Multi-year atmospheric concentrations of per- and polyfluoroalkyl substances (PFASs) at a background site in central Europe
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P42 ES027706
NIEHS NIH HHS - United States
PubMed
32474357
PubMed Central
PMC7585738
DOI
10.1016/j.envpol.2020.114851
PII: S0269-7491(20)31573-6
Knihovny.cz E-zdroje
- Klíčová slova
- Gas-particle partitioning, Long-range atmospheric transport, Multi-year variations, Per- and polyfluoroalkyl substances, Seasonal variations,
- MeSH
- fluorokarbony analýza MeSH
- kyseliny karboxylové MeSH
- monitorování životního prostředí MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Evropa MeSH
- Názvy látek
- fluorokarbony MeSH
- kyseliny karboxylové MeSH
A total of 74 high volume air samples were collected at a background site in Czech Republic from 2012 to 2014 in which the concentrations of 20 per- and polyfluoroalkyl substances (PFASs) were investigated. The total concentrations (gas + particle phase) ranged from 0.03 to 2.08 pg m-3 (average 0.52 pg m-3) for the sum of perfluoroalkyl carboxylic acids (∑PFCAs), from 0.02 to 0.85 pg m-3 (average 0.28 pg m-3) for the sum of perfluoroalkyl sulfonates (ΣPFSAs) and from below detection to 0.18 pg m-3 (average 0.05 pg m-3) for the sum of perfluorooctane sulfonamides and sulfonamidoethanols (ΣFOSA/Es). The gas phase concentrations of most PFASs were not controlled by temperature dependent sources but rather by long-range atmospheric transport. Air mass backward trajectory analysis showed that the highest concentrations of PFASs were mainly originating from continental areas. The average particle fractions (θ) of ΣPFCAs (θ = 0.74 ± 0.26) and ΣPFSAs (θ = 0.78 ± 0.22) were higher compared to ΣFOSA/Es (θ = 0.31 ± 0.35). However, they may be subject to sampling artefacts. This is the first study ever reporting PFASs concentrations in air samples collected over consecutive years. Significant decreases in 2012-2014 for PFOA, MeFOSE, EtFOSE and ∑PFCAs were observed with apparent half-lives of 1.01, 0.86, 0.92 and 1.94 years, respectively.
Graduate School of Oceanography University of Rhode Island Narragansett RI 02882 USA
Masaryk University RECETOX Centre Kamenice 5 625 00 Brno Czech Republic
Zobrazit více v PubMed
Ahrens L, 2011. Polyfluoroalkyl compounds in the aquatic environment: A review of their occurrence and fate. J. Environ. Monit. 13, 20–31. 10.1039/c0em00373e PubMed DOI
Ahrens L, Hamer T, Shoeib M, Lane DA, Murphy JG, 2012. Improved characterization of gas-particle partitioning for per- and polyfluoroalkyl substances in the atmosphere using annular diffusion denuder samplers. Environ. Sci. Technol. 46, 7199–7206. 10.1021/es300898s PubMed DOI
Ahrens L, Shoeib M, Hamer T, Lane DA, Guo R, Reiner EJ, 2011. Comparison of annular diffusion denuder and high volume air samplers for measuring per- and polyfluoroalkyl substances in the atmosphere. Anal. Chem. 83, 9622–9628. 10.1021/ac202414w PubMed DOI
Armitage JM, Macleod M, Cousins I, 2009. Comparative assessment of the global fate and transport pathways of long-chain perfluorocarboxylic acids (PFCAs) and perfluorocarboxylates (PFCs) emitted from direct sources. Envir Sci Technol 43, 5830–5836. PubMed
Arp HPH, Goss KU, 2008. Irreversible sorption of trace concentrations of perfluorocarboxylic acids to fiber filters used for air sampling. Atmos. Environ. 42, 6869–6872. 10.1016/j.atmosenv.2008.05.012 DOI
Barber JL, Berger U, Chaemfa C, Huber S, Jahnke A, Temme C, Jones KC, 2007. Analysis of per- and polyfluorinated alkyl substances in air samples from Northwest Europe. J. Environ. Monit. 9, 530–541. 10.1039/b701417a PubMed DOI
Bečanová J, Melymuk L, Vojta Š, Komprdová K, Klanová J, 2016. Screening for perfluoroalkyl acids in consumer products, building materials and wastes. Chemosphere 164, 322–329. 10.1016/j.chemosphere.2016.08.112 PubMed DOI
Benskin JP, Ahrens L, Muir DCG, Scott BF, Spencer C, Rosenberg B, Tomy G, Kylin H, Lohmann R, Martin JW, 2012. Manufacturing origin of perfluorooctanoate (PFOA) in Atlantic and Canadian Arctic seawater. Environ. Sci. Technol. 46, 677–685. 10.1021/es202958p PubMed DOI
Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, Voogt P. De, Jensen AA, Kannan K, Mabury SA, van Leeuwen SPJ, 2011. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 7, 513–541. 10.1002/ieam.258 PubMed DOI PMC
Cai Minghong, Xie Z, Moller A, Yin Z, Huang P, Cai Minggang, Yang H, Sturm R, He J, Ebinghaus R, 2012. Polyfluorinated compounds in the atmosphere along a cruise pathway from the Japan Sea to the Arctic Ocean. Chemosphere 87, 989–997. 10.1016/j.chemosphere.2011.11.010 PubMed DOI
Chen H, Yao Y, Zhao Z, Wang Y, Wang Q, Ren C, Wang B, Sun H, Alder AC, Kannan K, 2018. Multimedia distribution and transfer of per- and polyfluoroalkyl substances (PFASs) surrounding two fluorochemical manufacturing facilities in Fuxin, China. Environ. Sci. Technol. 52, 8263–8271. 10.1021/acs.est.8b00544 PubMed DOI
Degrendele C, Fiedler H, Kočan A, Kukučka P, Pribylová P, Prokeš R, Klánová J, Lammel G, 2020. Multiyear levels of PCDD/Fs, dl-PCBs and PAHs in background air in central Europe and implications for deposition. Chemosphere 240 10.1016/j.chemosphere.2019.124852 PubMed DOI
Degrendele C, Okonski K, Melymuk L, Landlová L, Kukučka P, Audy O, Kohoutek J, Čupr P, Klánová J, 2016. Pesticides in the atmosphere: A comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides. Atmos. Chem. Phys. 16 10.5194/acp-16-1531-2016 DOI
Degrendele C, Wilson J, Kukučka P, Klánová J, Lammel G, 2018. Are atmospheric PBDE levels declining in central Europe? Examination of the seasonal and semi-long-term variations, gas - particle partitioning and implications for long-range atmospheric transport. Atmos. Chem. Phys. 2008, 12877–12890.
Dobson R, Scheyer A, Rizet AL, Mirabel P, Millet M, 2006. Comparison of the efficiencies of different types of adsorbents at trapping currently used pesticides in the gaseous phase using the technique of high-volume sampling. Anal. Bioanal. Chem. 386, 1781–1789. 10.1007/s00216-006-0737-2 PubMed DOI
Dreyer A, 2010. Atmospheric Distribution and Seasonality of Airborne Polyfluorinated Compounds: Spatial and Temporal Concentration Variations from Ship- and Land-Based Measurements in Northern Germany, the Atlantic Ocean, and Polar Regions. GKSS-Forschungszentrum Geesthacht GmbH. Universität Bayreuth.
ECHA, 2019. Support document for identification of 2,3,3,3-Tetrafluoro-2-(Heptafluoropropoxy) Propionic Acid, Its Salts and Its Acyl Halides (Covering any of their individual isomers and Combinations Thereof; ).
Ellis DA, Martin JW, Mabury SA, Hurley MD, Sulbaek Andersen MP, Wallington TJ, 2003. Atmospheric lifetime of fluorotelomer alcohols. Environ. Sci. Technol. 37, 3816–3820. 10.1021/es034136j PubMed DOI
EPA, 2006. 2010 / 15 PFOA Stewardship Program Guidance on Reporting Emissions and Product Content.
Giesy JP, Kannan K, 2002. Peer Reviewed: Perfluorochemical Surfactants in the Environment. Environ. Sci. Technol. 36, 146A–152A. 10.1021/es022253t PubMed DOI
Giesy JP, Kannan K, 2001. Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol. 35, 1339–1342. 10.1021/es001834k PubMed DOI
Harrad S, 2015. A meta-analysis of recent data on UK environmental levels of POP-BFRs in an international context: Temporal trends and an environmental budget. Emerg. Contam. 1, 39–53. 10.1016/j.emcon.2015.08.001 DOI
Hoff RM, Brice KA, Halsall CJ, 1998. Nonlinearity in the slopes of Clausius-Clapeyron plots for SVOCs. Environ. Sci. Technol. 32, 1793–1798. 10.1021/es9709740 DOI
Holoubek I, Klanova J, Jarkovsky J, Kohoutek J, 2007. Trends in background levels of persistent organic pollutants at Kosetice observatory, Czech Republic. Part I. Ambient air and wet deposition 1996–2005. J. Environ. Monit. 9, 557–563. 10.1039/b700750g PubMed DOI
Jahnke A, Ahrens L, Ebinghaus R, Temme C, 2007. Urban versus remote air concentrations of fluorotelomer alcohols and other polyfluorinated alkyl substances in Germany. Envir Sci Technol 745–752. 10.1021/es0619861 PubMed DOI
Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, Mohd MA, Olivero J, Van Wouwe N, Yang JH, Aldous KM, 2004. Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ. Sci. Technol. 38, 4489–4495. 10.1021/es0493446 PubMed DOI
Karásková P, Codling G, Melymuk L, Klánová J, 2018. A critical assessment of passive air samplers for per- and polyfluoroalkyl substances. Atmos. Environ. 185, 186–195. 10.1016/j.atmosenv.2018.05.030 DOI
Lai S, Song J, Song T, Huang Z, Zhang Y, Zhao Y, Liu G, Zheng J, Mi W, Tang J, Zou S, Ebinghaus R, Xie Z, 2016. Neutral polyfluoroalkyl substances in the atmosphere over the northern South China Sea. Environ. Pollut. 214, 449–455. 10.1016/j.envpol.2016.04.047 PubMed DOI
Li Z, Guo J, Ding A, Liao H, Liu J, Sun Y, Wang T, Xue H, Zhang H, Zhu B, 2017. Aerosol and boundary-layer interactions and impact on air quality. Natl. Sci. Rev. 4, 810–833. 10.1093/nsr/nwx117 DOI
Liu B, Zhang H, Yao D, Li J, Xie L, Wang X, Wang Y, Liu G, Yang B, 2015. Perfluorinated compounds (PFCs) in the atmosphere of Shenzhen, China: Spatial distribution, sources and health risk assessment. Chemosphere 138, 511–518. 10.1016/j.chemosphere.2015.07.012 PubMed DOI
Lohmann R, Lammel G, 2004. Adsorptive and absorptive contributions to the gas-particle partitioning of polycyclic aromatic hydrocarbons: State of knowledge and recommended parametrization for modeling. Env. Sci Technol 38, 3793–3803. 10.1021/es035337q PubMed DOI
Melymuk L, Bohlin-Nizzetto P, Sáňká O, Pozo K, Klánová J, 2014. Current challenges in air sampling of semi-volatile organic contaminants: sampling artifacts and their influence on data comparability. Environ. Sci. Technol. 48, 14077–14091. 10.1021/es502164r PubMed DOI
OECD, 2015. Risk Reduction Approaches for PFASs – A cross-Country Analysis. OECD Environ. Heal. Saf. Publ. Ser. Risk Manag No. 29, 82.
Ostertag SK, Tague BA, Humphries MM, Tittlemier SA, Chan HM, 2009. Estimated dietary exposure to fluorinated compounds from traditional foods among Inuit in Nunavut, Canada. Chemosphere 75, 1165–1172. 10.1016/j.chemosphere.2009.02.053 PubMed DOI
Pankow JF, 1987. Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. Atmos. Environ. 21, 2275–2283.
Paul AG, Jones KC, Sweetman AJ, 2009. A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ. Sci. Technol. 43, 386–392. PubMed
Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH, 2006. Sources, fate and transport of perfluorocarboxylates. Environ. Sci. Technol. 40, 32–44. PubMed
Rauert C, Harner T, Schuster JK, Eng A, Fillmann G, Castillo LE, Fentanes O, Villa Ibarra M, Miglioranza KSB, Moreno Rivadeneira I, Pozo K, Aristizabal Zuluaga BH, 2018. Atmospheric concentrations of new persistent organic pollutants and emerging chemicals of concern in the group of Latin America and Caribbean (GRULAC) region. Environ. Sci. Technol. 52, 7240–7249. 10.1021/acs.est.8b00995 PubMed DOI
Shahpoury P, Lammel G, Holubová Šmejkalová A, Klánová J, Přibylová P, Váňa M, 2015. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and chlorinated pesticides in background air in central Europe – investigating parameters affecting wet scavenging of polycyclic aromatic hydrocarbons. Atmos. Chem. Phys. 15, 1795–1805. 10.5194/acp-15-1795-2015 DOI
Shoeib M, Vlahos P, Harner T, Peters A, Graustein M, Narayan J, 2010. Survey of polyfluorinated chemicals (PFCs) in the atmosphere over the northeast Atlantic Ocean. Atmos. Environ. 44, 2887–2893. 10.1016/j.atmosenv.2010.04.056 DOI
Stemmler I, Lammel G, 2010. Pathways of PFOA to the Arctic : variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources. Atmos. Chem. Phys. 10, 9965–9980. 10.5194/acp-10-9965-2010 DOI
Stohl A, Forster C, Frank A, Seibert P, Wotawa G, 2005. Technical note : The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys. 5, 2461–2474.
Stohl A, Sodemann H, Eckhardt S, Frank A, Seibert P, Wotawa G, 2010. The Lagrangian particle dispersion model FLEXPART version 8.2. FLEXPART Doc.
Thackray CP, Selin NE, Young CJ, 2020. A global atmospheric model for the fate and transport of PFCAs and their precursors. Environ. Sci. Process. Impacts. 10.1039/c9em00326f PubMed DOI PMC
UNEP, 2019. SC-9 / 12 : Listing of perfluorooctanoic acid ( PFOA ), its salts and PFOA-related compounds [WWW Document].
UNEP, 2017. Stockholm Convention on Persistent Organic Pollutants (POPs). Secr. Stock. Conv. 10.1351/goldbook.s06019 DOI
Venier M, Hung H, Tych W, Hites RA, 2012. Temporal trends of persistent organic pollutants: A comparison of different time series models. Environ. Sci. Technol. 46, 3928–3934. 10.1021/es204527q PubMed DOI
Wang T, Wang Y, Liao C, Cai Y, Jiang G, 2009. Perspectives on the inclusion of perfluorooctane sulfonate into the Stockholm Convention on persistent organic pollutants. Env. Sci Technol 43, 5171–5175. PubMed
Wang X, Schuster J, Jones KC, Gong P, 2018. Occurrence and spatial distribution of neutral perfluoroalkyl substances and cyclic volatile methylsiloxanes in the atmosphere of the Tibetan Plateau. Atmos. Chem. Phys. 18, 8745–8755.
Wang Z, Dewitt JC, Higgins CP, Cousins IT, 2017. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environ. Sci. Technol. 51, 2508–2518. 10.1021/acs.est.6b04806 PubMed DOI
Wang Z, Xie Z, Mi W, Möller A, Wolschke H, Ebinghaus R, 2015. Neutral poly/per-fluoroalkyl substances in air from the Atlantic to the Southern Ocean and in Antarctic snow. Environ. Sci. Technol. 8–13. 10.1021/acs.est.5b00920 PubMed DOI
Wang Z, Xie Z, Möller A, Mi W, Wolschke H, Ebinghaus R, 2014. Atmospheric concentrations and gas/particle partitioning of neutral poly- and perfluoroalkyl substances in northern German coast. Atmos Env. 95, 207–213. 10.1016/j.atmosenv.2014.06.036 DOI
Xie Z, Zhao Z, Möller A, Wolschke H, Ahrens L, Sturm R, Ebinghaus R, 2013. Neutral poly- and perfluoroalkyl substances in air and seawater of the North Sea. Environ. Sci. Pollut. Res. 7988–8000 10.1007/s11356-013-1757-z PubMed DOI
Yamashita N, Kannan K, Taniyasu S, Horii Y, Petrick G, Gamo T, 2005. A global survey of perfluorinated acids in oceans, in: Marine Pollution Bulletin; pp. 658–668. 10.1016/j.marpolbul.2005.04.026 PubMed DOI