170373. PubMed DOI
Davis P.J., Leinung M., Mousa S.A. microRNAs and Angiogenesis. Anti-Angiogenesis Strateg. Cancer Ther. 2017:69–84. doi: 10.1016/b978-0-12-802576-5.00005-x. DOI
Anand S., Cheresh D.A. MicroRNA-mediated regulation of the angiogenic switch. Curr. Opin. Hematol. 2011;18:171–176. doi: 10.1097/MOH.0b013e328345a180. PubMed DOI PMC
Verdelli C., Avagliano L., Creo P., Guarnieri V., Scillitani A., Vicentini L., Steffano G.B., Beretta E., Soldati L., Costa E., et al. Tumour-associated fibroblasts contribute to neoangiogenesis in human parathyroid neoplasia. Endocr. Relat. Cancer. 2015;22:87–98. doi: 10.1530/ERC-14-0161. PubMed DOI
Morbidelli L., Donnini S., Ziche M. Therapeutic Implications of the Nitric Oxide Pathway in the Angiogenesis of Tumors and Inflammatory-Related Disorders. Ther. Appl. Nitric Oxide Cancer Inflamm. Disord. 2019:65–91. doi: 10.1016/b978-0-12-816545-4.00004-9. DOI
Würdinger T., Tannous B.A., Saydam O., Skog J., Grau S., Soutschek J., Weissleder R., Breakefield X.O., Krichevsky A.M. miR-296 Regulates Growth Factor Receptor Overexpression in Angiogenic Endothelial Cells. Cancer Cell. 2008;14:382–393. doi: 10.1016/j.ccr.2008.10.005. PubMed DOI PMC
Yunus M., Jansson P.J., Kovacevic Z., Kalinowski D.S., Richardson D.R. Tumor-induced neoangiogenesis and receptor tyrosine kinases—Mechanisms and strategies for acquired resistance. Biochim. Biophys. Acta—Gen. Subj. 2019;1863:1217–1225. doi: 10.1016/j.bbagen.2019.04.017. PubMed DOI
Stamatopoulos A., Stamatopoulos T., Gamie Z., Kenanidis E., Ribeiro R.D.C., Rankin K.S., Gerrand C., Dalgarno K., Tsiridis E. Mesenchymal stromal cells for bone sarcoma treatment: Roadmap to clinical practice. J. Bone Oncol. 2019;16:100231. doi: 10.1016/j.jbo.2019.100231. PubMed DOI PMC
Li W., Xu H., Qian C. c-Kit-Positive Adipose Tissue-Derived Mesenchymal Stem Cells Promote the Growth and Angiogenesis of Breast Cancer. Biomed. Res. Int. 2017;2017:7407168. doi: 10.1155/2017/7407168. PubMed DOI PMC
Wei H.J., Zeng R., Lu J.H., Lai W.F.T., Chen W.H., Liu H.Y., Chang Y.T., Deng W.P. Adipose-derived stem cells promote tumor initiation and accelerate tumor growth by interleukin-6 production. Oncotarget. 2015;6:7713–7726. doi: 10.18632/oncotarget.3481. PubMed DOI PMC
Li J., Lan T., Zhang C., Zeng C., Hou J., Yang Z., Zhang M., Liu J., Liu B. Reciprocal activation between IL-6/STAT3 and NOX4/Akt signalings promotes proliferation and survival of non-small cell lung cancer cells. Oncotarget. 2015;6:1031–1048. doi: 10.18632/oncotarget.2671. PubMed DOI PMC
Lu C., Vickers M.F., Kerbel R.S. Interleukin 6: A fibroblast-derived growth inhibitor of human melanoma cells from early but not advanced stages of tumor progression. Proc. Natl. Acad. Sci. USA. 1992;89:9215–9219. doi: 10.1073/pnas.89.19.9215. PubMed DOI PMC
Lu C., Kerbel R.S. Interleukin-6 undergoes transition from paracrine growth inhibitor to autocrine stimulator during human melanoma progression. J. Cell Biol. 1993;120:1281–1288. doi: 10.1083/jcb.120.5.1281. PubMed DOI PMC
Hoejberg L., Bastholt L., Schmidt H. Interleukin-6 and melanoma. Melanoma Res. 2012;22:327–333. doi: 10.1097/CMR.0b013e3283543d72. PubMed DOI
Chang P.H., Pan Y.P., Fan C.W., Tseng W.K., Huang J.S., Wu T.H., Chou W.C., Wang C.H., Yeh K.Y. Pretreatment serum interleukin-1β, interleukin-6, and tumor necrosis factor-α levels predict the progression of colorectal cancer. Cancer Med. 2016;5:426–433. doi: 10.1002/cam4.602. PubMed DOI PMC
Wu S., Singh S., Varney M.L., Kindle S., Singh R.K. Modulation of CXCL-8 expression in human melanoma cells regulates tumor growth, angiogenesis, invasion, and metastasis. Cancer Med. 2012;1:306–317. doi: 10.1002/cam4.28. PubMed DOI PMC
Eble J.A., Niland S. The extracellular matrix in tumor progression and metastasis. Clin. Exp. Metastasis. 2019;36:171–198. doi: 10.1007/s10585-019-09966-1. PubMed DOI
Preisner F., Leimer U., Sandmann S., Zoernig I., Germann G., Koellensperger E. Impact of Human Adipose Tissue-Derived Stem Cells on Malignant Melanoma Cells in an In Vitro Co-culture Model. Stem Cell Rev. Rep. 2018;14:125–140. doi: 10.1007/s12015-017-9772-y. PubMed DOI
Gao D., Nolan D.J., Mellick A.S., Bambino K., McDonnell K., Mittal V. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science. 2008;319:195–198. doi: 10.1126/science.1150224. PubMed DOI
Christodoulou I., Goulielmaki M., Devetzi M., Panagiotidis M., Koliakos G., Zoumpourlis V. Mesenchymal stem cells in preclinical cancer cytotherapy: A systematic review. Stem Cell Res. Ther. 2018;9 doi: 10.1186/s13287-018-1078-8. PubMed DOI PMC
Xiao R., Mansour A.G., Huang W., Chrislip L.A., Wilkins R.K., Queen N.J., Youssef Y., Mao H.C., Caligiuri M.A., Cao L. Adipocytes: A Novel Target for IL-15/IL-15Rα Cancer Gene Therapy. Mol. Ther. 2019;27:922–932. doi: 10.1016/j.ymthe.2019.02.011. PubMed DOI PMC
Ishibazawa A., Nagaoka T., Yokota H., Takahashi A., Omae T., Song Y.S., Takahashi T., Yoshida A. Characteristics of retinal neovascularization in proliferative diabetic retinopathy imaged by optical coherence tomography angiography. Investig. Ophthalmol. Vis. Sci. 2016;57:6247–6255. doi: 10.1167/iovs.16-20210. PubMed DOI
Prakash R., Carmichael S.T. Blood-brain barrier breakdown and neovascularization processes after stroke and traumatic brain injury. Curr. Opin. Neurol. 2015;28:556–564. doi: 10.1097/WCO.0000000000000248. PubMed DOI PMC
Planat-Benard V., Silvestre J.S., Cousin B., André M., Nibbelink M., Tamarat R., Clergue M., Manneville C., Saillan-Barreau C., Duriez M., et al. Plasticity of Human Adipose Lineage Cells Toward Endothelial Cells: Physiological and Therapeutic Perspectives. Circulation. 2004;109:656–663. doi: 10.1161/01.CIR.0000114522.38265.61. PubMed DOI
Wang K., Yu L.Y., Jiang L.Y., Wang H.B., Wang C.Y., Luo Y. The paracrine effects of adipose-derived stem cells on neovascularization and biocompatibility of a macroencapsulation device. Acta Biomater. 2015;15:65–76. doi: 10.1016/j.actbio.2014.12.025. PubMed DOI
Miranville A., Heeschen C., Sengenès C., Curat C.A., Busse R., Bouloumié A. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation. 2004;110:349–355. doi: 10.1161/01.CIR.0000135466.16823.D0. PubMed DOI
Rehman J., Traktuev D., Li J., Merfeld-Clauss S., Temm-Grove C.J., Bovenkerk J.E., Pell C.L., Johnstone B.H., Considine R.V., March K.L. Secretion of Angiogenic and Antiapoptotic Factors by Human Adipose Stromal Cells. Circulation. 2004;109:1292–1298. doi: 10.1161/01.CIR.0000121425.42966.F1. PubMed DOI
Kinnaird T., Stabile E., Burnett M.S., Shou M., Lee C.W., Barr S., Fuchs S., Epstein S.E. Local Delivery of Marrow-Derived Stromal Cells Augments Collateral Perfusion Through Paracrine Mechanisms. Circulation. 2004;109:1543–1549. doi: 10.1161/01.CIR.0000124062.31102.57. PubMed DOI
Nakagami H., Maeda K., Morishita R., Iguchi S., Nishikawa T., Takami Y., Kikuchi Y., Saito Y., Tamai K., Ogihara T., et al. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arter. Thromb. Vasc. Biol. 2005;25:2542–2547. doi: 10.1161/01.ATV.0000190701.92007.6d. PubMed DOI
Donizetti-Oliveira C., Semedo P., Burgos-Silva M., Cenedeze M.A., Malheiros D.M.A.C., Reis M.A., Pacheco-Silva A., Câmara N.O.S. Adipose tissue-derived stem cell treatment prevents renal disease progression. Cell Transplant. 2012;21:1727–1741. doi: 10.3727/096368911X623925. PubMed DOI
Terlizzi V., Hammes H., Harmsen M. Adipose-derived stromal cells contribute to microvascular stabilization in diabetic proliferative retinopathy: To be or notch to be? Diabetol. Und Stoffwechs. 2015;10 doi: 10.1055/s-0035-1549575. DOI
Ryu H.H., Lim J.H., Byeon Y.E., Park J.R., Seo M.S., Lee Y.W., Kim W.H., Kang K.S., Kweon O.K. Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury. J. Vet. Sci. 2009;10:273–284. doi: 10.4142/jvs.2009.10.4.273. PubMed DOI PMC
Valina C., Pinkernell K., Song Y.H., Bai X., Sadat S., Campeau R.J., Le Jemtel T.H., Alt E. Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur. Heart J. 2007;28:2667–2677. doi: 10.1093/eurheartj/ehm426. PubMed DOI
Léobon B., Roncalli J., Joffre C., Mazo M., Boisson M., Barreau C., Calise D., Arnaud E., André M., Pucéat M., et al. Adipose-derived cardiomyogenic cells: In vitro expansion and functional improvement in a mouse model of myocardial infarction. Cardiovasc. Res. 2009;83:757–767. doi: 10.1093/cvr/cvp167. PubMed DOI
Wang L., Deng J., Tian W., Xiang B., Yang T., Li G., Wang J., Gruwel M., Kashour T., Rendell J., et al. Adipose-derived stem cells are an effective cell candidate for treatment of heart failure: An MR imaging study of rat hearts. Am. J. Physiol.—Hear Circ Physiol. 2009;297 doi: 10.1152/ajpheart.01082.2008. PubMed DOI
Cai L., Johnstone B.H., Cook T.G., Tan J., Fishbein M.C., Chen P.-S., March K.L. IFATS Collection: Human Adipose Tissue-Derived Stem Cells Induce Angiogenesis and Nerve Sprouting Following Myocardial Infarction, in Conjunction with Potent Preservation of Cardiac Function. Stem Cells. 2009;27:230–237. doi: 10.1634/stemcells.2008-0273. PubMed DOI PMC
Rajnoch C., Chachques J.C., Berrebi A., Bruneval P., Benoit M.O., Carpentier A. Cellular therapy reverses myocardial dysfunction. J. Thorac. Cardiovasc. Surg. 2001;121:871–878. doi: 10.1067/mtc.2001.112937. PubMed DOI
Li R.K., Jia Z.Q., Weisel R.D., Merante F., Mickle D.A.G. Smooth muscle cell transplantation into myocardial scar tissue improves heart function. J. Mol. Cell Cardiol. 1999;31:513–522. doi: 10.1006/jmcc.1998.0882. PubMed DOI
Tomita S., Mickle D.A.G., Weisel R.D., Jia Z.Q., Tumiati L.C., Allidina Y., Liu P., Li R.K. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J. Thorac. Cardiovasc. Surg. 2002;123:1132–1140. doi: 10.1067/mtc.2002.120716. PubMed DOI
Houtgraaf J.H., Den Dekker W.K., Van Dalen B.M., Springeling T., De Jong R., Van Geuns R.J., Geleijnse M.L., Fernandez-Aviles F., Zijlsta F., Serruys P.W., et al. First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 2012;59:539–540. doi: 10.1016/j.jacc.2011.09.065. PubMed DOI
Perin E.C., Sanz-Ruiz R., Sánchez P.L., Lasso J., Pérez-Cano R., Alonso-Farto J.C., Pérez-David E., Fernández-Santos M.E., Serruys P.W., Duckers H.J., et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial. Am. Heart J. 2014;168 doi: 10.1016/j.ahj.2014.03.022. PubMed DOI
Qayyum A.A., Mathiasen A.B., Mygind N.D., Kühl J.T., Jørgensen E., Helqvist S., Elberg J.J., Kofoed K.F., Vejlstrup N.G., Fischer-Nielsen A., et al. Adipose-Derived Stromal Cells for Treatment of Patients with Chronic Ischemic Heart Disease (MyStromalCell Trial): A Randomized Placebo-Controlled Study. Stem Cells Int. 2017;2017 doi: 10.1155/2017/5237063. PubMed DOI PMC
Slevin M., Krupinski J., Slowik A., Kumar P., Szczudlik A., Gaffney J. Serial measurement of vascular endothelial growth factor and transforming growth factor-β1 in serum of patients with acute ischemic stroke. Stroke. 2000;31:1863–1870. doi: 10.1161/01.STR.31.8.1863. PubMed DOI
Leu S., Lin Y.-C., Yuen C.-M., Yen C.-H., Kao Y.-H., Sun C.-K., Yip H.-K. Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J. Transl. Med. 2010;8:63. doi: 10.1186/1479-5876-8-63. PubMed DOI PMC
Thored P., Wood J., Arvidsson A., Cammenga J., Kokaia Z., Lindvall OThored P., Wood J., Arvidsson A., Cammenga J., Kokaia Z., et al. Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke. 2007;38:3032–3039. doi: 10.1161/STROKEAHA.107.488445. PubMed DOI
Cho Y.J., Song H.S., Bhang S., Lee S., Kang B.G., Lee J.C., An J., Cha C.I., Nam D.H., Kim B.S., et al. Therapeutic effects of human adipose stem cell-conditioned medium on stroke. J. Neurosci. Res. 2012;90:1794–1802. doi: 10.1002/jnr.23063. PubMed DOI
Gutiérrez-Fernández M., Rodríguez-Frutos B., Ramos-Cejudo J., Teresa Vallejo-Cremades M., Fuentes B., Cerdán S., Díez-Tejedor E. Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res. Ther. 2013;4 doi: 10.1186/scrt159. PubMed DOI PMC
Huang H., Liu N., Wang J.-H., Zhang Y.-X., Du H.-W., Chen R.-H., Huang H.-P. The effects of adipose-derived stem cells transplantation on the expression of TGF-β1 in rat brain after cerebral ischemia. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2011;27:872–875. PubMed
Gutierrez-Fernandez M., Rodríguez-Frutos B., Ramos-Cejudo J., Otero-Ortega L., Fuentes B., Vallejo-Cremades T.T., Sanz-Cuesta E.E., Díez-Tejedor E. Comparison between xenogeneic and allogeneic adipose mesenchymal stem cells in the treatment of acute cerebral infarct: Proof of concept in rats. J. Transl. Med. 2015;13 doi: 10.1186/s12967-015-0406-3. PubMed DOI PMC
Mi H.M., Sun Y.K., Yeon J.K., Su J.K., Jae B.L., Yong C.B., Sang M.S., Jin S.J. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell. Physiol. Biochem. 2006;17:279–290. doi: 10.1159/000094140. PubMed DOI
Kishimoto S., Inoue K.-I., Nakamura S., Hattori H., Ishihara M., Sakuma M., Toyoda S., Iwaguro H., Taguchi I., Inoue T., et al. Low-molecular weight heparin protamine complex augmented the potential of adipose-derived stromal cells to ameliorate limb ischemia. Atherosclerosis. 2016;249:132–139. doi: 10.1016/j.atherosclerosis.2016.04.003. PubMed DOI
Shevchenko E.K., Makarevich P.I., Tsokolaeva Z.I., Boldyreva M.A., Sysoeva V.Y., Tkachuk V.A., Parfyonova Y.V. Transplantation of modified human adipose derived stromal cells expressing VEGF165 results in more efficient angiogenic response in ischemic skeletal muscle. J. Transl. Med. 2013;11 doi: 10.1186/1479-5876-11-138. PubMed DOI PMC
Song S.H., Lee M.O., Lee J.S., Jeong H.C., Kim H.G., Kim W.S., Hur M., Cha H.J. Genetic modification of human adipose-derived stem cells for promoting wound healing. J. Dermatol. Sci. 2012;66:98–107. doi: 10.1016/j.jdermsci.2012.02.010. PubMed DOI
Yoo J.H., Shin J.H., An M.S., Ha T.K., Kim K.H., Bae K.B., Kim T.H., Choi C.S., Hong K.H., Kim J., et al. Adipose-tissue-derived stem cells enhance the healing of ischemic colonic anastomoses: An experimental study in rats. J. Korean Soc. Coloproctol. 2012;28:132–139. doi: 10.3393/jksc.2012.28.3.132. PubMed DOI PMC
Joo H.H., Jo H.J., Jung T.D., Ahn M.S., Bae K.B., Hong K.H., Kim J., Kim J.T., Kim S.H., Yang Y.I. Adipose-derived stem cells on the healing of ischemic colitis: A therapeutic effect by angiogenesis. Int. J. Colorectal. Dis. 2012;27:1437–1443. doi: 10.1007/s00384-012-1470-2. PubMed DOI
Xu Y., Shi T., Xu A., Zhang L. 3D spheroid culture enhances survival and therapeutic capacities of MSCs injected into ischemic kidney. J. Cell. Mol. Med. 2016;20:1203–1213. doi: 10.1111/jcmm.12651. PubMed DOI PMC
Harris W.M., Plastini M., Kappy N., Ortiz T., Chang S., Brown S., Carpenter J.P., Zhang P. Endothelial differentiated adipose-derived stem cells improvement of survival and neovascularization in fat transplantation. Aesthetic Surg. J. 2019;39:220–232. doi: 10.1093/asj/sjy130. PubMed DOI
Mou S., Zhou M., Li Y., Wang J., Yuan Q., Xiao P., Sun J., Wang Z. Extracellular Vesicles from Human Adipose-Derived Stem Cells for the Improvement of Angiogenesis and Fat-Grafting Application. Plast. Reconstr. Surg. 2019;144:869–880. doi: 10.1097/PRS.0000000000006046. PubMed DOI
Naderi N., Griffin M.F., Mosahebi A., Butler P.E., Seifalian A.M. Adipose derived stem cells and platelet rich plasma improve the tissue integration and angiogenesis of biodegradable scaffolds for soft tissue regeneration. Mol. Biol. Rep. 2020;47:2005–2013. doi: 10.1007/s11033-020-05297-7. PubMed DOI PMC
Bachmann S., Jennewein M., Bubel M., Guthörl S., Pohlemann T., Oberringer M. Interacting adipose-derived stem cells and microvascular endothelial cells provide a beneficial milieu for soft tissue healing. Mol. Biol. Rep. 2020;47:111–122. doi: 10.1007/s11033-019-05112-y. PubMed DOI
Bhang S.H., Lee S., Shin J.Y., Lee T.J., Jang H.K., Kim B.S. Efficacious and clinically relevant conditioned medium of human adipose-derived stem cells for therapeutic angiogenesis. Mol. Ther. 2014;22:862–872. doi: 10.1038/mt.2013.301. PubMed DOI PMC
Griffin M.F., Naderi N., Kalaskar D.M., Seifalian A.M., Butler P.E. Argon plasma surface modification promotes the therapeutic angiogenesis and tissue formation of tissue-engineered scaffolds in vivo by adipose-derived stem cells. Stem Cell Res. Ther. 2019;10:110. doi: 10.1186/s13287-019-1195-z. PubMed DOI PMC
Han Y.-D., Bai Y., Yan X.-L., Ren J., Zeng Q., Li X.-D., Pei X., Han Y. Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting. Biochem. Biophys. Res. Commun. 2018;497:305–312. doi: 10.1016/j.bbrc.2018.02.076. PubMed DOI
Manavella D.D., Cacciottola L., Payen V.L., Amorim C.A., Donnez J., Dolmans M.M. Adipose tissue-derived stem cells boost vascularization in grafted ovarian tissue by growth factor secretion and differentiation into endothelial cell lineages. MHR Basic Sci. Reprod. Med. 2019;25:184–193. doi: 10.1093/molehr/gaz008. PubMed DOI
Dolmans M., Cacciottola L., Amorim C.A., Manavella D. Translational research aiming to improve survival of ovarian tissue transplants using adipose tissue-derived stem cells. Acta Obstet. Gynecol. Scand. 2019;98:665–671. doi: 10.1111/aogs.13610. PubMed DOI
Constantin A., Dumitrescu M., Mihai (Corotchi) M.C., Jianu D., Simionescu M. CO2 laser increases the regenerative capacity of human adipose-derived stem cells by a mechanism involving the redox state and enhanced secretion of pro-angiogenic molecules. Lasers Med. Sci. 2017;32:117–127. doi: 10.1007/s10103-016-2093-6. PubMed DOI