(Iso)Quinoline-Artemisinin Hybrids Prepared through Click Chemistry: Highly Potent Agents against Viruses

. 2020 Sep 16 ; 26 (52) : 12019-12026. [epub] 20200818

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32485071

Grantová podpora
TS 87/16-3 Deutsche Forschungsgemeinschaft
MM 1289/7-1/7-3 Deutsche Forschungsgemeinschaft
MM 1289/11-1 Deutsche Forschungsgemeinschaft
GRK 2504 (A1/MM) Deutsche Forschungsgemeinschaft
Gottfried Wilhelm Leibniz award Deutsche Forschungsgemeinschaft
Deutscher Akademischer Austauschdienst
Alexander von Humboldt-Stiftung
ChemBioDrug CZ.02.1.01/0.0/0.0/16_019/0000729 ERDF/ESF

Viral infections cause life-threatening diseases in millions of people worldwide every year and there is an urgent need for new, effective antiviral drugs. Hybridization of two chemically diverse compounds into a new bioactive effector product is a successful concept to improve the properties of a hybrid drug relative to the parent compounds. In this study, (iso)quinoline-artemisinin hybrids, obtained through copper-catalyzed azide-alkyne cycloaddition or metal-free click reactions (in organic solvents or in the presence of water), were analyzed in vitro, for the first time, for their inhibitory activity against human cytomegalovirus (HCMV), relative to their parent compounds and the reference drug ganciclovir. EC50 (HCMV) values were obtained in a range 0.22-1.20 μm, which indicated highly potent antiviral properties in the absence of cytotoxic effects on normal cells (CC50 >100 μm). The most active hybrid, 1 (EC50 =0.22 μm), is 25 times more potent than its parent compound artesunic acid (EC50 =5.41 μm) and 12 times more efficient than the standard drug ganciclovir (EC50 =2.6 μm). Interestingly, hybrid 1 also shows inhibitory activity against hepatitis B virus in vitro (EC50 (HBeAg)=2.57 μm).

Zobrazit více v PubMed

Dupont L., Reeves M. B., Rev. Med. Virol. 2016, 26, 75–89. PubMed PMC

Gilbert C., Boivin G., Antimicrob. Agents Chemother. 2005, 49, 873–883. PubMed PMC

Liang T. J., Hepatology 2009, 49, S13-S21. PubMed PMC

Nebbia G., Peppa D., Maini M. K., QJM 2012, 105, 109–113. PubMed PMC

Tietze L. F., Bell H. P., Chandrasekhar S., Angew. Chem. Int. Ed. 2003, 42, 3996–4028; PubMed

Angew. Chem. 2003, 115, 4128–4160;

Gademann K., Chimia 2006, 60, 841–845;

Tsogoeva S. B., Mini-Rev. Med. Chem. 2010, 10, 773–793; PubMed

Fröhlich T., Çapcı Karagöz A., Reiter C., Tsogoeva S. B., J. Med. Chem. 2016, 59, 7360–7388. PubMed

Held F. E., Guryev A. A., Fröhlich T., Hampel F., Kahnt A., Hutterer C., Steingruber M., Bahsi H., von Bojničić-Kninski C., Mattes D. S., Foertsch T. C., Nesterov-Mueller A., Marschall M., Tsogoeva S. B., Nat. Commun. 2017, 8, 15071; PubMed PMC

Çapcı A., Lorion M. M., Wang H., Simon N., Leidenberger M., Borges Silva M. C., Moreira D. R. M., Zhu Y., Meng Y., Chen J. Y., Lee Y. M., Friedrich O., Kappes B., Wang J., Ackermann L., Tsogoeva S. B., Angew. Chem. Int. Ed. 2019, 58, 13066–13079; PubMed PMC

Angew. Chem. 2019, 131, 13200–13213.

Ratheesh M., Sindhu G., Helen A., J. Inflamm. Res. 2013, 62, 367–376; PubMed

Vandekerckhove S., Tran H. G., Desmet T., D′hooghe M., Bioorg. Med. Chem. Lett. 2013, 23, 4641–4643; PubMed

Lam K.-H., Gambari R., Lee K. K.-H., Chen Y.-X., Kok S. H.-L., Wong R. S.-M., Lau F.-Y., Cheng C.-H., Wong W.-Y., Bian Z.-X., Chan A. S.-C., Tang J. C.-O., Chui C.-H., Bioorg. Med. Chem. Lett. 2014, 24, 367–370; PubMed

“Quinolines and Isoquinolines”: Finley K. T. in Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, 2015;

de la Guardia C., Stephens D. E., Dang H. T., Quijada M., Larionov O. V., Lleonart R., Molecules 2018, 23, 672–682. PubMed PMC

Vincent M. J., Bergeron E., Benjannet S., Erickson B. R., Rollin P. E., Ksiazek T. G., Seidah N. G., Nichol S. T., Virology 2005, 2, 69–78. PubMed PMC

Rolain J.-M., Colson P., Raoult D., Int. J. Antimicrob. Agents 2007, 30, 297–308. PubMed PMC

Zheng X., Wang L., Wang B., Miao K., Xiang K., Feng S., Gao L., Shen H. C., Yun H., ACS Med. Chem. Lett. 2016, 7, 558–562. PubMed PMC

Talamas F. X., Abbot S. C., Anand S., Brameld K. A., Carter D. S., Chen J., Davis D., de Vicente J., Fung A. D., Gong L., Harris S. F., Inbar P., Labadie S. S., Lee E. K., Lemoine R., Le Pogam S., Leveque V., Li J., McIntosh J., Nájera I., Park J., Railkar A., Rajyaguru S., Sangi M., Schoenfeld R. C., Staben L. R., Tan Y., Taygerly J. P., Villaseñor A. G., Weller P. E., J. Med. Chem. 2014, 57, 1914–1931. PubMed PMC

Ezgimen M., Lai H., Mueller N. H., Lee K., Cuny G., Ostrov D. A., Padmanabhan R., Antiviral Res. 2012, 94, 18–24. PubMed PMC

Barbosa-Lima G., Moraes A. M., Araújo A. d. S., da Silva E. T., de Freitas C. S., Vieira Y. R., Marttorelli A., Neto J. C., Bozza P. T., de Souza M. V. N., Souza T. M. L., J. Med. Chem. 2017, 127, 334–340. PubMed

De Clercq E., Li G., Clin. Microbiol. Rev. 2016, 29, 695–747. PubMed PMC

Vella S., Floridia M., Clin. Pharmacokinet. 1998, 34, 189–201. PubMed

“A Focus on Ebola Virus Polymerase: Structure, Functions and Antiviral Therapies”: Pettini F., Trezza A., Spiga O. in Viral Polymerases (Ed.: Gupta), Academic Press, 2019, chap. 7.

D′Alessandro S., Scaccabarozzi D., Signorini L., Perego F., Ilboudo D. P., Ferrante P., Delbue S., Microorganisms 2020, 8, 85–110. PubMed PMC

Keyaerts E., Li S., Vijgen L., Rysman E., Verbeeck J., Van Ranst M., Maes P., Antimicrob. Agents Chemother. 2009, 53, 3416–3421; PubMed PMC

Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W., Xiao G., Cell Res. 2020, 30, 269–271; PubMed PMC

Devaux C. A., Rolain J.-M., Colson P., Raoult D., Int. J. Antimicrob. Agents 2020, 55, 105938–105943. PubMed PMC

Tu Y., Nat. Med. 2011, 17, 1217–1220; PubMed

Su X. Z., Miller L. H., Sci. China Life Sci. 2015, 58, 1175–1179. PubMed PMC

Efferth T., Marschall M., Wang X., Huong S.-M., Hauber I., Olbrich A., Kronschnabl M., Stamminger T., Huang E.-S., J. Mol. Med. 2002, 80, 233–242. PubMed

Ackermann L., Chem. Rev. 2011, 111, 1315–1345; PubMed

Wang H., Koeller J., Liu W., Ackermann L., Chem. Eur. J. 2015, 21, 15525–15528; PubMed

Gandeepan P., Müller T., Zell D., Cera G., Warratz S., Ackermann L., Chem. Rev. 2019, 119, 2192–2452. PubMed

Kapkoti D. S., Singh S., Luqman S., Bhakuni R. S., New J. Chem. 2018, 42, 5978–5995.

Ramachary D. B., Shashank A. B., Karthik S., Angew. Chem. Int. Ed. 2014, 53, 10420–10424; PubMed

Angew. Chem. 2014, 126, 10588–10592.

Ali A., Corrêa A. G., Alves D., Zukerman-Schpector J., Westermann B., Ferreira M. A. B., Paixão M. W., Chem. Commun. 2014, 50, 11926–11929. PubMed

Letelier M. E., Lepe A. M., Faúndez M., Salazar J., Marín R., Aracena P., Speisky H., Chem. Biol. Interact. 2005, 151, 71–82. PubMed

Bora P. P., Baruah N., Bez G., Barua N. C., Synth. Commun. 2012, 42, 1218–1225.

Ji H., Li H., Martasek P., Roman L. J., Poulos T. L., Silverman R. B., J. Med. Chem. 2009, 52, 779–797. PubMed PMC

Jalani H. B., Karagöz A. Ç., Tsogoeva S. B., Synthesis 2017, 49, 29–41.

Hutterer C., Niemann I., Milbradt J., Fröhlich T., Reiter C., Kadioglu O., Bahsi H., Zeitträger I., Wagner S., Einsiedel J., Gmeiner P., Vogel N., Wandinger S., Godl K., Stamminger T., Efferth T., Tsogoeva S. B., Marschall M., Antiviral Res. 2015, 124, 101–109. PubMed

Chou S., Marousek G., Auerochs S., Stamminger T., Milbradt J., Marschall M., Antiviral Res. 2011, 92, 364–368. PubMed

Kaptein S. J. F., Efferth T., Leis M., Rechter S., Auerochs S., Kalmer M., Bruggeman C. A., Vink C., Stamminger T., Marschall M., Antiviral Res. 2006, 69, 60–69. PubMed

Romero M. R., Efferth T., Serrano M. A., Castano B., Macias R. I., Briz O., Marin J. J., Antiviral Res. 2005, 68, 75–83; PubMed

Zhao Y., Geng C. A., Sun C. L., Ma Y. B., Huang X. Y., Cao T. W., He K., Wang H., Zhang X. M., Chen J. J., Fitoterapia 2014, 95, 187–193; PubMed

Geng C. A., Yang T. H., Huang X. Y., Yang J., Ma Y. B., Li T. Z., Zhang X. M., Chen J. J., J. Ethnopharmacol. 2018, 224, 283–289. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...